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Abstract: Individuals in a population often use unique subsets of locally available resources, but we
do not entirely understand how environmental context shapes the development of these specializa-
tions. In this study, we used ovipositing cabbage white butterflies (Pieris rapae) searching for host
plants to test the hypothesis that early experience with an abundant resource can lead to later indi-
vidual specialization. We first exposed naive butterflies to one of three environments with different
relative abundances of host plants of comparable nutritional quality, cabbage and radish. The next
day, we observed butterflies from all treatments searching for hosts in a common environment where
cabbage and radish were equally abundant. We predicted that the butterflies would preferentially
visit the host plant that had been abundant during their previous experience, but instead found that
butterflies from all experience treatments visited cabbage, a likely more visually salient host, more
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often than radish. In this experiment, behavioral plasticity in current conditions outweighed devel-
opmental experience in shaping individual resource use. We argue that these butterflies potentially
respond to particularly salient search cues and that the discriminability of a resource may lead to
specialization bias independent of early life experiences with abundant resources.
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1. Introduction

Resource use is an important component of most ecological and evolutionary pro-
cesses. Within populations, individuals may specialize in specific resources, using only a
fraction of the population niche width [1]. Individual specialization is widespread across
taxa [2]: for example, some birds and frogs show consistent individual differences in
diet [3,4], predatory wasps specialize on certain prey species [5], and foraging bees special-
ize on certain flower species, even when equally valuable flowers are also available [6,7].
Understanding the causes of such intraspecific variability in resource use is relevant to
understanding ecological interactions [8,9], ecosystem functioning [10] and evolutionary
dynamics [11]. Inter-individual variation in resource use can sometimes be explained by
age, sex, or morphology [12-14], but there is still variation in resource use specialization
within these categories [15-17]. It is quite possible that individual variation in an ecological
context could explain this further variation in individual specialization [18]. This research
builds on recent efforts to begin to understand how experience shapes the development
and maintenance of individual specialization [2,19].

Early life experiences may shape the development of individual specialization. A hand-
ful of existing studies have shown that early experience with a given resource assemblage
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resembles those of their mothers than other members of the population [17]. Such exam-
ples of experience-dependent resource specialization are likely explained by learning—
developmental plasticity in behavior [22]. Learning can affect foraging behavior through
more efficient handling time or resource search [23-25]. If experience with a certain re-
source ultimately leads to increased foraging or digestive efficiency over time, this resource
may become preferred [26,27]. In some ways, individuals develop behavioral, morpho-
logical, or physiological “expertise” with particular resources, such that initial experience
biases subsequent preference and performance [28]. For example, in swallowtail butterflies,
it has been suggested that early adult experience with a given locally abundant host plant
species leads to learned search images for different leaf shapes and divergent individual
specializations [29,30].

This research builds on existing studies on how experience shapes resource use, with
a case study on butterfly host searching. We test the hypothesis that individual variation
in resource use can be explained by early life differences in resource abundance. If a
particular resource is abundant relative to others and is thus encountered more frequently,
these encounters could lead to positive reinforcement of the cues or handling behavior
associated with the common resource. Insects, for example, can change preference in
response to encounter rates through learning [31-33]. Because learning new information
or new skills requires time and energy, when animals encounter new environments or
experience a change in their environment, they may retain preferences from earlier environ-
ments. Learned resource preferences can be maintained over the course of a foraging bout,
a season, or even a lifetime [5,34,35]. Even within a group of animals, there is variation
in the time course of resource specialization; for instance, some individual bees maintain
pollen specializations for hours, and some for their lifetime [36]. By experimentally con-
trasting the effects of previous versus current resource environment, we can build a more
general understanding of why experience shapes individual specialization over diverse
time courses.

We tested the hypothesis that early experiences in environments with different relative
resource abundances can produce individual specializations in a common environment.
More specifically, we predicted that naive individuals would form preferences for resources
that were abundant in their early adult environment and preferentially visit those resources
in subsequent environments where resources were equally abundant. We tested these
predictions by observing the host plant choices of individual cabbage white butterflies
(Pieris rapae) in environments where two different species of host plants (radish and cabbage)
varied in their relative abundance. We then observed these same butterflies in a common
environment, where radish and cabbage were equally abundant. Cabbage whites are a good
model to explore the effects of early adult experience on host choice because associative
learning plays a role in host searching, with individuals remembering color cues over
multiple days [24,37,38]. Cabbage whites often show individual variation in host plant
and floral preferences [39,40] and they are experimentally tractable in terms of controlled
lab rearing and adult behavioral observations [40,41]. Given that these butterflies use
associative learning to discriminate host plants from non-host plants, we predicted that
the butterflies would learn the cues associated with the most abundant host in their early
environment and retain those cues on their second day of foraging, preferentially landing
on that host over others.

2. Methods
2.1. Overview

To manipulate a butterfly’s experience with different relative host abundances, we al-
lowed mated, naive female butterflies to search for host plants in one of three “treatment”
arrays: one where cabbage was abundant and radish was rare (3:1 ratio), one where cabbage
and radish were equally abundant (1:1 ratio), and one where radish was abundant and
cabbage was rare (1:3 ratio). After 24 h, butterflies from all three treatments were allowed
to search for host plants in a common “test” array where cabbage and radish were equally
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abundant. During both the treatment phase on Day 1 and the test phase on Day 2, a single
observer (MKS) recorded the number of landings a single butterfly made on host and
non-host plants while searching.

2.2. Care for Experimental Butterflies

The butterflies used in this experiment were host-naive offspring of wild-caught
cabbage whites (Pieris rapae) captured in June and July 2015 on the Saint Paul campus of the
University of Minnesota. To rear these experimental individuals, wild-caught females were
placed inside a mesh 60 x 60 x 60 cm “bug dorm” and allowed to lay eggs on store-bought
organic cabbage leaves with a non-host plant for humidity and a sponge soaked in 10%
honey water for food. Leaves with eggs were transferred to a climate chamber (23 degrees
Celsius, 14L:10D, 60% relative humidity) and, after 7 days, early second instar caterpillars
were transferred to artificial diet [40]. Caterpillars remained in the climate chamber on
artificial diet until they emerged as adults. Each adult was given a unique ID number,
written in fine-tipped black sharpie on its wings. Each butterfly was then placed in a
glassine envelope and stored in a refrigerator at 6 °C for up to 3 days. Butterflies were
then transferred to the bug dorms (10 males, 10 females) for mating for 48 h. From there,
mated female butterflies were removed and observed in one of three treatment arrays.
After observation, these female butterflies were retired to a bug dorm with a honey water
sponge and non-host plant for the evening and then observed in the test array the following
day. All experimental females had no host plant experience when they first entered the
test arena.

2.3. Care for Plants

We used two host plants (cabbage: Brassica oleraceae var. Earliana and radish: Raphanus sativus
var. Cherry Belle) and four non-host plants (Swiss chard: Beta vulgaris var. Foordhook Giant, basil:
Ocimum basilicum, tomato: Solanum lycopersicum var. Patio Princess Hybrid and red lettuce:
Lactuca sativa var. Rouge d’Hiver) in our experiment, all grown from seed in greenhouse
facilities at the University of Minnesota. We planted seeds in small trays and, after two
weeks, transferred seedlings to larger 5” x 5” x 2.65 L pots with Sunshine® Professional
Growing Mix 15/LC15. One day after transfer, plants were fertilized with 6 g of Osmocote®
Classic 14-14-14 N:P:K fertilizer and treated with 1/3 tsp of OHP Marathon 1% Granular
pesticide to protect plants from greenhouse pests. The first seeds were planted in late May
and a new cohort of seeds was sown every two weeks through early July in order to have
fresh plants for butterfly choice. Plants were used in experimental arrays when they were
approximately 40 days old. Although all six species of plants were relatively similar sizes
and heights, any non-host plants that were markedly higher than others were cut to size to
standardize structural complexity of the environment in all assays.

2.4. Experimental Arrays

In all treatment and test arrays, 24 potted plants were arranged in a 6 x 4 array inside
a2m X 3m x 1.6 m (height) flight cage. Absolute host abundance was constant across
arrays: there were always 12 host plants and 12 non-host plants (3 plants each of basil,
Swiss chard, tomato and red lettuce). To avoid forming patches due to random placement
of plants, we systematically assigned locations to all hosts and non-hosts. All host plants
always had adjacent non-host neighbors and diagonal host neighbors. All non-host plants
were placed such that individuals of the same species were as far from each other as
possible (Figure 1). In treatment arrays where cabbage and radish were equally abundant,
host plants had diagonal neighbors of a different species (Figure 1A). In treatment arrays
where one host was rare, the three individuals of that host were placed such that there was
one in every other row and all were never in the same column (Figure 1B). The Day 2 test
array was exactly the same as the Day 1 treatment array, where cabbage and radish were
equally abundant.
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Figure 1. Arrangement of host plants (cabbage and radish) and non-host plants (red lettuce, Swiss
chard, tomato, basil) in experimental arrays. (A) This arrangement was used for the Day 2 test
array and for the Day 1 treatment array where cabbage and radish were equally abundant. (B) This
arrangement was used for the Day 1 treatment arrays when a host was rare, in this case with radish
as the rare host.

2.5. Behavioral Measurements

Behavioral observations were the same across all treatment and test arrays. An ob-
server (MKS) sat inside the experimental flight cage and released individual females into
the cage by placing them on a randomly assigned host plant in order to motivate host
search behavior. If a butterfly did not immediately begin to search for host plants, it was
excluded from the study. If the butterfly began to search, it was allowed to continue until
it had made 20 landings on host plants. A “landing” was identified as tarsal drumming
on the leaf of a plant, a behavior indicating that butterflies are evaluating plant chemistry
using contact chemoreception [38]. Tarsal drumming on a host plant is usually followed
by “oviposition” which was scored separately from “landing” because the former is a
pre-alighting choice (largely visual) and the latter, a post-alighting choice (largely tactile).
The likelihood that butterflies will oviposit on a host plant after landing on it (“acceptance
rate”) is similar for both radish and cabbage [40]. The observer continuously recorded land-
ings and ovipositions, the species of plant each behavior was associated with, and the time
they occurred using the software, Jwatcher, on a laptop computer [42]. All observations
were completed between 10 am and 3 pm on sunny days in July and August, 2015.

To quantify a butterfly’s tendency to land on cabbage vs. radish, we calculated a
“landing preference”, defined here as the likelihood that a butterfly will land on cabbage
upon encountering it, assuming that butterflies encounter resources in proportion to their
abundance in the environment. “Landing preference” during a foraging bout of 20 host
landings was calculated by scoring cabbage landings as “1” and radish landings as “0”
and calculating an overall probability of landing on cabbage. In our graphs, however,
we chose to leave “landing preference” as the raw number of cabbage landings in 20 total
host landings to make interpretation more visually intuitive.

2.6. Statistical Analysis

All statistical analyses were performed using R version 3.3.3. We used generalized
linear mixed effects models using the Ime4 package [43] to model the probability of landing
on cabbage on Day 2 as a function of Day 1 treatment with individual as a random effect.
To understand whether butterfly landing patterns departed from the ratio of host plants in
each of the relative abundance treatments, we calculated the mean proportion of cabbages
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that butterflies visited in each treatment and compared those values to the proportion of
cabbages in the environment. We created 95% bootstrapped confidence intervals around
the mean proportion of cabbage landings for each treatment and looked at whether the
proportion of cabbage in the environment (0.25, 0.50 and 0.75 respectively) fell within these
confidence intervals. To explore how butterfly landing preferences and foraging ability
changed with experience, we restricted our analysis only to butterflies that experienced the
same resource environment over two days: those in the treatment where cabbage and radish
was equally abundant. We modeled (1) probability of landing on cabbage as a function of
Day with individual as a random effect and (2) a butterfly’s accuracy (number of non-host
landings in 20 host landings) as a function of Day with individual as a random effect.

3. Results

A total of 65 butterflies completed behavioral trials across two days. On Day 1, 20 of
these butterflies searched in environments where cabbage was abundant, 20 butterflies
searched in environments where cabbage and radish were both equal and 25 butterflies
searched in environments were radish was abundant. On Day 2, all 65 butterflies searched
in environments where cabbage and radish were equally abundant.

3.1. Day 1: Confirming That Butterflies Have Different Host Plant Experiences across Treatments

We first sought to confirm that our treatments resulted in differences in experience
with the two host plant species (Day 1). Butterflies searching in the cabbage-abundant
environment exhibited a higher probability of landing on cabbage than butterflies searching
in the environment where both hosts were equally abundant (B = 0.894, p < 0.001) and
where radish was abundant (B = 1.750, p < 0.001). Butterflies foraging in environments
where both hosts were equally abundant exhibited a higher probability of landing on
cabbage than in environments where radish was abundant (B = 0.856, p < 0.001). Taken
together, these results indicate that the butterflies were more likely to land on cabbage as
it increased in abundance in the environment (Table 1, Figure 2—day 1), confirming that
our environmental manipulations provided the butterflies with different experiences with
host plants.

Table 1. Results of post hoc Tukey comparisons predicting a butterfly’s probability of landing on
cabbage. On Day 1, butterflies foraged in one of three environments that differed in the relative
abundance of host plants radish and cabbage. On Day 2, these same butterflies foraged in a common
environment where the two hosts were equally abundant.

Relative Abundance Comparisons B SE z p-Value

Day 1: Different Environments

Cabbage Abundant-Equal Abundance 0.894 0.144 6.230 <0.001

Equal Abundance-Radish Abundant 0.856 0.146 5.866 <0.001

Cabbage Abundant-Radish Abundant 1.750 0.147 11.870 <0.001
Day 2: Common Environment (comparisons refer to Day 1 expereinces)

Cabbage Abundant-Equal Abundance 0.062 0.141 0.440 0.899

Equal Abundance-Radish Abundant 0.098 0.147 0.662 0.785

Cabbage Abundant-Radish Abundant 0.160 0.140 1.139 0.490

We additionally tested whether the butterflies exhibited any kind of preference for one
host type over another by testing whether the butterflies landed on cabbage in proportion
to their abundance. The butterflies landed on the expected number of cabbages when
cabbage was abundant (exp = 0.75; 95% conf = 0.68-0.79) and when both hosts were equally
abundant (exp = 0.5; 95% conf = 0.44-0.64). However, when radish was abundant and
cabbage was rare, the butterflies landed on cabbage more often than expected by chance
given its proportion in the environment (exp = 0.25; 95% conf = 0.26-0.43, Figure 2—day 1).
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Total Landings on Cabbage

These results suggest that butterflies may have slightly preferred cabbage in some of these
experimental arrays.

204 Day 1 Day 2
: |
9+ -] === > 4 |
©
. ’
L
104+---}p---4  }=-=-=-===-4 A e IR IR
°
°
) [
5 = =
[ ] [ ]
04 °
h T T T T T T
Radish Equal Cabbage Radish Equal Cabbage
Abundant Abundance Abundant Abundant Abundance Abundant

Day 1 Relative Abundance Treatment

Figure 2. Total landings on cabbage made by butterflies that experienced different relative host
abundances of cabbage and radish on Day 1 and a common environment with equal abundance of
both hosts on Day 2. Box plots are constructed using the median (center line) and first and third
quartiles (lower and upper lines respectively). Whiskers extend to the largest value no further than
1.5*IQR. Blue diamonds represent means and dots represent outlying points plotted individually.
Dashed lines represent the expected number of cabbage landings based on the proportion of cabbages
in the environment: 15 for cabbage-abundant, 10 for equal abundance, and 5 for radish-abundant
environments. Note: This graph differs from our analysis, which used binomial regression to model
cabbage (1) and radish (0) landings.

3.2. Day 2: Previous Experience Did Not Affect Subsequent Resource Specialization

To explore the effects of previous experience on subsequent resource choices, we asked
whether the relative host plant abundance the butterflies experienced on Day 1 influenced
their choices on Day 2 in a common environment, where both hosts were equally abundant.
On Day 2, the butterflies exhibited the same probability of landing on cabbage regardless
of the relative host environment they experienced on Day 1 (chisq = 1.302, df = 2, p = 0.522,
Table 1, Figure 2—day 2).

We also explored whether the butterflies landed on hosts in proportion to their abun-
dance in the environment on Day 2. The butterflies with all three types of Day 1 expe-
riences visited cabbage more often than expected given its abundance in the environ-
ment (Figure 2—day 2). The proportion of cabbage plants in the environment (0.5) fell
below the 95% confidence intervals of butterfly landings when cabbage was abundant
(conf = 0.58-0.74), when both hosts were equally abundant (conf = 0.59-0.71), and when
radish was abundant (conf = 0.53-0.72). These results indicate that, although butterfly
landings on Day 2 did not differ based on Day 1 experience, the butterflies on Day 2
did not merely visit the host plants in proportion to their abundance in the environment
(i.e., random landings).
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3.3. Change between Days: Butterflies Increased Visits to Cabbage and Improved Their Accuracy

Because we tracked individuals over the course of two days, we were also interested
in how landings and search accuracy changed over time. We evaluated the host landing
preference and accuracy of butterflies that experienced equal abundance of cabbage and
radish over two days. On Day 2, the butterflies exhibited a higher probability of landing
on cabbage (B = 0.444 + 0.086 SE, p < 0.001) and landed on fewer non-hosts than on Day
1 (B =—0.338 + 0.062 SE, p < 0.001; Figure 3), indicating that landing host preference and
accuracy changed with experience.

12 1

10 |

Total Cabbage Landings
(e o]

Total Nonhost Landings
R

10 4
6 - 8
4 6
4 4
2-
2.
0 0
1 2 1 2
Day Day

Figure 3. Butterfly host landings and host-finding accuracy over the course of two days. Butterflies
increased their visits on cabbage from Day 1 to Day 2 (left). Butterflies decreased their landings on
non-hosts from Day 1 to Day 2 (right). Points and bars represent means and + 1.96 SE. Light gray
lines connect data from individual butterflies and are slightly jittered for easier visualization.

4. Discussion

Overall, our results do not support the hypothesis that early experiences with different
relative host plant abundances lead to individuals with different host landing special-
izations. Current experiences outweighed the effect of prior experience: in other words,
context-dependent behavioral plasticity determined resource choice more than develop-
mental behavioral plasticity (sensu [44]). Although the butterflies were exposed to and
visited different relative abundances of host plants when they were naive, these early host
landings did not influence subsequent host landing preference in a common environment.
Instead, butterflies from all treatment experiences were more likely to land on one particular
host, cabbage, on the second day. Consequently, although experience searching for hosts
led to a landing preference for a particular host, it did not lead to individuals developing
distinctly different specializations from each other.

Our results are surprising given that there are many examples in previous research
suggesting that learning and early experiences are mechanisms through which individual
specializations develop [5,17,19,20,39,45]. Our results are also surprising given that, in in-
sects, encounter rate often leads to changes in preference through learning [31-33]. Still,
we have evidence consistent with learning in this study: the butterflies improved their
ability to discriminate between hosts and non-hosts over the course of two days. However,
this learning did not lead to individual differences in host choice. Rather, all butterflies
increased their likelihood of landing on only one of our hosts, cabbage, over time.
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There are several reasons why experience in all three of our treatment search arrays
could have resulted in a higher probability of landing on cabbage than radish in our test
array. First, according to the preference-performance hypothesis, ovipositing female insects
should be more likely to lay eggs on host plants that are most suitable for larval devel-
opment (review [46]). However, at least for the growing conditions in these experiments,
cabbage white larvae develop at a faster rate on radish than on cabbage, indicating that the
butterflies did not preferentially visit cabbage because of its higher nutritional quality [40].
Alternatively, cabbage white butterflies could have a genetically based population-level
preference for cabbage because the host maximizes some other element of larval survival
(e.g., enemy-free space, disease resistance, reduced competition) or has been a reliable host
over many generations. However, our previous work documented that naive individual
butterflies do not all immediately land on cabbage: some visited primarily radish, some vis-
ited primarily cabbage, and others visited a mixture of both [40]. The butterflies increased
their probability of landing on cabbage both within a foraging trial (20 host landings) and
over the course of two days, indicating that a butterfly’s landing preference for cabbage is,
in part, a product of experience.

We propose, instead, that butterflies from all treatment arrays might preferentially
visit cabbage because it can be visually easier to discriminate from non-hosts than radish.
For visual foragers, searching for resources that are extremely discriminable from the
background community can save time and improve foraging performance [47-49]. Such
visual discrimination tasks, coupled with short-term memory constraints, can even explain
why some bees specialize in certain flowers (“floral constancy” [50]). Cabbage whites
use primarily visual cues to make immediate pre-alighting host choices [38]. Over time,
butterflies learn to associate the host plant “reward” (the presence of oviposition-inducing
chemicals on the leaf surface) with host plant cues, such as color or shape [37]. Cabbage
is likely more visually discriminable than radish in comparison to our chosen non-hosts
because cabbage leaves reflect UV wavelengths, whereas radish and the non-host plants do
not [40]. If cabbage is more visually salient to the cabbage white, our results suggest that
host saliency may sometimes override the importance of repeated exposure to an abundant
resource in butterfly host learning. A highly discriminable resource may be present in very
low abundances and still be preferentially visited, as suggested by our observation that
butterflies visited cabbage more often than expected in the treatment array when it was rare
and radish was abundant. However, more controlled experiments, such as with artificial
host models (e.g., [51]) are needed to test this hypothesis experimentally.

5. Conclusions

In this study, it was found that experience with an abundant resource does not neces-
sarily lead to intra-population variation in individual resource use. Instead, experience with
different host abundances led to a landing preference for only one host, cabbage, possibly
because this host was more visually discriminable and learning resulted in a common
directional host preference rather than diverse individual host preferences. How do we rec-
oncile the present results with well-studied examples of individual resource specialization
shaped by learning and differences in experience with different resources [5,17,19,20,39,45]?
We hypothesize that perhaps individual specialization may be more likely when resource
experience involves a greater range of motor tasks, rather than primarily a sensory task.
In a theoretical model, Tinker et al. [22] propose that the co-existence of such different
specializations is likely to occur when resources are associated with complex capture and
handling techniques that require time to learn. Indeed, the idea of the development of
“expertise” in a task or resource emphasizes motor learning [28,52] and empirical exam-
ples in insects suggest switching between complex motor patterns in different resources
creates a performance cost [7,39,53,54]. It is also possible that more complex visual search
tasks could favor individual specialization and intrapopulation variation, such as hosts
that are more cryptic against a visually complex or color matched background (e.g., [55]).
Future work that manipulates the difficulty of search and complexity of handling tasks
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will further reveal how learning and experience shape the development of individual
resource specializations.
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