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Abstract: The development of new insecticides for vector control that are toxicologically safe and
eco-friendly (such as those obtained from industrial by-products) is an important public health
concern. Previous research has shown that the obtained tCNSL (technical cashew nutshell liquid) +
NatCNSLS (sodium tCNSL sulfonate mixture) emulsion displayed both surfactant properties and
larvicidal activity (LC50-24 h 110.6 mg/L). Thus, the emulsion is considered a promising alternative
product for the control of Aedes aegypti. The goal of this study was an ecotoxicological evaluation
of the tCNSL + NatCNSLS mixture emulsion and its components. In addition, we compared the
toxicity of the tCNSL + NatCNSLS mixture emulsion with toxicity data from larvicide currently
recommended by the World Health Organization (WHO). Ecotoxicological tests were performed
to assess acute toxicity, phytotoxicity, cytotoxicity, genotoxicity, and mutagenicity using Daphnia
similis, Pseudokirchneriella subcapitata, Oreochromis niloticus, Allium cepa, and Salmonella enterica serovar
Typhimurium. Regarding acute toxicity, D. similis was the most sensitive test organism for the three
evaluated products, followed by P. subcapitata and O. niloticus. The highest acute toxicity product was
tCNSL. The tCNSL + NatCNSLS mixture emulsion did not show cytotoxic, genotoxic, or mutagenic
effects, and showed low acute toxicity to D. similis. In addition, the tCNSL + NatCNSLS mixture
emulsion presented a lower or similar toxicological classification to the larvicides recommended by
the WHO. Therefore, ecotoxicological tests suggest that the tCNSL + NatCNSLS mixture emulsion
can be considered a larvicide environmentally safe way to control Ae. aegypti.

Keywords: mosquito-borne diseases; vector control; industrial waste; ecotoxicity; genotoxicity

1. Introduction

Aedes aegypti (Diptera: Culicidae) (Linnaeus 1762) is the main vector responsible for
the propagation of diseases such as Zika, Dengue, Chikungunya, and Yellow Fever [1,2],
especially in tropical and subtropical countries such as Brazil [3,4]. To restrain the spread
of these mosquito-borne diseases, strategies that focus on controlling mosquito vectors
(adults and larvae) are essential tools and involve the use of synthetic insecticides [4–6].
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However, the use of synthetic insecticides in vector control programs has presented prob-
lems, including induced resistance in different vector species, environmental pollution, and
harmful effects on non-target species (including humans). These unwanted consequences
have motivated the search for new toxicologically safe and eco-friendly insecticides, such
as those obtained from plant-derived industrial by-products. By-products that carry high
amounts of plant bioactive compounds are cheap and are often more effective at lower
concentrations than currently used synthetic insecticides [1,5,7,8]. Ideally, new products
should target insects at the larval stages in the breeding sites and stimulate public use to
aid domestic vector control [9,10].

In this context, the technical cashew nutshell liquid (tCNSL), mostly composed of
cardanol (60% to 75%), is a by-product obtained during the industrial processing (toasting
at 180 ◦C to 190 ◦C) of cashew nuts (Anacardium Occidentale L.). The global production
of cashew nutshells is estimated at ~3 million T/year and is concentrated in tropical
countries in South America, Africa, and Asia [11,12]. Approximately 30% to 35% of this
amount is cashew nutshell liquid (CNSL) [11]. In Brazil, approximately 1 million T/year
of the tCNSL is generated [13] at a relatively low cost of 300 USD/T [14]. As cashew nut
shells are obtained as a by-product from cashew nut processing factories, they do not
compete with food production [11]. The wide applicability and economic feasibility of
the tCNSL in several sectors suggests that their reuse has the potential to reduce envi-
ronmental impacts [11,15]. These applications include their transformation for industrial
purposes and technological applications, including the production of insecticides, resins,
and plastics [16–19]. This industrial by-product has proven larvicidal and insecticidal
activities against Ae. aegypti [9,17,19]. Unfortunately, the hydrophobicity of the tCNSL
limits its use in aquatic environments, which are the breeding and development sites of Ae.
aegypti. To use the tCNSL as a larvicide in aquatic environments, Jorge et al. [9] performed
a tCNSL sulfonation reaction and obtained sodium tCNSL sulfonate (NatCNSLS mixture)
with surfactant properties. However, the NatCNSLS mixture lost the larvicidal activity of
the precursor (tCNSL). To recover the larvicidal activity and obtain a multifunctional prod-
uct (such as household cleaning products), the authors chose to produce an oil-in-water
emulsion composed of tCNSL and NatCNSLS mixture (1:6 w/w). The obtained tCNSL
+ NatCNSLS mixture emulsion showed both surfactant properties and larvicidal activity
(LC50-24 h 110.6 mg/L). This is considered a promising alternative for the development
of a new commercial product for Ae. aegypti control. Therefore, further ecotoxicological
assays are recommended to assess the environmental safety of the tCNSL + NatCNSLS
mixture [9].

The legal requirements for the registration of pesticides, which include eco/toxicological
methodologies considered internationally valid and a minimum dataset necessary to carry
out the environmental risk assessment (ERA) process, differ among countries [20]. How-
ever, one of the main shortcomings of the ecotoxicological dataset obtained using only
internationally validated testing protocols (e.g., OECD Guidelines) is the assumption that
few surrogate species are sensitive enough to protect other species in an environment [21].
Thus, ecotoxicological studies published in international peer-reviewed literature can be
an important source of data for ERA that exploit novel test designs and report mechanistic
information, as well as individual-, population-, and community-level responses in a range
of different test organisms and environments [22].

Considering that tCNSL + NatCNSLS mixture presented larvicidal activities and
surfactant proprieties, the next step to develop a new commercial product to control
Ae. aegypti was to evaluate its ecotoxicological safety. Our main objective was to con-
duct an ecotoxicological assessment of the tCNSL + NatCNSLS mixture and its con-
stituents separately. We performed acute toxicity, phytotoxicity, cytotoxicity, and geno-
toxicity tests using different test organisms. In addition, we compared the toxicity of the
tCNSL + NatCNSLS mixture with toxicity data from the larvicides recommended by the
World Health Organization (WHO).
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2. Materials and Methods
2.1. Source of Tested Products

In this work, we evaluated the tCNSL + NatCNSLS mixture emulsion (1:6 parts active
ingredient to the surfactant w/w), which were obtained as previously by Jorge et al. [9]. We
also evaluated the individual components tCNSL and NatCNSLS mixture using the same
ecotoxicological tests. The tCNSL was provided by Resibrás Cashol (Fortaleza, CE, Brazil).
tCNSL is an industrial by-product, and the exact quantitative composition may vary, but
its main constituents are cardanol (60% to 75%), cardol (15% to 20%), and methylcardol
and polymeric materials (5% to 10%) [19,23,24].

2.2. Ecotoxicological Tests
2.2.1. Pseudokirchneriella subcapitata Growth Inhibition Test

The maintenance of cultures and toxicity tests with P. subcapitata were performed ac-
cording to ABNT NBR 12.648 [25] and OECD 201 [26] guidelines. Algae cultures were
maintained in an LC Oligo medium. Glass flasks containing 45 mL of culture media and algae
inoculums (1 × 105 cells/mL) were exposed to five test concentrations of tCNSL (ranging
from 0.01 to 10 mg/L), of a NatCNSLS mixture (ranging from 0.1 to 100 mg/L), and of a
tCNSL + NatCNSLS mixture (ranging from 0.70 to 70 mg/L). Three replicates were obtained
for each concentration. Negative (LC Oligo medium + deionized water) and solvent (LC
Oligo medium + dimethyl sulfoxide-DMSO 1%) controls were included in each test. The
experiments were performed in triplicate, under continuous agitation (160 rpm) and with
continuous fluorescent light (4500 lux) at 25 ± 2 ◦C for 72 h. The endpoint measured was
growth inhibition used to calculate the 50% inhibition concentrations (IC50-72 h).

2.2.2. Daphnia similis Acute Toxicity Test

Cultures were maintained, and acute toxicity tests with D. similis were performed
following the ABNT NBR 12.713 [27] and OECD 202 [28] guidelines. The microcrustacean
culture was maintained in an MS medium in climatic chambers at 20 ± 2 ◦C and 16 h
light:8 h dark photoperiod, with a light intensity of 700 lux, and fed with P. subcapitata three
times per week. The culture parameters were maintained as follows: dissolved oxygen,
7 ± 1 mg/L; hardness, 44 ± 4 mg/L CaCO3; conductivity, 200 ± 50 µS cm; pH 7.0–7.6.
Neonates aged <24 h from the same culture were selected as test organisms for the analysis.
The neonates were isolated from the Daphnia culture and five organisms were placed in
individual screw cap tubes filled with 10 mL of solution, and then incubated at 20 ± 2 ◦C
for 16 h light:8 h dark photoperiods. The neonates were exposed to five test concentrations
of tCNSL ranging from 0.0003 to 0.3 mg/L, of NatCNSLS mixture ranging from 0.1 to
15 mg/L and of tCNSL + NatCNSLS mixture emulsion ranging from 0.0021 to 2.1 mg/L.
Negative (MS medium) and solvent (MS medium + DMSO 0.5%) controls were included
in each test. All tests were performed with 20 neonates randomly distributed across four
replicates (n = 5). All tests were performed with four replicates. Three independent tests
were conducted and validated after 48 h of exposure. The number of immobile organisms
in each test concentration was counted and used to calculate the effective concentration,
50% (EC50-48 h).

2.2.3. Oreochromis niloticus Acute Toxicity Test

Nile tilapia (O. niloticus) juveniles were acclimated for seven days in individual aquar-
iums (10 L) with constant aeration. The parameters were maintained at a temperature of
26 ± 2 ◦C and a photoperiod of 12 h light: 12 h dark, and the fish were fed twice a day
with granulated feed containing 28% crude protein (Laguna®, Lot 05EX180067109). Acute
toxicity tests with O. niloticus were performed according to the ABNT NBR 15.088 [29]
and OECD 203 [30] guidelines. The juvenile O. niloticus (average weight 1.0 ± 0.71 g)
were exposed to five test concentrations ranging from 12 to 27 mg/L of tCNSL, 200 to
275 mg/L of NatCNSLS mixture, and 35 to 105 mg/L of tCNSL + NatCNSLS mixture
emulsion. Negative (dechlorinated water) and solvent (dechlorinated water + DMSO 1%)
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controls were included in each test. The test concentrations were randomly arranged into
three replicates containing 10 fish each. The experiment was conducted in a static system
without food for 96 h. After the exposure period, the number of dead organisms at each test
concentration was counted and used to calculate the 50% lethal concentration (LC50-96 h).

2.3. Allium cepa Phytotoxicity, Cytotoxicity, and Genotoxicity Tests

The tests were performed according to Fiskejö [31] using seeds without pesticide
treatment of A. cepa cv. Baia Periforme (Isla Sementes Ltd., Porto Alegre, Brazil). The seeds
were exposed to five concentrations of tCNSL ranging from 27.5 to 440 mg/L, NatCNSLS
mixture ranging from 165 to 2640 mg/L, and tCNSL + NatCNSLS mixture emulsion ranging
from 192.5 to 3080 mg/L. For tests using the NatCNSLS mixture, dechlorinated water was
used as the negative control. Tests with the tCNSL and tCNSL + NatCNSLS mixture
emulsion included a negative control of dechlorinated water and 1% DMSO. For each
concentration, 30 seeds of A. cepa were exposed and placed to germinate in a temperature
of 23 ± 2 ◦C with a photoperiod of 12 h light:12 h dark for 96 h. All tests were performed in
triplicate, totaling 90 seeds per concentration. Phytotoxicity was identified using mean root
growth (MRG), measured with a Digimess® digital caliper after 96 h of germination. To
determine the mitotic index (MI), chromosomal alteration index (CAI) (observed alterations:
multipolar anaphases, chromosome breaks, metaphase C, adhesions, chromosome losses,
and bridges), and mutagenicity index (MTI), the roots were collected and fixed in a Carnoy
Solution 3:1 (alcohol/acetic acid) for 8 h, then transferred to a new Carnoy fixative, and
stored at 4 ◦C. The fixed roots were washed with water and hydrolyzed in 1N HCl at 60 ◦C
for 10 min. Afterwards, the cells were washed again and stained with Schiff’s reagent
for 2 h. After staining, the root meristems of A. cepa were placed on a slide and a drop of
45% acetic carmine was added, then the roots were covered with a coverslip and lightly
smashed. For each concentration, five slides were prepared and photographed using a
Nikon optical microscope at 400 x magnification and 1000 cells per slide were analyzed
(n = 5000 per concentration). To calculate all indices, equations were used according to
Francisco et al. [32].

2.4. O. niloticus Genotoxicity Test

For the genotoxicity evaluation with O. niloticus, eight juveniles (average weight
17 ± 10 g) were exposed for 72 h to test the tCNSL (6.36, 12.73, and 19.09 mg/L), NatCNSLS
mixture (62.57, 125.15 and 187. 72 mg/L) and tCNSL + NatCNSLS mixture emulsion (10.36,
20.72 and to 31.08 mg/L). These doses corresponded to 25, 50, and 75% of the obtained
LC50-96 h for each of the tested products. For the NatCNSLS mixture, the negative control
used was dechlorinated water, and for the tCNSL and the tCNSL + NatCNSLS mixture
emulsion, the negative control used was dechlorinated water + DMSO 1%. The positive
control was cyclophosphamide (40 mg/kg) administered parenterally. Blood samples were
collected in the caudal region, and blood smear slides were each prepared in triplicate.
The slides were air dried for 15 min, fixed in absolute alcohol for 10 min, stained with
Schiff’s reagent and left overnight, and then counter stained with fast green for 10 s. For
each site sample, 24,000 cells were analyzed. For the genotoxicity index (GI), we observed
alterations, such as nuclear invagination, nuclear sprouting, pyknosis, binucleated cells,
and lobulated nuclei. The frequency of micronuclei was counted and determined to obtain
the mutagenicity index (MTI) [33]. Blood smear slides were analyzed using an optical light
microscope (Nikon, at 400 ×magnification. The comet assay was performed according to
the methodology described by Singht et al. [34] with modifications. A 3 µL blood sample
was collected from each fish (n = 8) at each concentration and diluted in 100 µL of PBS. We
added 40 µL of this mixture to 240 µL low-melting agarose. After homogenization, two
slides covered with 1.5% agarose were prepared for each sample. The slides were then
placed in a lysis solution. Slides were denatured in an electrophoresis vat. Electrophoresis
was performed at 37 V and 300 mA for 25 min. The slides were removed from the vat and
immersed in a neutralization buffer. The slides were fixed in ethanol and in the sequence;
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they were stained with ethidium bromide (2 mg/L). Five hundred nucleoids from each
tested concentration were analyzed. The software Lucia Comet Assay v. 7.02 was used to
evaluate the comets using the following parameters: percentage of DNA in the tail (CP)
and size of the tail (TC).

2.5. Salmonella/Microsome Assay

Salmonella/microsome assay was performed using the microsuspension protocol [35].
Strains of Salmonella enterica serovar Typhimurium TA97a, TA98, TA100, TA1535, and
TA102 were used. The samples were tested in the absence and presence of a metabolic
activation system (S9 mix; Moltox Molecular Toxicology Inc., Boone, NC, USA). The
tCNSL was dissolved in ultrapure water and 5% DMSO. The NatCNSLS mixture and
the tCNSL + NatCNSLS mixture emulsion were both dissolved in ultrapure water and 1%
DMSO. The tested concentrations of the three products ranged from 2 to 2000 mg/plate. For
products demonstrating cytotoxicity, concentrations of 0.5 and 1 mg/plate were also tested.
The negative controls used were ultrapure water + 5% DMSO (tCNSL) and ultrapure water
+ 1% DMSO (NatCNSLS mixture and tCNSL + NatCNSLS mixture). 2-aminoanthracene
(2.5 µg/plate) was used as a positive control for all the strains in the tests performed with
the S9 mix. In the tests performed in the absence of S9 mix, the positive controls used were
4-nitro-o-phenylenediamine (10 µg/plate) (TA97a and TA98), sodium azide (2.5 µg/plate)
(TA100 and TA1535), and mitomycin C (0.5 µg/plate) (TA102).

2.6. Ecotoxicological Evaluation and Statistical Analysis

The results of the P. subcapitata (IC50-72 h) toxicity tests were analyzed using ICp
software (version 2.0) [36]. The results of the D. similis and O. niloticus (EC50-48 h and
LC50-96 h) toxicity tests were analyzed using the Trimmed Spearman-Karber statistical
method [37] using the JSPEAR software. The I/E/LC50 values obtained were converted to
toxicological units (TU) (TU = 100/I/E/LC50) [38]. The toxicological classification of the
tested products was performed using the OECD protocol (2002) [39]. This methodology
relies on the values of IC50, EC50, and LC50 for each test-organism and classifies the
product under one of the three categories from the most to less toxic: Acute I (≤1.0 mg/L);
Acute II (>1.0–10.0 mg/L); and Acute III (>10.0–100.0 mg/L). To evaluate the cytotoxic
and genotoxic effects obtained in the tests with A. cepa and O. niloticus, the normality
of data was tested using the Shapiro–Wilk test. The Kruskal–Wallis non-parametric test
with Dunn’s posteriori was used to analyze the data. Differences between treatments
were considered significant at p < 0.05. Statistical analyses were performed using the R
platform (R-Development Core Team, 2021) [40]. The results of the Salmonella/microsome
assay were analyzed using Salanal software (Integrated Laboratory Systems, Research
Triangle Park, NC, USA). The mutagenicity ratio (MR) was calculated from the number
of colonies induced by the sample and the number of colonies in the negative control.
The samples were considered mutagenic when they had an MR ≥ 2 for at least one of the
tested concentrations. Samples with MR < 2 at all tested concentrations were considered
non-mutagenic, and the tested concentrations (MR < 0.7) were considered cytotoxic.

2.7. Classification of Acute Toxicity of the Larvicides Recommended by WHO and the tCNSL +
NatCNSLS Mixture Emulsion

The search for scientific studies containing ecotoxicological data on larvicides rec-
ommended by the WHO was performed with the aid of the databases SciELO (Scien-
tific Electronic Library Online), Scopus, ScienceDirect, and Google scholar. Only studies
that presented results referring to acute toxicity (I/E/LC50) in different test organisms
(Tables S1–S5) were included for comparison. The toxicity data retrieved from the liter-
ature were converted to TU. Toxicity classification was performed following the OECD
protocol (2002) [39].
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3. Results and Discussion
3.1. Acute Toxicity Evaluation with P. subcapitata, D. similis, and O. niloticus

The tCNSL showed the highest toxicity in all three test organisms. The NatCNSLS
mixture was the least toxic product to P. subcapitata and O. niloticus. The tCNSL + NatCNSLS
mixture emulsion was the least toxic product for D. similis and presented an intermediate
toxicity for the other two test organisms (Table 1).

Table 1. The tCNSL, NatCNSLS mixture and tCNSL + NatCNSLS mixture Inhibitory (IC), effective
(EC) and lethal (LC) concentrations 50% obtained with the three test-organisms used. In brackets the
95% confidence intervals.

Test-Organism tCNSL
(mg/L)

NatCNSLS
Mixture (mg/L)

tCNSL + NatCNSLS
Mixture (mg/L)

P. subcapitata IC50 0.33 (0.30–0.37) 7.10 (5.60–15.40) 2.10 (1.96–2.17)
D. similis EC50 0.12 (0.09–0.15) 0.75 (0.64–0.89) 1.05 (0.91–1.26)

O. niloticus LC50 25.46 (23.63–27.42) 250.30 (242.24–258.62) 41.44 (39.06–43.89)

The higher toxicity of tCNSL in relation to the other two tested products may be
due to the unsaturation in the lipid phenol nonpolar tail, allowing them to interfere with
cell membrane permeation [10,41]. The toxicity reduction observed by the NatCNSLS
mixture in relation to tCNSL seems to be related to an alteration/reduction of nonpolar tail
unsaturation after the sulfonation reaction. In the 1:6 (w/w) tCNSL + NatCNSLS mixture
emulsion, there was dilution of the active ingredient tCNSL in the surfactant NatCNSLS
mixture, which explains the lower toxicity observed for non-target test organisms.

To compare the acute toxicity data from different ecotoxicological tests with different
aquatic organisms, the results were converted to TU [38]. This conversion made it possible
to verify that D. similis was the test organism most sensitive to the toxic effects of all three
tested products. The organism with the intermediate sensitivity was P. subcapitata. O.
niloticus was the most resistant to all tested products (Figure 1).

Ecologies 2022, 3, FOR PEER REVIEW 6 
 

 

organisms (Tables S1–S5) were included for comparison. The toxicity data retrieved from 
the literature were converted to TU. Toxicity classification was performed following the 
OECD protocol (2002) [39]. 

3. Results and Discussion 
3.1. Acute Toxicity Evaluation with P. subcapitata, D. similis, and O. niloticus 

The tCNSL showed the highest toxicity in all three test organisms. The NatCNSLS 
mixture was the least toxic product to P. subcapitata and O. niloticus. The tCNSL + 
NatCNSLS mixture emulsion was the least toxic product for D. similis and presented an 
intermediate toxicity for the other two test organisms (Table 1). 

Table 1. The tCNSL, NatCNSLS mixture and tCNSL + NatCNSLS mixture Inhibitory (IC), effective 
(EC) and lethal (LC) concentrations 50% obtained with the three test-organisms used. In brackets 
the 95% confidence intervals. 

Test-Organism  tCNSL  
(mg/L) 

NatCNSLS  
Mixture (mg/L) 

tCNSL + NatCNSLS Mixture 
(mg/L) 

P. subcapitata IC50 0.33 (0.30–0.37) 7.10 (5.60–15.40) 2.10 (1.96–2.17) 
D. similis EC50 0.12 (0.09–0.15) 0.75 (0.64–0.89) 1.05(0.91–1.26) 

O. niloticus LC50 25.46 (23.63–27.42) 250.30 (242.24–258.62) 41.44 (39.06–43.89) 

The higher toxicity of tCNSL in relation to the other two tested products may be due 
to the unsaturation in the lipid phenol nonpolar tail, allowing them to interfere with cell 
membrane permeation [10,41]. The toxicity reduction observed by the NatCNSLS mixture 
in relation to tCNSL seems to be related to an alteration/reduction of nonpolar tail 
unsaturation after the sulfonation reaction. In the 1:6 (w/w) tCNSL + NatCNSLS mixture 
emulsion, there was dilution of the active ingredient tCNSL in the surfactant NatCNSLS 
mixture, which explains the lower toxicity observed for non-target test organisms. 

To compare the acute toxicity data from different ecotoxicological tests with different 
aquatic organisms, the results were converted to TU [38]. This conversion made it possible 
to verify that D. similis was the test organism most sensitive to the toxic effects of all three 
tested products. The organism with the intermediate sensitivity was P. subcapitata. O. 
niloticus was the most resistant to all tested products (Figure 1). 

 
Figure 1. Comparison of the sensitivity of the test-organisms P. subcapitata, D. similis and O. niloticus. 
For this comparison, the acute toxicity data obtained for the three products tested were converted 
to toxicological units. 

Figure 1. Comparison of the sensitivity of the test-organisms P. subcapitata, D. similis and O. niloticus.
For this comparison, the acute toxicity data obtained for the three products tested were converted to
toxicological units.

According to the classification from the OECD protocol (2002) [39], the tCNSL was
classified as Acute I for P. subcapitata and D. similis and Acute III for O. niloticus. The
NatCNSLS mixture was classified into Acute II for P. subcapitata, Acute I for D. similis, and
Acute III for O. niloticus. The tCNSL + NatCNSLS mixture was classified as Acute II for
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P. subcapitata and D. similis and Acute III for O. niloticus. Ecotoxicological evaluation of
tCNSL and its products derived for aquatic organisms is scarce. However, Leite et al. [42]
showed that the tCNSL is non-toxic to the marine organism Artemia salina. In general, the
tCNSL + NatCNSLS mixture can be considered a less toxic product for nontarget aquatic
organisms (Table 2).

Table 2. Acute ecotoxicological classification (OECD, 2002) comparison of the tCNSL + NatCNSLS
mixture with the larvicides recommended by WHO.

Products
Acute Classification OECD (2002) in Each Biological Group

Algae Crustacean Fish

tCNSL + NatCNSLS
mixture II II III

Diflubenzuron III I I and II
Novaluron I and II I I, II and III

Pirimiphos-methyl I I I and II
Pyriproxyfen I I I

Temephos - I I, II and III
- Data not found in the literature.

Our literature search retrieved 84 ecotoxicological datasets for algae, microcrustaceans,
or fish of the larvicides recommended by the WHO [43] for use in combating Ae. aegypti
larvae (Tables S1–S5). Of these, we refined our search to only acute toxicity data and
classified them according to the OECD protocol (2002) [39]. Then, we compared the
ecotoxicological classes of the tCNSL + NatCNSLS mixture emulsion obtained for algae,
microcrustaceans, and fish with the ecotoxicological classes of larvicides recommended by
the WHO [44] for each test organism.

Our comparison should be considered with caution because the effective dose as
a larvicide for each product was not considered. We only considered the classification
of acute toxicity for aquatic organisms, as proposed by the OECD protocol (2002) [39].
Therefore, the tCNSL + NatCNSLS mixture emulsion had a lower or similar ecotoxicological
classification to the larvicides Diflubenzuron, Novaluron, Pirimiphos-methyl, Pyriproxyfen,
and Temephos for algae, microcrustaceans, and fish. The only exception was algae, for
which the tCNSL + NatCNSLS mixture emulsion was more toxic than Diflubenzuron
(Table 2). However, ecotoxicological data on Diflubenzuron using algae are scarce, with
only a single study available [43]. These results corroborate the literature that plant-derived
insecticides, even those containing non-selective substances that can have a negative impact
on non-target organisms, are less harmful to many non-target organisms and are more
eco-friendly than synthetic insecticides [45].

3.2. Phytotoxicity, Cytotoxicity, and Genotoxicity Evaluation with A. cepa

None of the evaluated products were phytotoxic or cytotoxic to A. cepa. For endpoint
genotoxicity, only the tCNSL + NatCNSLS mixture emulsion had a significantly lower
frequency of the chromosomal alteration index (CAI) at concentrations of 192.5, 1155, and
3080 mg/L (Table 3). Despite the observed statistical difference, the tCNSL + NatCNSLS
mixture emulsion is inferred not to be genotoxic because no dose–response relationship
was observed and the frequency of changes in concentrations tested was lower than that
in NC.

Our results corroborate the results obtained by Leite et al. [42]. Phytotoxicity, cyto-
toxicity, or genotoxicity was not observed in A. cepa bulbs exposed to tCNSL (maximum
tested dose 69.5 mg/L). However, Matias et al. [46] showed that CNSL (composed of
53.2% anacardic acid) is phytotoxic to Lactuca sativa and Lycopersicon esculentum in seed
germination and seedling development (root and aerial growth) and to Senna obtusifolia
seedling development (aerial growth). These authors attributed the observed phytotoxicity
to the presence of anacardic acid and cardol in the evaluated CNSL samples [46]. Thus, the
absence of any phytotoxicity by the tCNSL + NatCNSLS mixture and its constituents can
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be attributed, at least in part, to the composition of tCNSL (anacardic acid not detected,
cardanol 51.97%, cardol 11.98%, 2-methyl cardol 2.12%) [9].

Table 3. Median and interquartile deviation from mean root length (CMR), mitotic index (IM),
chromosomal alterations index (IAC) and mutagenicity index (IMT) obtained in tests with Allium
cepa exposed to tCNSL + NatCNSLS mixture and its components (tCNSL and NatCNSLS mixture).

Products
Concentrations

(mg/L)

Phytotoxicity
Endpoints

Cytotoxicity
Endpoints Genotoxicity Endpoints

CMR (mm) IM (%) IAC (%) IMT (%)

tCNSL

NC 1 4.22|0.69 88.47|3.21 0.49|0.10 0.20|0.15
27.5 4.42|0.57 95.44|1.64 0.10|0.10 0.00|0.05
55 3.83|0.53 95.64|3.12 0.10|0.10 0.00|0.05
165 3.87|0.96 96.79|0.83 0.20|0.14 0.30|0.33
220 3.32|0.22 92.81|2.04 0.09|0.05 0.00|0.05
440 2.52|0.73 95.12|7.72 0.00|0.05 0.00|0.05

NatCNSLS
mixture

NC 2 6.08|0.53 98.33|0.95 0.10|0.05 0.00|0.00
165 8.13|1.73 93.00|0.98 0.20|0.34 0.00|0.39
330 7.10|1.59 93.00|1.01 0.10|0.05 0.00|0.10
990 5.98|1.24 93.00|0.82 0.20|0.19 0.20|0.09

1320 7.10|2.24 93.72|1.41 0.59|0.15 0.30|0.29
2640 6.83|1.20 94.26|1.09 0.57|0.24 0.10|0.10

tCNSL +
NatCNSLS

mixture

NC 1 4.22|0.69 88.47|3.21 0.49|0.10 0.20|0.15
192.5 5.71|0.75 94.08|2.57 0.00|0.05 * 0.00|0.05
385 6.14|0.68 95.76|1.04 0.18|0.10 0.10|0.09

1155 6.11|0.34 94.87|1.55 0.00|0.10 * 0.00|0.05
1540 6.16|1.13 96.54|0.48 0.20|0.05 0.10|0.05
3080 4.25|0.96 95.32|2.08 0.10|0.05 * 0.00|0.00

Medians followed by an asterisk (*) in the column, for each compound evaluated, represent statistical difference
when compared with the negative control (p < 0.05). CN 1—negative control (dechlorinated water + DMSO 1%);
CN 2—Negative control (dechlorinated water).

3.3. Genotoxicity Evaluation with O. niloticus

The tCNSL + NatCNSLS mixture emulsion and its constituents were not genotoxic at
any of the endpoints evaluated in the O. niloticus tests (p < 0.05) (Table 4). Both micronucleus
and nuclear abnormality tests are widely applied for genotoxicity assessment because of
their proven suitability for different fish species.

The micronucleus test detects the aneugenic and clastogenic effects of a wide range
of genotoxic chemicals. In addition, testing for nuclear abnormalities (notched, blebbed,
lobbed, budding, fragmented nuclei, and binucleated cells) are considered high-quality
indicators of cytotoxicity [47]. Thus, the tCNSL + NatCNSLS mixture emulsion proposed
as a new larvicide is safe in comparison to the three other larvicides recommended by
the WHO [44], which showed some type of genotoxic effect for different fish species. For
example, Diflubenzuron (Dimilin®) that presented genotoxicity to Prochilodus lineatus at
a concentration of 0.12 mg/L for the endpoint nuclear alterations and at a concentration
of 0.25 mg/L for the endpoint micronucleus [48]. Moreover, the p-chloroaniline metabo-
lite generated during the biotransformation of Diflubenzuron is considered potentially
mutagenic and carcinogenic to humans and other animals [48]. Piriproxifen has also pre-
sented genotoxicity to Danio rerio embryos (96 h after fertilization) in the comet assay [49].
Temephos induced a marked increase in the frequencies of micronuclei (3-fold) and chromo-
somal abnormalities (10-fold in lobed nuclei) in gill erythrocytes of the fish species Poecilia
reticulata after 168 h of exposure to a concentration of 0.02 mg/L [50].
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Table 4. Median and interquartile deviation of the micronucleus index (MN), genotoxicity index
(GI), DNA present in the tail (PT) and tail size (TS) data obtained in tests with Oreochromis niloticus
exposed to tCNSL + NatCNSLS mixture and its components (tCNSL and NatCNSLS mixture).

Products
Concentrations

(mg/L)
Chromosomal Alterations DNA Damages

MN GI PT (%) TS (µm)

tCNSL

NC 1 0.00|0.00 1.79|1.66 38.53|1.91 18.37|0.44 *
PC 0.03|0.00 * 6.86|0.61 * 59.95|4.81 * 45.22|1.23 *
6.36 0.00|0.00 1.26|0.17 33.19|0.73 15.65|1.07
12.73 0.00|0.00 2.89|0.67 33.78|0.17 22.15|1.27
19.09 0.00|0.00 2.82|1.49 37.02|2.51 22.52|1.32

NatCNSLS
mixture

NC 2 0.00|0.00 1.80|0.37 34.45|1.57 10.67|0.52
PC 0.03|0.00 * 6.86|0.61 * 59.95|4.81 * 45.22|1.23 *

62.53 0.00|0.00 2.50|0.67 48.80|2.45 18.75|1.45
125.06 0.00|0.00 1.97|0.27 49.51|0.66 17.69|0.86
187.59 0.00|0.00 3.05|0.38 40.55|0.98 18.25|1.85

tCNSL +
NatCNSLS

mixture

NC 1 0.00|0.00 1.79|1.66 38.53|1.91 18.37|0.44
PC 0.03|0.00 * 6.86|0.61 * 59.95|4.81 * 45.22|1.23 *

10.36 0.00|0.01 1.86|0.23 36.53|4.06 20.04|2.46
20.72 0.00|0.01 2.18|0.03 27.23|0.79 19.81|1.02
31.08 0.00|0.00 2.15|0.10 27.27|3.91 16.14|2.17

Medians followed by an asterisk (*) in the column, for each compound evaluated, present statistical difference
when compared with the negative control (p < 0.05). NC 1—negative control (DMSO 1%); NC 2—negative control
(dechlorinated water); PC-positive control (Cyclophosphamide (40 mg/kg)).

3.4. Salmonella/microsome Assay

As verified in the genotoxicity tests with O. niloticus, the tCNSL + NatCNSLS mixture
emulsion and its constituents did not show mutagenic activity against any of the five Salmonella
strains used (both in the absence and presence of S9 mix). For the tCNSL and NatCNSLS
mixture, high toxicity was observed for TA1535, TA98, and TA102 strains. However, for the tests
with the tCNSL + NatCNSLS mixture emulsion, toxicity was not observed; thus, the evaluation
of the mutagenicity of the product proposed as larvicide was not impaired (Tables 5 and S5).

Table 5. Mutagenic activity of tCNSL + NatCNSLS mixture and its constituents (tCNSL and NatC-
NSLS mixture) expressed by the mutagenicity ratio (MR) for strains TA97a, TA98, TA100, TA102 and
TA1535 in the absence (−S9) and presence (+S9) of metabolic activation.

Products
Concentrations

(mg/plate)
TA97a TA98 TA100 TA102 TA1535

−S9 +S9 −S9 +S9 −S9 +S9 −S9 +S9 −S9 +S9

tCNSL

0.5
1
2

20
200
2000

NatCNSLS
mixture

0.5
1
2

20
200
2000

tCNSL +
NatCNSLS

mixture

1
2

20
200
2000

Concentrations not tested
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Genotoxicity assessments are an essential component of safety assessments for all
substances intended for use as pesticides. In recent years, considerable efforts have been
made worldwide to optimize strategies for in vitro genotoxicity testing. Thus, the standard
in vitro test includes the Salmonella/microsome bacterial reverse mutation assay [51]. The
absence of mutagenicity in all three products evaluated using the Salmonella/microsome
assay is especially important if we aim to implement the tCNSL + NatCNSLS mixture
emulsion as a multifunctional product to control Ae. aegypti.

4. Conclusions

The tCNSL was the most toxic (acute toxicity tests) product for all the non-target
organisms evaluated. The NatCNSLS mixture was the least toxic product to P. subcaptata
and O. niloticus. The tCNSL + NatCNSLS mixture emulsion was the least toxic product for
D. similis which was considered the most sensitive test organism and had an intermediate
toxicity for P. subcaptata and O. niloticus. Although the tCNSL + NatCNSLS mixture emul-
sion was toxic to aquatic non-target organisms, this effect was observed at concentrations
below the LC50 obtained for larvicidal effects. Toxic levels of this product are unlikely to be
found in the environment because of its dispersion and dilution capabilities in aquatic en-
vironments. None of the three evaluated products showed phytotoxic, cytotoxic, genotoxic,
or mutagenic effects on A. cepa or genotoxic effects on O. niloticus. Despite the cytotoxicity
observed in the Salmonella/microsome assay, we verified that the three tested products did
not show mutagenic activity.

The tCNSL + NatCNSLS mixture emulsion was an effective larvicide against Ae. aegypti
(LC50-24 h 110.6 mg/L) and can be considered less toxic or with the same degree of toxicity
when compared to the larvicides used to control vector mosquitoes, as recommended by
the WHO. Our data may contribute to the registration of this new product for use in Brazil
to combat Ae. aegypti. According to the ecotoxicological evaluation, the tCNSL + NatCNSLS
mixture emulsion is an effective product for the control of larvae and is environmentally
safe, providing a new strategy for the control of vectors such as Ae. aegypti.
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