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Abstract: Water resources are critically important, but also pose risks of exposure to toxic and
pathogenic microbes. Increasingly, a concern is toxic cyanobacteria, which have been linked to the
death and disease of humans, domesticated animals, and wildlife in freshwater systems worldwide.
Management approaches successful at reducing cyanobacterial abundance and toxin production have
tended to be short-term solutions applied on small scales (e.g., algaecide application) or solutions that
entail difficult multifaceted investments (e.g., modification of landscape and land use to reduce nutri-
ent inputs). However, implementation of these approaches can be undermined by microbial species
interactions that (a) provide toxic cyanobacteria with protection against the method of control or (b)
permit toxic cyanobacteria to be replaced by other significant microbial threats. Understanding these
interactions is necessary to avoid such scenarios and can provide a framework for novel strategies to
enhance freshwater resource management via systems science (e.g., pairing existing physical and
chemical approaches against cyanobacteria with ecological strategies such as manipulation of natural
enemies, targeting of facilitators, and reduction of benthic occupancy and recruitment). Here, we
review pertinent examples of the interactions and highlight potential applications of what is known.
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1. Introduction

Cyanobacteria are a diverse group of bacteria whose members have been found almost
everywhere on Earth, from literally the deepest seas [1] to the driest deserts [2]. Evidence
suggests that cyanobacteria were not only among Earth’s earliest lifeforms and the first
to be able to photosynthesize but also the ancestors of the chloroplasts within plants [3].
Cyanobacteria comprise much of the base of the food web in aquatic systems, supporting
aquatic biodiversity and ecosystem resilience [4]. However, certain cyanobacteria are toxic
to humans and other animals [5–8] and proliferate to nuisance abundances in many parts
of the world. When this proliferation occurs in a place and time that makes it an immediate
threat to human health and the environment, the event is referred to as a Harmful Algal
Bloom (HAB). HABs have been reported in all 50 states of the US and may become more
frequent and severe over time due to factors such as nutrient pollution and global climate
change [9]. They may also act synergistically with other anthropogenic stressors, such as
microplastics, to dampen the effectiveness of toxic cyanobacteria control [10].

In inland freshwater lakes, the most common constituents of HABs are toxic cyanobac-
terial species within the genera Dolichospermum, Aphanizomenon, Microcystis, Planktothrix,
and Raphidiopsis [11,12]. The ability of these species to dominate phytoplankton communi-
ties during HABs is often attributed to intrinsic competitive advantages, such as the ability
to fix nitrogen and tolerate higher temperatures [13], adjust their vertical positions within
the water column [14], or escape predation [15]. Factors such as large rainfall events [16]
and ballast water exchange [17] may, in addition, promote the species’ movement and estab-
lishment across landscapes [18–22]. In this review, we discuss current methods of control
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for HABs and identify and synthesize pertinent examples of microbial interactions, which
can be applied to not only avoid adverse outcomes but also to develop novel strategies
based on systems science that enhance the management of HABs and freshwater resources
(Table 1).

Table 1. How cyanobacterial interactions with other aquatic microbes pertain to HABs management.

Microbial Relationship Microbial Mechanism Management Implications

Protection
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2. Control Methods

The current knowledge of cyanobacterial traits and putative environmental drivers
has inspired various methods of controlling HABs that fall roughly within the categories
of physical, chemical, and biological. Physical control entails the mechanical inhibition,
removal, or elimination of toxic cyanobacteria [23]. The use of plankton nets, hand-removal,
and coagulants falls within this category [24,25], as do dam operations in reservoirs (hy-
drologic control, flushing [20,26]). Physical control methods also include alteration of the
habitat to make it unfavorable for cyanobacterial survival and proliferation. For instance,
artificial shading [24,27], pressurization [28], and physical aeration, nanobubble ozonation,
or sonication/ultrasound/acoustic cavitation [29–31] can be used to physically suppress or
damage cyanobacterial cells, and the capping and dredging of aquatic soil and sediment
can be used to reduce pre-existing nutrient loads and viable toxic cyanobacterial dor-
mant stages [32–34]. Potentially, these methods can be automated or otherwise improved
using recent advances in robotic technology and artificial intelligence, such as low-cost
unmanned surface vehicles equipped with active suction pumps and mesh-based algae
filtration systems [35].



Ecologies 2022, 3 572

Chemical control entails the application of compounds that are harmful to toxic
cyanobacteria [36]. Artificial compounds such as commercial copper salt solutions [37,38]
are often used, but natural compounds such as methanolic allelochemicals of seaweed
are also available [39]. The modes of action of these chemical control agents can be direct
or indirect. Direct modes include cell lysis and blockage of metabolic processes such as
photosynthesis [40]. Indirect modes include photosensitivity induction [41], removal of
growth-limiting nutrients (e.g., with flocculants such as aluminum sulfate to bind growth-
limiting nutrients [42]), and impedance of colony formation (e.g., with iron reducers such
as humic [43]).

Biological control entails the use of living organisms to keep toxic cyanobacteria
in check. These organisms may be brought in from outside the system or manipulated
within the system. They may include competitors of toxic cyanobacteria (e.g., green algae
and diatoms), which consume cyanobacterial resources and might directly interfere with
cyanobacterial survival and reproduction through allelopathy or overgrowth [44–46]. The
organisms may also include predators, parasites, or pathogens of toxic cyanobacteria, such
as planktivorous fish and arthropods [47,48]. Alternatively, organisms can be installed or
manipulated at the edge of the habitat afflicted with toxic cyanobacteria (or in a connected
habitat that is upstream) to modify environmental conditions. Examples of this include the
planting of cover crops to reduce soil erosion in agricultural systems [49], the construction
of riparian buffer zones and floating wetlands to curb or counteract influx of nutrients and
cyanobacteria from terrestrial sources [49,50], and the seeding of lake habitats or adjacent
riparian buffer zones with organisms capable of diverting, eliminating, or mineralizing
nutrients (e.g., submerged aquatic vegetation and filter-feeding bivalves [51,52]).

Despite there being a broad array of physical, chemical, and biological control options
for managing toxic cyanobacteria, the problem of HABs persists [19,53]. Contributing
to the challenge of resolving this problem are factors such as the spatial and temporal
heterogeneity within and among the habitats where HABs occur [54], along with the
variability among the differing species, morphospecies, and strains of cyanobacteria in
toxicity, morphology, patterns of growth, and physiological tolerance [55]. Furthermore,
methods to control toxic cyanobacteria can sometimes affect non-target organisms as
well. Commonly employed algaecides, for example, have been shown to have lethal and
sublethal effects not only on toxic cyanobacteria but also on zooplankton, fish, and the more
nutritious cyanobacteria and algae that support the food web [37,40,56–58]). Similarly,
the use of barley straw to reduce light penetration through the water column and to
chemically inhibit cyanobacteria via its subsequent decay can prevent HABs [59], but also
it reduces light availability to beneficial phytoplankton and aquatic plants and to visual
aquatic animals that rely on light to locate food and mates and avoid predators [60,61].
The straw can also deoxygenate the water as it decays, which can cause fish death [62].
Non-target organisms might also add complexity to the challenge of HABs management
by providing the toxic cyanobacteria with protection against the method of control. To
assess and mitigate the risks of non-target effects in managing freshwater HABs, a deeper
understanding of the microbial ecological interactions underlying these effects is required.

3. Interactions of Toxic Cyanobacteria with Other Aquatic Microbes
3.1. Protection and Promotion

Aquatic microbes that consistently benefit toxic cyanobacteria include various species
of heterotrophic bacteria and fungi (HBF). Some HBF share intimate and often mutually
beneficial symbioses with toxic cyanobacteria. Many of these inhabit the “phycosphere”,
the region that immediately surrounds individual cyanobacterial cells [63,64]. Differing
strains of toxic cyanobacteria are known to have distinct HBF assemblages residing in
their phycospheres that vary in composition with environmental conditions [65]. A study
conducted in western Lake Erie, for example, revealed that phycosphere communities of
Microcystis sp. differ from both the microbial communities detected in the surrounding
water and those detected in the phycospheres of co-occurring phytoplankton species [66].
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Microbial interactions in the phycospheres of well-characterized phytoplankton such as
Microcystis have been extensively studied in laboratory settings and, to a lesser extent, in
the field, and could have significant implications for how we manage cyanobacteria [67–69].
In some cases, HBF symbionts are so critical to the ability of toxic cyanobacteria to survive
and grow that culturing the cyanobacteria axenically requires special effort [70,71].

While the precise mechanisms have yet to be resolved, phycospheric heterotrophic
bacteria such as in the genus Aeromonas have been found to induce and support colony
formation in Microcystis aeruginosa via secretion of signaling compounds and extracellular
polymeric substances [70,72,73]. These compounds are crucial in colony formation, which
entails the aggregation, functional arrangement, and adherence of cells, along with the
construction of surrounding mucilage. The process provides cyanobacteria not only with
improved nutrient uptake efficiencies [73] but also with resistance to algaecides [74] and
disinfectants [75]. Similarly, heterotrophic bacteria within the genus Rhizobium stimu-
late the growth of M. aeruginosa by solubilizing phosphorus and decomposing hydrogen
peroxide [76,77], with the latter being both a natural toxic byproduct of aerobic photosyn-
thesis [78] and an algaecide used by humans to control HABs [79].

Fungi beneficial to toxic cyanobacteria are commonly known to be part of terrestrial
symbioses such as toxin-producing lichens [80,81], but have not often been reported in
equivalent symbioses with toxic cyanobacteria in aquatic systems (meaning, in relationships
that are protracted, coevolved, and reliant on spatial or temporal proximity). This may be
because fungal benefits that enable cyanobacteria to thrive on land (e.g., hyphal substrate
degradation and increased desiccation tolerance [82]) are less useful to cyanobacteria in wa-
ter. Nevertheless, there is evidence, both experimentally created [83] and observed [84,85],
of fungi within the genus Aspergillus providing cyanobacteria within the genus Nostoc with
benefits that include oxidative stress resistance comparable to the previously mentioned
(bacteria-conferred) protection against hydrogen peroxide. Moreover, free-living “white-
rot” fungi have been shown to drive transformations of common herbicides such as diuron
and atrazine, rendering the herbicides subsequently non-lethal to cyanobacteria [86].

HBF can also promote and/or benefit from toxic cyanobacteria via food web inter-
actions. For example, by infecting grazers of cyanobacteria, pathogenic or parasitic HBF
can lower the grazers’ ability to withstand cyanobacterial toxins and lack of nutritional
value [87]. Similarly, they can benefit from their hosts becoming immunocompromised due
to exposure to HABs [88–90]. HBF that are decomposers or necrotrophic may capitalize on
the mortality caused by HABs (including the subsequent abundance of lysed cyanobacteria
arising as the HABs dissipate) and simultaneously benefit toxic cyanobacteria by renewing
the availability of nutrients that promote cyanobacterial growth and reproduction [91,92].

3.2. Antagonism and Inhibition

Although interactions with other aquatic microbes can be beneficial to toxic cyanobac-
teria, as described in the previous section, they can also be detrimental. Pathogens and
parasites of grazers can increase, rather than decrease, consumption of toxic cyanobacteria
by conferring toxin resistance to their hosts [93] or force their hosts to feed more frequently
and less discriminately to compensate for the losses of nutrients and energy associated
with their infection [94]. Decomposers can constrain, rather than promote, HAB formation,
either by remineralizing nutrients instead of recycling them so that they are less available
to cyanobacteria [95–97] or by metabolizing cyanobacterial osmoprotectants (chemicals
that enable microbes to cope with osmotic stress [98]) and signaling compounds (chemi-
cals that enable microbes to send and receive information about their respective internal
and external conditions to and from one another, including for the purpose of quorum
sensing [99]). The latter, in the cases of dimethylsulfoniopropionate (osmoprotectant) and
dimethylsulfide (signaling compound), not only interferes with cyanobacterial use and
retention of sulfur but also prevents various micronutrients from traversing cyanobacterial
cell membranes [100,101].
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Various microbes have also been found to cause direct harm to toxic cyanobacteria as
predators, parasites, or allelopathic competitors, and have subsequently garnered attention
as prospective biological control agents against HABs. Theoretically, these species would
be better equipped to keep up with the growth, mutation, and dispersal rates of toxic
cyanobacteria than most macroscopic control agents, since they, as fellow microbes, are
more like the cyanobacteria in each of these respects. Moreover, their size, capacity for
asexual reproduction, and relative metabolic flexibility would make them more amenable
to being grown in large batches, transported, and dispensed where needed. Candidate
microbial biological control agents include cyanophages (host-specific viral pathogens
of cyanobacteria such as LPP-1 [102–106] and microzooplankton (unicellular and meta-
zoan eukaryotes less than 200 µm in size that feed on other organisms, which include
protozoan nanoflagellates [107,108]), as well as several kinds of HBF. The potential efficacy
and limitations of each of these groups as biological control agents have been thoroughly
reviewed elsewhere [20,109–111], with their major strengths including tailorable specificity
(from strain-specific to phylum-specific) and useable sublethal effects (e.g., reduction in
mechanical stiffness, inhibited growth, and impaired or dysregulated photosynthesis) and
their major weaknesses including lack of scalability from laboratory to field settings given
present technology and vulnerability to abiotic extracellular conditions (e.g., pH, tempera-
ture, and solar radiation) and biological factors such as bacterial restriction endonucleases
and exopolysaccharides, and competing pathogens or virophages (viruses that obligately
coinfect hosts with other viruses).

Among heterotrophic bacteria, predators of cyanobacteria include members of the
phyla Proteobacteria, Bacteroidetes, and Firmicutes. Although, in most cases, the details
of their predatory feeding strategies are unresolved, there are some that are relatively
well-known. The mode of feeding of Bdellovibrio bacteriovorus is to enter and consume
its prey from the inside, and that of Myxococcus xanthus is to overwhelm prey defenses
via coordinated offenses akin to pack-hunting [112]. Bacterial pathogens of cyanobacte-
ria include Alcaligenes denitrificans, which surrounds and penetrates host cells to initiate
pathogenesis [106]. Bacterial allelopathic competitors include the sand-filter-prevalent
manganese-oxidizing Pseudomonas sp. QJX-1, which has been found to inhibit the growth of
Microcystis aeruginosa via its release of 2,4-di-tert-butylphenol [113]. The best-known antag-
onists of toxic cyanobacteria among the fungi are chytrids. Zoosporic parasites/pathogens
(e.g., strains of Phanerochaete chrysosporium) infiltrate cyanobacterial cells and initiate patho-
genesis from within [114]. Mohamed et al. (2021) highlighted numerous other fungal
species that not only selectively inhibit the growth of cyanobacteria (without affecting
that of other phytoplankton) but also efficiently lyse cyanobacterial cells and degrade the
cyanobacterial toxins released from the cells after decay [115].

4. Prospects for Incorporating Microbial Species Interactions into the Management of
Toxic Cyanobacteria

The intricacies of the ecological interactions described above and how they may
influence the effectiveness/applicability of control measures against toxic cyanobacteria
underscore the need for systems science (non-reductionist) perspectives and approaches in
managing HABs. Even where microbial exchanges constitute significant obstacles to the
control of toxic cyanobacteria, there may be opportunities for refining existing methods
and developing new strategies grounded in ecological theory [116]. The following are some
prospective means by which microbial species interactions can be incorporated into the
management of toxic cyanobacteria, based on current approaches, as well as precedents set
in ostensibly analogous systems.
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4.1. Non-Targeted Approaches

Toxic cyanobacteria, pathogenic enteric bacteria, toxic fungi, and parasitic proto-
zoa often display similar distribution patterns and responses to environmental condi-
tions, including correlative associations with factors such as agricultural and wastewater
runoff [117,118]. As such, carefully designed runoff and wastewater management inter-
ventions may be sufficient to address all or most of these microbial threats simultane-
ously [119–121]. Where landscape development is feasible, these might include the creation
or restructuring of bioswales [122] and urban greenspace [123] to reduce nutrient pollution
and fecal contamination. As previously stated, reducing nutrient inputs from agricultural
runoff, sewage, and sediment erosion to the system is widely considered the most effective
of all current methods of controlling HABs but is generally challenging due to spatial and
socioeconomic constraints. This includes the challenge of addressing legacy nutrients and
natural contributions to eutrophication in aquatic ecosystems, which can continue to fuel
HABs even if point and non-point sources are fully addressed [53,124,125].

Sterilization with broad-spectrum antibiotics or antibiotic “cocktails” might also be
viable in addressing multiple microbial threats simultaneously. However, in the case
of these, best management practices may need to be further developed and enforced
to prevent the spread of antimicrobial resistance among pathogens [126] and the loss
of treatment effectiveness to higher-order drug interactions [127]. As it is, residues of
antibiotics contaminating aquatic systems may already be generating these problems
and having differential impacts on separate microbial species [128]. Furthermore, they
may be promoting/perpetuating HABs by altering the microbiota of zooplankton such
as Daphnia magna that would otherwise be enabled by their microbiota to adapt to toxic
cyanobacteria [129,130].

Where landscape development and broad-spectrum antibiotics are not applicable or
less cost-effective than targeted interventions against individual kinds of microbes, the
preference should be for ones that minimize non-target effects. A surprisingly household
prospective chemical control agent that fits this description in the case of the toxic cyanobac-
terium Microcystis sp. is simple tea extract, which reportedly inhibits the growth of the
cyanobacterium without initially affecting that of co-occurring algae and cladocerans [131].

4.2. Targeting of Facilitators

Targeting of facilitators to manage toxic cyanobacteria would be a variation on the
theme of classical biological control, wherein, instead of introducing or promoting species
that are antagonistic to toxic cyanobacteria (at carefully selected times and locations), one
would neutralize the species responsible for the cyanobacteria’s vitality and resistance to
targeted intervention. It could entail using antimicrobial substances or natural enemies
that harm the facilitating associates of toxic cyanobacteria where circumstances prevent
the application of algaecides or cyanobacteria-specific control methods. The reported
effectiveness of fungicides for controlling cyanobacterial outbreaks on Bermuda grass
putting-green surfaces might be viewed as evidence of this principle having already been
applied [132]. However, a study by Lu et al. (2019) pertaining to natural aquatic systems
reported, in contrast, that the common fungicide azoxystrobin can promote freshwater
cyanobacterial dominance through growth inhibition of green algae and fungal competitors
and parasites of cyanobacteria, indicating that system- and species-specific nuances need
to be identified and elucidated [133].
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More sophisticated techniques in the same vein would be to isolate and introduce
quorum-silencing/quenching agents [134,135] that interfere with cyanobacteria-facilitator
communication and exchange or to modify conditions in a way that “flips the switch”
from facilitation to pathogenesis. Though not yet in the case of toxic cyanobacteria, the
latter has been shown to be possible in the case of HAB-forming dinoflagellates. The
toxic photoautotrophic dinoflagellate Prorocentrum minimum is reproducibly killed by its
photoheterotrophic bacterial symbiont Dinoroseobacter shibae upon the removal of specific
nutrients from its environment, offering a possible analog for inducing pathogensis in
phycosphere-dwelling HBF facilitators of toxic cyanobacteria [136].

4.3. Reduction of Benthic Occupancy and Recruitment

In terrestrial systems, “seed banks” are the assemblages of plant seeds found in parts
of the soil where seeds can safely remain dormant until there are signs of favorable growth
conditions above-ground. Seed banks can enable terrestrial weeds to continuously re-infest
habitats, even in the face of dedicated above-ground control efforts [137,138]. Methods in-
volving manipulation of seed banks to control weeds include using (soil-applied) chemicals
to stimulate premature germination, solarization (placement of a transparent tarp across a
soil bed to desiccate weeds and seeds through the green-house effect), and introduction or
stimulation of microorganisms that rapidly colonize and kill/impair seeds prior to germina-
tion via chemotaxis (direct movement in response to a gradient of increasing or decreasing
concentration of a chemical cue, in this case the “scent” of the target seeds [137]). In aquatic
systems, benthic sediments can house seed banks as well, comprising not only the seeds of
submerged aquatic vegetation and other aquatic plants but also the dormant stages of phy-
toplankton, heterotrophic bacteria, and fungi (akinetes, heterocysts, and spores [139,140].
Overwintering and benthic recruitment from these aquatic seed banks are thought to be
important origins of source populations for HABs and other large summer populations of
cyanobacteria [141] and, in some cases, appear to be linked to toxicity [142,143].

While solarization of benthic sediment in situ would require substantial dredging and
likely still be ineffective (due to the capability of various toxic cyanobacteria to survive
for years in a desiccated state [27]), the other methods described above may be workable,
as might physical alternatives to solarization such as the use of benthic weed mats [24],
ultrasonication [30,144], hydraulic jet cavitation [29], and sediment capping [32,36]. It
is uncertain at present what impact these methods have on HBF and other non-target
aquatic organisms (e.g., phytoplankton, invertebrates, fish), but, since these methods
predominantly disrupt light-dependent reactions (e.g., photosynthesis) and osmoregulation
(control of the balance of flow of fluid and solutes across the cell membrane), it may be that
they enable HBF to outcompete or opportunistically infect cyanobacteria in the benthic zone.
Chytrid fungi in the genus Rhizosiphon, for instance, are specialist pathogens on akinetes
(hardy dormant cells) of the cyanobacterium Dolichospermum macrosporum and have been
found to exhibit higher incidences of infection at specific times seasonally [145]. Similarly,
the sunlight cues that trigger germination of cyanobacterial akinetes and heterocysts can
be manipulated or simulated via artificial shade and lighting or restoration of vegetated
beds and surrounding landscape [139,146] to make cyanobacteria emerge prematurely or
belatedly, thereby exposing them to unfavorable abiotic conditions or making them more
vulnerable to HBF and to other microbial antagonists, such as predatory amoeba [147].

4.4. Manipulation of Natural Enemies

Natural enemies (predators, parasites, or pathogens) of weeds and pests are intuitive
choices for use as biological control agents against these organisms but must be screened
and employed carefully. Ideally, they are native to the habitat and specialized to feed on the
target (prey-/host-specific), to avoid the possibility of they themselves becoming invasive
or being ineffective in controlling their targets. The same principles apply in the case of
biological control of toxic cyanobacteria. For example, free-living freshwater amoeba such
as Acanthamoeba castellanii feed and grow efficiently on toxic cyanobacteria but are also
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parasites of humans and potential reservoirs of opportunistic pathogens [148]. Additionally,
even when the risk of the control agent becoming another problem is low, it is important
for practitioners to understand and address why these specialist consumers have failed to
control the target in the absence of human intervention prior to using them. Often, the issue
pertains to differences in phenology (e.g., timings of emergence, periods of activity, life
cycle phases, migration) or rates of reproduction and adaptation. Gregarious insect pests
and mast-seeding weeds, for example, hatch (or germinate) simultaneously as a cohort,
develop rapidly, and achieve juvenile and adult populations that overwhelm predator
populations (“predator satiation” [149]). This type of barrier to natural top-down control
can be overcome by rearing consumers to high abundance elsewhere in controlled settings
and inundating the pests precisely when it allows the natural enemies to gain the upper
hand. In the case of controlling HABs, culturable HBF that are antagonistic against toxic
cyanobacteria would be conducive to this approach, given their handleability and rapid
growth rates [150,151]. Similar applications of (beneficial) microbes have been utilized in
contaminant remediations of soil and water [85,152].

To reduce the likelihood of toxic cyanobacteria adapting to individual control agents,
two or more can be employed simultaneously or in sequence to create conflicting require-
ments for adaptation (opposing selection pressures). For example, planktivorous grazers
deterred by cyanobacterial toxins, colony formation, or filamentous growth forms can
be introduced in conjunction with HBF that disrupt these defense mechanisms. Some
of these HBF may be beneficial symbionts of the grazers (gut microfauna or transient
“probiotics” [153–155]). Others may be free-living HBF that reduce the “harmfulness”
of HAB-forming cyanobacteria by degrading cyanobacterial toxins (e.g., microcystin-LR,
cylindrospermopsin, and saxitoxin [156–158]). This would be akin to how indigenous
soil bacteria such as Pseudomonas putida J1 are employed (via the aeration of the soil) to
neutralize allelopathic compounds of terrestrial plants, such as the juglone exuded from
the roots of black walnut trees [159].

Grazers that ingest large quantities of toxic cyanobacteria in short time periods but
have low reproductive rates due to malnutrition (making them prone to predator satia-
tion) might similarly have their populations and per capita feeding rates boosted by the
introduction of alternative resources that either provide the missing nutrients or dilute the
toxic/noxious effects of the target [160,161]. HBF have been shown in this way to sustain or
increase the populations of zooplankton such as copepods and cladocerans during HABs of
inedible cyanobacteria [162,163] and might therefore be amenable to this approach. There
is also the possibility of taking the approach a step further so that the effect is sustained
over time. One of the ways this is achieved in terrestrial applications of biological control is
via the construction of banker plant systems, combinations of plants that provide nearby
shelter and supplementary diets for biological control agents of target pests [164,165].
In principle, floating wetlands [166] and submerged aquatic vegetation [167] could be
employed similarly to provide refugia for planktivorous fish, zooplankton, and HBF in
HAB-dominated portions of lakes.

5. Future Research Directions for HABs Management

There are still research gaps that must be addressed before the incorporation of species
interactions into HABs management. For instance, it is presently uncertain whether the
combined effects of toxic cyanobacteria and other microbial threats to water quality, such
as pathogenic enteric bacteria [168], toxic fungi [169], and parasitic protozoa [170], are
generally additive. Studies suggest that feedbacks, synergies, and interferences do occur
among them, which may create tradeoffs between the options for aquatic resource man-
agement. For instance, Myxosoma cerebralis, the fungal cause of Whirling Disease in fish,
has been found to benefit from the conditions that arise when HABs collapse (and toxic
cyanobacteria senesce) and is effectively immune to the algaecides most often used against
toxic cyanobacteria [171,172]. Similarly, afflictions such as White Bacterial Disease [173] and
fungal parasitism [174] have been shown to be less prevalent and less lethal in zooplankton
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such as Daphnia spp. when the zooplankton are able to feed on toxic cyanobacteria such
as Dolichospermum spp. and Microcystis spp. Attempting to target toxic cyanobacteria
in isolation (e.g., with algaecides) may thus make aquatic species more vulnerable to
pathogens and parasites in the same way that antibiotic treatments of bacterial infection
can promote candidiasis (systemic yeast infection) in human patients [175,176]. Just as
physicians evaluate risk factors such as age, body weight, immune status, and likelihood of
exposure to opportunistic pathogens to avoid this scenario and select appropriate courses
of treatment [177–179], water resource managers can utilize information regarding the
aquatic system such as food web structure [180], spatial structure [181] and history of dis-
turbance (including previous HAB events [182]) to select optimal methods for controlling
toxic cyanobacteria. Considering such ecological complexities will reduce the potential for
non-target effects and potentially increase the efficiency of these methods by helping to
determine the appropriate combination and sequence for methods targeting the respective
cyanobacterial and fungal threats. Furthermore, some of the underlying complexities could
potentially be teased out via the use of mesocosm experiments [183] and ecological network
models parameterized with field observations [184], as has been achieved to some extent in
ocean systems.

Additionally, developing and implementing comprehensive HABs management strate-
gies which account for and incorporate the effects of microbial species interactions depends
on our ability to elucidate aquatic microbial community structure and dynamics. This, in
turn, requires us to be able to adequately identify aquatic microbes and monitor their distri-
butions, population dynamics, and activities. The advent of modern molecular techniques
(e.g., DNA metabarcoding) has provided a platform to overcome historical limitations of
microbial water quality monitoring. Unfortunately, most aquatic microbes are still poorly
characterized, and it is well beyond the scope of most water quality assessment programs to
collect high-resolution data regarding microbial biodiversity and ecology. Relevant insights
can, nonetheless, be gleaned from established methodologies. Microbial water quality is
typically assessed via the detection of a handful of cultivable biological indicators of fecal
pollution assumed to correlate with the presence of waterborne pathogens. While this
approach focuses on a small range of microbial targets (such that its value is limited to the
narrow scope of public health risks these targets are associated with, i.e., gastrointestinal
illness), it can still uncover clues regarding microbial dispersal and metabolic activity.
Methods such as the use of high-throughput fluorescence (e.g., sonde measurements of
chlorophyll-a and phycocyanin RFUs [185]) and fatty acid profiles [186,187] can similarly
provide coarse estimates of total relative abundances of cyanobacteria, heterotrophic bacte-
ria, and fungi in aquatic systems. Combined with environmental tracers (e.g., radiolabeled
nutrients and toxins [188]), these methods may provide valuable insights into processes
such as nutrient cycling and bioaccumulation in aquatic food webs [189,190].

6. Conclusions

Harmful algal blooms (HABs) of toxic cyanobacteria are a complex environmental
issue, with far-reaching ecological, socioeconomic, and human health consequences that
may be increasing in severity as time goes on. The fact that previous methodologies to
resolve it have yielded mixed results suggests that there may be case-specific nuances
to account for in every HAB-afflicted aquatic system and that novel approaches must be
developed that incorporate them. However, it should not be forgotten that HABs of the
same kind occur globally and are already a serious problem [191,192]. Even amidst the case-
specific nuances and differences [193–195], there must be shared conditions and processes
for the global patterns in HAB occurrence to be observed, perhaps most conspicuously
within the dynamics of the ecological species interactions within these systems. As such,
it remains appropriate to leverage what is known, refine and utilize all available tools,
and develop appropriately multifaceted approaches to managing HABs across various
systems. This includes consideration of the reality that, although faster, more aggressive
control methods may thoroughly eliminate target species such as toxic cyanobacteria,
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methods that allow the species to remain within the system and exhibit small-amplitude
population cycles can be more cost-effective and more conducive to ensuring ecosystem
resilience [196–198].

To further optimize HABs management strategies, various physical, chemical, and
biological control methods such as those described in this review can be productively
integrated and harmonized, as they are in the case of other pressing global environmental
issues (e.g., the spread of invasive species and the spread of new and reemerging infectious
diseases [199–203]). Most importantly, holistic perspectives can be brought to bear on
the issue of HABs that recognize and utilize the fact that toxic cyanobacteria and other
significant microbial threats to water quality do not occur and function in isolation but as
part of intricate, dynamic, diverse, ecological communities.
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