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Abstract: Recent research has provided valuable momentum for the development and use of popula-
tion models for ecological risk assessment (ERA). In general, ERA proceeds along a tiered strategy,
with conservative assumptions deployed at lower tiers that are relaxed at higher tiers with ever more
realistic models. As the tier increases, so do the levels of time and effort required by the assessor.
When faced with many stressors, species, and habitats, risk assessors need to find efficiencies. Con-
servative lower-tier approaches are well established, but higher-tier models often prioritize accuracy,
and conservative approaches are relatively unexplored at higher tiers. A principle of efficiency for
ecological modeling for population-level ecological risk assessment is articulated and evaluated
against a conceptual model and an existing set of avian models for chemical risk assessment. Here,
four published avian models are reviewed in increasing order of realism (risk quotient→Markov
chain nest productivity model→ endogenous lifecycle model→ spatially explicit population model).
Models are compared in a pairwise fashion according to increasing realism and evaluated as to
whether conservatism increases or decreases with each step. The principle of efficiency is shown to
be a challenging ideal, though some cause for optimism is identified. Strategies are suggested for
studying efficiency in tiered ecological model deployment.
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1. Introduction

Interest in applied population models has grown rapidly over the last half-century,
driven in part by the utility of population models for conservation and management.
Two distinct threads in applied population modeling have emerged, population viability
analysis (PVA) and population-level risk assessment (PLRA). PVA models have long
supported protection and management for the recovery of vulnerable, threatened, and
endangered species [1]. In contrast, regulatory acceptance of PLRA models has been
slow [2–4], though demonstrations and reviews of PLRA models have been available for
decades [5–14].

The primary objective of PLRA is to evaluate the potential for adverse effects of
environmental contaminants on populations resulting from effects on exposed individu-
als [15]. As the principles of ecological risk assessment (ERA) developed to embrace a tiered
evaluation strategy, population models were recognized as a valuable tool for higher-tier
risk assessment when screening assessments suggested potential risk [16]. PopGUIDE [3]
and associated works [4,12] have provided a roadmap for the development of population
models for PLRA that considers the regulatory framework under which the risk assessment
is conducted, the availability of organismal, toxicological, and exposure data, and the
resources available for model development [3–14,17].

In the US Environmental Protection Agency (USEPA)’s tiered process for ERA, lower
tiers are typically designed to be more conservative [18] so that chemicals and use patterns
with low risk can be quickly triaged. For example, the USEPA’s Office of Pesticide Programs
compares risk quotients (RQ = Exposure/Toxicity, a more precise definition is provided
below) to levels of concern (LOC), where escalation to higher tiers may be required if
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RQ > LOC and additional information is needed to better understand risk [16,19]. Ex-
posure/Toxicity evaluations may be made intentionally conservative by using exposure
estimates from the upper tails of measured or modeled exposure distributions [19], by set-
ting low LOCs, or by choosing toxicity endpoints from the lower tails of measured toxicity
values [20]. In those cases, when Exposure/Toxicity < LOC, then we have confidence that
the risk is truly low. This example also highlights the important role of parameterization
(in this case, choice of specific exposure, toxicity, or LOC value for the RQ) in determining
whether a model prediction is conservative. Because RQs so designed are conservative,
RQ > LOC does not necessarily mean that the risk is unacceptable. Thus, an important
function of tier escalation is to progressively relax conservative assumptions to obtain a
more refined understanding of risk.

A conservative model prediction is one that overestimates the true magnitude of effect
for a given risk scenario. It follows then that conservative model predictions are those that
are positively biased (bias > 0), where bias is defined in the usual way (Equation (1)) as
the expected value of the difference between the predicted effect magnitude and the true
effect magnitude.

bias(
^
y)=E(

^
y−y) (1)

In Equation (1), y represents effect magnitudes (risk quotient, changes in fecundity,

fitness, population growth rate, etc.). The term
^
y represents model predicted effect mag-

nitude, whereas y represents the ‘true’ (unknown) effect magnitude. In practice, for the
discussions that follow, these would need to be scaled appropriately to be comparable
across tiers. These and other complications are illustrated and discussed below.

In PLRA, tier escalation is also associated with increased model complexity and realism
with the goal of reducing uncertainty [3]. Together, these principles require a designed
inverse relationship between model complexity and positive bias with tier escalation. If
the relationship is so designed, then a determination of “low risk” at any tier is sufficient
justification for terminating the escalation. Time and effort on the part of the risk assessor
also increase with tier escalation so that early identification of “low risk” scenarios is
a more efficient use of time and resources. Ideally, then, a subordinate tier produces a
determination of “low risk”, or the ultimate tier converges on an accurate and unbiased
representation of risk. If this relationship does not hold, then the presumption of safety
conferred by passing a tier may be flawed and may not justify terminating the assessment.

The above arguments can be summarized into an efficiency principle for PLRA:
If an exposure scenario represents low risk for a given species, we would like to

make a “low risk” determination at the earliest possible tier and using the simplest
possible model(s).

In this sense, the “simplest possible model” is the first model in the tier escalation
sequence that renders a “low/no risk” determination. A similar argument could be made
for quickly identifying exposure scenarios that pose a clear risk, but this is not considered
further herein. The resulting vision is of a series of increasingly realistic models that
progressively decrease uncertainty while also reducing positive bias in model predictions of
effect magnitude by relaxing conservative assumptions. This principle is articulated based
on personal observation of how tiered ecological risk assessment seems to be practiced
and/or envisioned.

The efficiency principle articulated above may conflict with generally accepted prac-
tices for the development and deployment of ecological models, which will be referred to
collectively as “best practices” [3–14,17,21]. Under best practices, parsimony is applied to
optimize the complexity of a particular model given the available data and the objectives
of the risk assessment. In the contrasting context considered here, the risk assessor has a se-
quence of previously developed models of increasing complexity in his or her toolbox. That
sequence is an efficient sequence if model predictions of effect magnitude are positively
biased and that positive bias decreases with increasing complexity and increasing realism.
With an efficient model sequence, a no-risk determination at any point strongly suggests a
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no-risk determination at higher tiers, thus justifying terminating the assessment. The point
of complexity (tier) at which a no-risk determination occurs will differ depending on the
context of the risk assessment and should not occur at all if the true risk is unacceptable.

Much recent literature has been devoted to trying to understand why higher-dimensional,
more realistic, ecological models, such as population models, are not used more routinely
in ecological risk assessment. In this paper, it is hypothesized that the principle of efficiency,
articulated above, is inconsistent with best practices for ecological model development that
focus on model accuracy and on fitting models commensurate with available data [21]. In
short, we do not yet know how to identify and deploy a decreasingly conservative set of
off-ramps that would allow risk assessors to escalate along a model sequence only so far
as is necessary for a risk decision. In the following, I first develop a conceptual model for
comparing the performance of the efficiency principle to an ideal unbiased model sequence.
Following conceptual model development and analysis, I critically evaluate my own past
work and the extent to which it could satisfy the efficiency principle. In the model review, I
focus on my own work for three reasons: (1) I am most familiar with it and the assumptions
made during development and application; (2) these models are likely candidates from
which the EPA could choose when defining an escalation sequence for avian PLRA; and
(3) these models form a loosely nested sequence, with output at tier n-1 serving as input to
tier n, thus guaranteeing increased model complexity along the sequence. The reviewed
models were not necessarily developed for this purpose, which complicates the transitions
to higher complexity, but as noted above, this is likely to be the general case. My primary
objective is to illustrate the conflict between the efficiency principle and best practices for
model development and the difficulties we will face in reconciling this conflict.

2. Materials and Methods
2.1. Conceptual Model

A conceptual model is developed to illustrate anticipated changes in model-predicted
effect magnitudes with tier escalation in ecological risk assessment. The model must
satisfy the following criteria. Under the efficiency principle, positive bias should decline
with increasing tier, increasing realism, and decreasing uncertainty towards an accurate
prediction of the true magnitude of effect. Under best practices, models are assumed
unbiased, and uncertainty around model predictions declines with increasing tier. In either
case, a risk scenario should be discovered to be safe at any given tier when the predicted
effect magnitude is lower than the maximum acceptable effect magnitude.

Following conceptual model development and analysis, a series of models with
escalating complexity and realism is reviewed, evaluating at each step conditions under
which the next higher model includes processes and data that would likely make its
predictions more or less conservative than its predecessor. In each case, models are nested
within one another (or can be conceptualized that way after the fact), which increases
comparability across tiers and creates a strictly increasing sequence of model complexity.
Where possible, comparisons are illustrated with previously published parameterizations
of each model, though some novel parameterizations are used. Models are deployed
heuristically and in keeping with their design, but no attempt is made to verify or validate
their predictions, which is outside the scope of this exercise. The four models considered
for an escalation sequence are given in Table 1, which yields three escalation steps. Some
background on each model is given below, with key references for further details.
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Table 1. Example model escalation sequence for avian population level risk assessment arranged
from lowest (RQ) to highest (SEPM) complexity.

Model Prediction(s) Citations

Risk Quotient (RQ) Exposure/Toxicity [16,19]
Markov Chain Nest Productivity Model

(MCnest) Annual reproductive success [22,23]

Endogenous Lifecycle Model (ELM) Intrinsic fitness and lifetime
reproductive success [24]

Spatially explicit population model
(SEPM)

Population growth rate and
population size [25]

2.2. Risk Quotients

Risk quotients (RQ) are ratios of expected exposure to a measured toxicity endpoint,
where the numerator and denominator are expressed in the same units (e.g., mg chemi-
cal/kg body weight). For avian RQs, toxicity endpoints are the median lethal dose (LD50)
from an avian acute oral toxicity study [26], the median lethal concentration (LC50) from
an avian dietary toxicity study [27], or No Observed Adverse Effects Levels (NOAELs)
from an avian reproduction test [28]. RQs are evaluated by comparing to Levels of Concern
(LOC), which are 0.5 for the LD50 and LC50 RQs and 1 for RQs from the reproduction test.
As noted above, RQs are designed to be conservative so that RQ < LOC can be confidently
interpreted as representing minimal or low risk.

2.3. MCnest

The Markov Chain Nest Productivity Model (MCnest) estimates the impact of pesticide-
use scenarios on the seasonal productivity of bird populations. The primary objective of
model development was to give risk assessors a way to make ecological inferences about
avian reproduction from standard toxicity test results. MCnest integrates toxicity informa-
tion from the same three standardized avian toxicity tests described above [26–28] with
information on species life history and the timing of pesticide applications relative to
the timing of avian breeding seasons. The model expands the RQ concept by comparing
dynamic modeled exposure to surrogate toxicity endpoints [29] on a daily basis while the
stochastic breeding model is running. Surrogate endpoints are designed to be phase-specific
(e.g., egg-development, egg-laying, incubation, nestling care) and are chosen carefully from
the suite of measured endpoints from the toxicity tests. A nest attempt is assumed to fail if
the appropriate exposure measure exceeds the surrogate endpoint. Following nest comple-
tion, whether successful or failed, a female bird is assumed to renest according to typical
species-specific propensities. The trajectory of success and failure is tracked for each female,
and the total reproductive output (seasonal productivity) of each female is calculated over
the breeding season. Typical usage is to compare seasonal productivity under alternative
pesticide use scenarios, including control simulations with no pesticide usage.

MCnest incorporates two alternative models of avian pesticide exposure, the Ter-
restrial Residue Exposure model (T-REX) [19] and the Terrestrial Investigation Model
(TIM) [30]. T-REX is a screening-level exposure model that estimates pesticide residues on
classes of dietary items (seeds, fruit, invertebrates, foliage, and grass) following pesticide
applications. T-REX inputs include date(s) of application, application rate (lbs/acre), and
foliar dissipation half-life. These data are integrated with prior empirical data on the distri-
bution of pesticide concentrations on dietary items following known application rates to
calculate concentrations of pesticides in avian food [31,32]. TIM is a refined exposure model
that also incorporates potential exposure through inhalation, dermal absorption, drinking
water, and spray drift. TIM has many more input parameters, including information on
field application methods, chemical properties (water solubility, partitioning coefficients
between water and air, octanol, and organic carbon), toxicity, and species life history (diet,
body weight, and foraging dynamics, including time of day and time spent on field). TIM
exposure estimates from non-dietary routes are converted to dietary equivalents to estimate
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total exposure. Regardless of which exposure model is chosen and parameterized, MCnest
compares the resulting exposure estimates to surrogate endpoints carefully chosen to be
specific to different phases in the nest cycle [29,33].

2.4. Endogenous Lifecycle Models

Endogenous lifecycle models (ELMs) were recently proposed [24] as an intermediate
step between individual-level models and population models. The primary objective in
developing ELMs was to provide a robust modeling framework for predicting changes
in individual fitness due to disruption of endogenous physiological processes, such as
occur along adverse outcome pathways (AOP) [34]. ELMs are not population models
though they superficially resemble density-independent matrix models. In comparison
with MCnest, ELMs are more realistic and more complex because they include the full
annual cycle rather than just the avian breeding season, which is typically limited to spring
and early summer for north temperate birds. MCnest predictions may be used as an
input parameter for ELMs, creating a nested model set and increasing comparability across
tiers (in-depth example provided in [24]). ELMs fall short of population models because
they do not predict population trajectories. Nor do they include the many exogenous
stressors (except chemical exposure) to which individuals in a population may be exposed.
Rather, an ELM predicts individual fitness on an annual or lifetime basis under alternative
exposure conditions. The following two ELM fitness equations [24] are relevant to the
subsequent material:

LRS = f
sj

1−sa
(2)

λf = sa + fsj (3)

Equation (2) gives the expected lifetime reproductive success (LRS) of a bird with a typical
temperate passerine-like lifecycle. Equation (3) gives intrinsic fitness (λf = the expected
annual production of genetic descendants, including self) for the same lifecycle. In Equa-
tions (2) and (3), sa = annual adult survival after age 1, sj = annual juvenile survival (before
age 1) and f = annual number of offspring raised to fledging.

2.5. Spatially Explicit Population Model

A spatially explicit population model (SEPM) [25] for the California gnatcatcher
(Polioptila californica) was created by implementing MCnest within HexSim [35] to evaluate
the potential impacts of pesticide use on this federally threatened species. Resources
(collectively “habitat quality”) were modeled using land cover and land use maps together
with an existing logistic regression model [36]. Individual female reproductive success
was modeled using MCnest, and pesticide usage was modeled using maps of agricultural
land use within the gnatcatcher range. Individual lifecycles were modeled as location-
specific ELMs, with MCnest fecundity predictions as inputs. Density dependence and
movement limitation were generated as emergent properties of dispersal and carrying
capacity determined by habitat quality. SEPMs are a further escalation of complexity and
represent one of the most realistic ways to model resource limitation, movement constraints,
and the population processes that emerge from these effects (e.g., density dependence) [37].

3. Results and Discussion
3.1. Conceptual Model & Analysis

In Figure 1, horizontal lines represent a priori levels of effect determined to be
safe/acceptable, which are independent of tier, model, and complexity. The monotonic
decline in the positive bias of predicted effect magnitude under the efficiency principle
ensures that a higher tier model with a smaller positive bias cannot overturn a ‘safe’ de-
termination made at a lower tier (i.e., once the predicted effect magnitude curve crosses
a safe threshold it will not cross back at a higher tier). Line A represents a risk scenario
that could be determined acceptable with an easily parameterized lower tier model, such
as a risk quotient because even a highly positively biased predicted effect magnitude is
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below line A. Line B represents a risk scenario in which the predicted effect magnitude is
not revealed to be safe until a higher tier model is used. Line C represents a risk scenario
that should never be determined safe because the true magnitude of effect (asymptote of
the hyperbolic cone) is higher than the pre-determined acceptable effect magnitude.
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Figure 1. Conceptual model for three different risk assessments illustrating the efficiency principle
and best modeling practices. The bold black curve is a conceptual model for positively biased model
predictions of effect magnitude (vertical axis) that satisfy the efficiency principle with increasing
complexity and tier (horizontal axis). Lines A, B, and C represent different risk assessments, for
which an a priori ‘safe’ effect magnitude has been specified. The dashed curve represents the lower
uncertainty bound for unbiased predictions of effect magnitude from models developed according
to best modeling practices. When combined with the bold black curve (repurposed to represent
the upper uncertainty bound for unbiased model predictions), the two form a hyperbolic cone
representing declining uncertainty of unbiased model predictions developed using best practices.
The ‘true’ (unknown, and so not pictured) effect magnitude is assumed to lie at the unrealized
asymptote approached by both curves.

When models are optimized according to best practices, their predictions will (ideally)
be unbiased and so will vary both positively and negatively around the true magnitude of
effect due to uncertainty and sampling error, and this uncertainty will decline at higher
tiers (the hyperbolic cone depicted in Figure 1). With an unbiased sequence, a no/low-risk
determination at a lower tier guarantees neither safety nor a consistent prediction at a
higher tier. Importantly there is a region within which the unsafe scenario might be deemed
safe when conservatism is not intentionally designed into the model sequence—the region
below line C and above the dashed curve. This possibility (whether realized or not) may
invalidate a no-risk determination as a stopping rule. In contrast, with an unbiased model
sequence, there is a greater possibility of making a no/low-risk determination at lower
tiers, but this determination would not carry the same level of confidence as if it were
made under the efficiency principle because a higher tier model might predict greater effect
magnitudes, thereby overturning the risk conclusion.

Embracing the efficiency principle leads to a difficult dilemma. On the one hand, the
development of a series of increasingly realistic models that produce reliably diminishing
conservative bias in predictions presumes foreknowledge of model predictions and bias
along the series and a complete understanding of the effect (in the model) of introducing
added realism. On the other hand, if we are not confident in the inverse relationship
between conservative bias and realism, then an alternative set of decision criteria for
stopping versus escalating must be articulated. Criteria that focus on optimizing model
design commensurate with the objectives of a risk assessment and the available data
(i.e., best practices) [3,4,17,21] Schmolke et al. (2017), Raimondo et al. (2018, 2020) are a
natural alternative. However, such criteria may leave risk assessments vulnerable to the
criticism that more complexity and realism might overturn the risk conclusion.

Many additional factors conspire against our ability to develop a parsimonious se-
quence of conservative models. Foremost among these is that model endpoints are not
comparable across tiers. For example, is RQ = 1.5 more or less risky than ∆λ = 0.05? This
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question is, at best, difficult to answer and, at worst, meaningless. It highlights two issues
that are not accommodated well by the conceptual model above—that effect magnitudes
are expressed in different units at different tiers and that they are measured on different
scales. But there are other, more mundane considerations as well. Given the resource
constraints involved in model development for ecological risk assessment, existing models
may be pressed into service in ways not originally anticipated. For example, consider two
hypothetical models, Model A and Model B. Model A may be more conservative under
some parameterizations, whereas model B may be under others. To which tier(s) do we
assign the two models? Even worse, what if the rank-reversal occurs within the parameter
space under consideration in the risk assessment?

3.2. Evaluation of a Model Escalation Sequence
3.2.1. Risk Quotients→MCnest

Acute and chronic RQs for 13 pesticides are given in Table 2 [16]. Exposure estimates
for RQs were generated using the Terrestrial Residue EXposure Model [18], and effects esti-
mates were taken from studies submitted to the USEPA. Of those 13 pesticides, 7 had acute
or chronic RQs that exceeded LOCs and were chosen for higher tier modeling using MCnest.
Consistent with EPA guidance [18], RQs were generated with the lowest available toxicity
endpoints from any study considered scientifically valid and reliable as a quantitative
estimate of toxicity. For MCnest modeling, toxicity endpoints were limited to those gen-
erated from mallard (Anas platyrhynchos) or northern bobwhite (Colinus virginianus) to
standardize interspecies extrapolations to the greatest extent possible. MCnest simulations
employed the Terrestrial Investigation Model (TIM) [30] to generate exposure and adult
mortality estimates. Additional realism conferred by the use of MCnest compared to RQs
included treatment of exposures as a distribution, rather than a single upper bound value,
treatment of diet as a mixture of components (e.g., invertebrates, seeds, etc.) with different
pesticide residues, and binomial modeling of foraging on and off-field. The objective of
the study was to evaluate the relative risk, among the 13 original pesticides, to birds using
agroecosystems, and absolute risk estimation was not attempted.

Table 2. Acute and chronic risk quotients (RQ = exposure/toxicity) for insectivores for 13 pesticides.
The median lethal dose (LD50) units = mg active ingredient/kg bodyweight. The median lethal
concentration (LC50) units = mg active ingredient/kg diet.

Pesticide LD50 LC50 Test Species Acute
RQ

Chronic
RQ

bifenthrin 1800 75 Colinus virginianus 0.0083 0.13
carbaryl 2290 300 Coturnix japonica 0.34 0.041

chlorantraniliprole >2250 120 Colinus virginianus <0.011 0.0031
chlorpyrifos 8.41 25 Phasianus colchicus 30 4.5

cyfluthrin >2000 250 Colinus virginianus 0.011 0.39
dimethoate 5.4 4.0 Agelaius phoeniceus 12 12

esfenvalerate 381 608 Colinus virginianus 0.072 0.028
indoxacarb 98 144 Colinus virginianus 0.34 0.15

lambda-cyhalothrin 3950 5 Anas platyrhynchos 0.0057 2.1
malathion 167 110 Phasianus colchicus 1.8 0.039
methomyl 15 150 Phasianus colchicus 18 1.1

methoxyfenozide >2250 819 Colinus virginianus <0.057 0.014
permethrin >9869 125 Anas platyrhynchos <0.022 0.0099

3.2.2. Why Might RQs Be More Conservative than MCnest?

RQs, as calculated in [16], compare upper bound exposure to a toxicity endpoint
regardless of the timing of exposure. For example, birds experiencing exposures exceeding
reproductive NOAELs outside of the breeding season might not experience any adverse
effects if those exposures are also well below acute thresholds. Further, if the bird is
migratory, individuals may not experience any exposure at all. MCnest takes the timing
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of exposure into account by modeling initial pesticide concentrations in the environment
following application and models the decay of the pesticide according to its degradation
half-life. Therefore, considering the timing of exposure using MCnest is an increase in
realism achieved by relaxing the conservative assumption of static exposure compared to
deterministic RQs. In the example cited above [16], pesticide applications were associated
with specific dates based on labeling requirements for the pesticides, and the timing of
avian breeding was based on literature reports for the modeled species in the modeled
system (upper Midwest agricultural ecosystems).

Although MCnest also uses threshold comparisons to determine whether a nest fails
or succeeds, birds may compensate for a lost attempt by renesting if time remains in their
modeled breeding season. This approach is also less conservative than a static RQ. Further,
many, though not all, MCnest surrogate endpoints use time-weighted averages of exposure
from the modeled decay curve, with time > 1 day, so that the values of the numerator in
the MCnest exposure/toxicity comparisons would be lower than peak exposure even on
application day. Finally, eliminating studies on species other than northern bobwhite and
mallard during MCnest modeling but including them for RQs, meant that some of the
toxicity endpoints used in RQs were lower than the corresponding values used in MCnest.

3.2.3. Why Might MCnest Be More Conservative than RQs?

MCnest simulations [16] were conducted using the Terrestrial Investigation Model to
generate exposure estimates. The choice to do so follows the expected increase in realism
with tier escalation, as TIM includes many realistic processes not included in T-REX. For
example, TIM includes first-order elimination kinetics when calculating avian dose, and
it includes additional exposure pathways such as dermal exposure, drinking water, and
inhalation. This added realism could introduce conservatism. If elimination is slow, then
the internal dose could exceed external exposure (daily dose based on environmental
concentrations using the T-REX method). Similarly, if inhalation, drinking, or dermal
exposure are important pathways, then the calculated total dose could exceed the dietary
dose that was used for T-REX RQ calculations.

To evaluate the extent to which this may have occurred, a limited set of simulations
were rerun in MCnest for three insectivorous songbirds, tree swallow (Tachycineta bicolor),
house wren (Troglodytes aedon), and black-capped chickadee (Poecile atricapillus). Table 3
presents the differences in MCnest predictions with TIM versus T-REX, where negative
values indicate that MCnest with TIM offered more conservative predictions and vice
versa. In general, MCnest with TIM generated less conservative predictions than MCnest
with T-REX, but this was not universally true with the three re-analyzed species and
seven pesticides.

Table 3. Differences in Markov Chain Nest Productivity Model (MCnest) fecundity predictions using
the Terrestrial Residue EXposure (T-REX) model versus the Terrestrial Investigation Model (TIM)
(negative values occur when fecundity predictions using T-REX exceed those using TIM for the same
chemical use scenario).

Chemical Tree Swallow House Wren Black-Capped Chickadee

None 0 0 0
Carbaryl −0.01 3.78 4.40

Chlorpyrifos 0.13 −2.08 0.24
Indoxacarb 1.53 3.51 4.21

Lambda cyhalothrin 3.13 3.66 0.43
Malathion −0.21 1.09 0.22
Methomyl 0.21 −1.49 0.46
Permethrin 3.78 3.81 1.30
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3.2.4. MCnest→ ELM

Etterson and Ankley [24] used MCnest output as input for an ELM that modeled
aryl hydrocarbon receptor (AHR) activation, leading to reproductive effects in two bird
species, tree swallow and bald eagle (Haliaeetus leucocephalus). The species were chosen
to represent a long-lived bird with delayed sexual maturation (bald eagle, first reproduction
at year 6) compared to a short-lived bird that begins reproduction at 1 year (tree swallow).
The purpose of that work was to demonstrate the ability of ELMs to integrate toxicological
effects to predict fitness effects, taking lifecycle into account.

Table 4 reports the magnitude of effects on MCnest predictions versus ELM predictions
for embryonic mortality associated with AHR activation at the LC50. For bald eagle, the
effects on fitness are much larger than effects on fecundity, whereas, for tree swallow, the
effects on fitness are much smaller than effects on fecundity. On its face, this appears to
be a potential case of the hypothetical Model A/Model B scenario presented above. How-
ever, caution is warranted. Model predictions are not similarly scaled, and proportional
reductions tell a different story. For both species, annual fecundity (MCnest prediction) and
lifetime reproductive success (ELM prediction) are reduced by 50% compared to the same
metrics in the absence of AHR activation. Intrinsic fitness (ELM prediction) is reduced
by 33% for tree swallow and only 6% for bald eagle, again relative to expected values in
the absence of AHR receptor activation. Thus, from a proportional reduction perspective,
the models are either equally conservative (comparing MCnest predictions to lifetime
reproductive success) or the ELM is less conservative (comparing MCnest predictions to
intrinsic fitness) for both species.

Table 4. Markov Chain Nest Productivity Model (MCnest) predictions compared to endogenous life-
cycle model (ELM) predictions for aryl hydrocarbon receptor (AHR) activation leading to embryonic
mortality at the median lethal concentration (LC50).

Model Prediction Bald Eagle Tree Swallow

MCnest Annual Reproductive Success 0.7 1.91

ELM Lifetime Reproductive Success
(LRS, Equation (2)) 1.44 0.78

ELM Intrinsic Fitness (λf, Equation (3)) 1.01 0.88

The above discussion highlights the difficulty we face in implementing the efficiency
principle in an escalating model sequence. However, the interpretational challenge is not
limited to proportional versus absolute effects. In the preceding paragraph, a diminishing
proportional difference between model predictions in the exposed versus the control
scenario was used as a proxy for a decline in conservative bias when comparing MCnest
predictions to intrinsic fitness. Strictly speaking, that argument requires that control
predictions for both MCnest and ELM are unbiased. However, if both control and exposed
scenarios in an ELM are highly negatively biased, then the proportional difference might
decline between MCnest and an ELM, while at the same time, ELM predictions could
have higher “conservative” bias than MCnest. This highlights our greatest challenge in
implementing the efficiency principle: without knowing the true risk, we cannot know
model bias.

3.2.5. Why Might MCnest Be More Conservative than an ELM?

The argument presented above suggests that effects on fecundity will result in propor-
tionally similar or proportionally smaller reductions in fitness in ELM predictions compared
to MCnest predictions, depending on the output metric employed. Therefore, assuming the
control predictions are unbiased for both MCnest and ELM, the conservative bias inherent
in ELM lifetime reproductive success predictions would be less than the conservative bias
in fecundity predictions from MCnest. Like the comparison from static RQs to MCnest, the
step from MCnest to ELM increases realism and relaxes conservative bias by considering
exposure in the context of a longer period of the lifecycle, a year (λf) or a lifetime (LRS).



Ecologies 2022, 3 140

3.2.6. Why Might an ELM Be More Conservative than MCnest?

When exposure induces effects on multiple vital rates, an ELM offers the simplest
integration of effects that takes into account the species lifecycle. If exposure causes both
acute and chronic effects, then an ELM will likely predict greater proportional effects than
MCnest alone. In this case, greater realism is associated with greater conservatism. This
reversal might cascade down to RQs (i.e., ELM more conservative than lowest RQ) if acute
and chronic RQs are both greater than their respective LOCs [16].

3.2.7. ELM→ SEPM

The spatially explicit population model for California gnatcatchers [25] included
habitat-specific determination of background vital rates, carrying capacity, and explicit
movement rules. Each of these processes represents significantly increased realism com-
pared to an ELM, which predicts only individual fitness. Below, simple ELM calculations
are made using data from [24] for comparison with the gnatcatcher SEPM.

3.2.8. Why Might an ELM Be More Conservative than a SEPM?

Table 5 gives background demographic rates for the gnatcatcher (in ideal habitat
in the absence of exposure) [24]. Plugging those values into the ELM fitness equations
(Equations (2) and (3)) gives an estimate for lifetime reproductive success (LRS) of 2.0312 female
offspring produced on average in a lifetime. Similarly, the model gives an estimate of the
annual propagation of female genetic descendants (λf) of 1.495. Technically, these fitness
measures are smaller than those that would be generated following the recommenda-
tions of [24] because the fecundity values are for female offspring only [25], in keeping
with traditional population modeling practice. For this illustration, the distinction does
not matter.

Table 5. California gnatcatcher vital rates in ideal habitat.

Rate Value Definition

sj 0.4314 survival from fledging to recruitment at age 1
sa 0.5200 annual adult survival
f 2.2600 annual reproductive success

Under the greatest reduction in reproductive success predicted by MCnest for the
reproductive stressor, f ≈ 0.65 (Figure 3 in [25]). Substituting f ≡ 0.65 for that reported in
Table 5 and plugging all three values into the ELM equations (Equations (2) and (3)) gives
λf = 0.8 and LRS = 0.4852. Neither of these values are sufficient fitness for a female to replace
herself, either annually or during her lifetime, suggesting that a population of individuals
experiencing identical conditions would likely decline to extinction. In contrast, the SEPM
predicted persistence for at least 50 years. An analogous argument could be made with the
survival stressor [25]. However, the inclusion of refugia (areas in which pesticides were
not used) resulted in the added realism of the SEPM, relaxing the conservative assumption
inherent in the ELM prediction, which pertained only to exposed individuals.

3.2.9. Why Might an SEPM Be More Conservative than an ELM?

Like most SEPMs, the gnatcatcher model included density-dependence induced by
movement limitation and patch-specific carrying capacities. When average fitness exceeds
that required for a population to persist, then fitness calculated from an ELM will necessarily
be higher than the same metric calculated from an SEPM at equilibrium. In that case, the
SEPM would report the very minimum value of fitness required for persistence, whereas
the ELM would report a value that is, by definition, higher. Modifications of the way in
which fitness is calculated could be made to avoid this reversal in the magnitude of fitness
(or reductions in fitness), but these would require foreknowledge of the effect of increased
realism on the model predictions. In this simple example, this foreknowledge is relatively
obvious, but in many cases, it would not be.
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3.3. General Discussion and Recommendations

The comparisons above show that increased realism does not necessarily confer a
reduction in conservative bias with tier escalation, even when the added realism is intended
to relax conservative assumptions made in the preceding step. For each of the three
escalation steps, it was shown that increased realism could either increase or decrease
conservatism and that this is due to multiple considerations that would be in competition
with one another to produce the actual relationship between realism and bias with tier
escalation. It was further shown that these relationships are context-dependent and that
it would be difficult, in any given application, to know a priori whether the efficiency
principle is satisfied. Nested model sequences like those reviewed herein (i.e., output from
tier n-1 as input for tier n) are helpful but not sufficient. These conclusions were reached
using a specific suite of avian models, but the conclusions themselves likely apply very
broadly to other model sequences that might be used in PLRA. The desiderata of risk
assessment off-ramps to be achieved by “passing” some tier of a sequence of decreasingly
conservative and increasingly realistic models will be difficult to achieve.

Best practices for developing models [2–4,17,21] will help produce more accurate
models with increasing realism, but these will not necessarily satisfy the efficiency principle
(Figure 1). First, the criterion of model accuracy is in direct conflict with the desire for
conservative predictions, and best principles are just as likely to produce models that
underestimate effects. Second, at some unknown point, increasing model realism exceeds
the support of the data, and bias is likely to increase with complexity. The latter point
is especially true when overparameterized models are applied to novel data. This again
highlights the need for parsimony in identifying ideal model complexity for ecological risk
assessment [21].

It should also be noted that alternative model parameterizations will also affect the
performance of a model compared to the models that precede and succeed it in a risk
assessment sequence. Life history traits vary widely among even closely related species
and have the ability to influence the degree to which a model is conservative. For example,
Table 3 contains inconsistencies in the relative conservatism of T-REX versus TIM param-
eterized for three insectivorous cavity-nesting passerines, species that should otherwise
be very similar to one another. Other specifics of the risk assessment context will also
likely influence relative model predictions such as the mode of action or adverse outcome
pathway induced by exposure and the landscape setting in which exposure occurs.

The above exercises also offer some cause for optimism respecting the efficiency
principle. Of the reviewed applications, only one [16] attempted to decrease conservatism
with tier escalation, and, with a few exceptions, they appear to have been successful
(see, e.g., Table 3). As argued above, model repurposing is likely to be the rule as we
grow our PLRA toolboxes, giving us a suite of models with unknown bias and with
unknown relationships to one another. Yet we may be able to use simulated data on well-
studied chemicals in which risk is determined in advance to study the model sequence(s).
When models are nested, as envisioned here, their properties and predictions will be
more comparable.

From these arguments, several strategies for studying model escalation sequences
suggest themselves. One strategy would be to simulate data using the highest-tier model
and then evaluate the performance of each nested model on the simulated data. Many tran-
sitions would still be difficult, for example, the “field to lab” comparison, which would be
the MCnest→ RQ step in the inverted sequence from above. Another valuable strategy in
deploying model escalation sequences might be to develop paired model parameterizations
within tiers. For example, RQs could be generated with median exposure estimates and
with upper-bound estimates as a way of gauging the effect of conservative assumptions
on RQ predictions. Similarly, MCnest, or any other ecological model, could be run with
and without conservative assumptions, keeping all other parameters fixed, to compare
the impact of those assumptions on model predictions. Ideally, if the efficiency principle
were implemented successfully, the distance between the median versus conservative
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predictions would diminish with tier escalation, though this might require rescaling the
effect magnitudes to be similar among tiers. Finally, introducing conservativism through
alternative parameterizations rather than alternative model structures will facilitate both
the study of and implementation of efficiency in tiered risk assessment.

Hybrid approaches that employ both conservatism and best practices should be
considered with caution. From the above, it is not clear that the two strategies are consistent
with each other. Even if they can be reconciled, then a hybrid approach seems unlikely
to realize either the benefit of efficiency (safe and conservative stopping rule) or best
practices (accurate predictions commensurate with data). At a given tier, either one or the
other strategy should be chosen. Thus, one possible hybrid approach might be to switch
strategies at some point, relying on the efficiency principle at lower tiers and switching to
best practices at higher tiers. This overall strategy could take advantage of the benefits of
each at the tiers at which they would be most useful (efficiency at lower tiers, accuracy and
realism at higher tiers). In any case, at the very highest tier, the efficiency principle will not
be useful when the risk conclusion at that point is “not acceptable”.

Escalation of realism and complexity in model sequences will often be more compli-
cated than represented here with a sequence of nested models. For example, an ELM could
be much simpler than MCnest, incorporating only three or four parameters, though ELMs
have been presented here as representing greater realism and complexity than MCnest.
This was guaranteed in the above sequence by considering models as a nested sequence
(i.e., with MCnest fecundity predictions as input to ELMs and ELM predictions consid-
ered as input to the SEPM). In practice, different model components may be more or less
realistic or complex, depending on circumstances. For example, a complex and realistic
exposure model may be implemented with effects models and/or life history models that
are considered less realistic [3]. Similarly, model complexity and realism necessarily involve
both model structure and parameterization so that a given model may be simplified by
constraining parameter values (for example, by setting regression coefficients to zero),
which again highlights the utility of nested models in an escalation sequence.

Successful implementation of the efficiency principle articulated above would help
conserve resources for population-level ecological risk assessment when deploying a series
of ever more realistic models. However, it may also be an ideal that cannot be perfectly
achieved. Recent research has provided valuable momentum for the development of
ecological models [3,4,17,21]. It is not too soon to put careful thought into how we will
deploy and interpret them.
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