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Abstract: The RBL-2H3 mast cell immunological synapse dynamics is often simulated with reaction–
diffusion and Fokker–Planck equations. The equations focus on how the cell synapse captures
receptors following an immune response, where the receptor capture at the immunological site
appears to be a delayed process. This article investigates the physical nature and mathematics
behind such time-dependent delays. Using signal processing methods, convolution and cross-
correlation-type delay capture simulations give a χ-squared range of 22 to 60, in good agreement
with experimental results. The cell polarization event is offered as a possible explanation for these
capture delays, where polarizing rates measure how fast the cell polarization event occurs. In the case
of RBL-2H3 mast cells, polarization appears to be associated with cytoskeletal rearrangement; thus,
both cytoskeletal and diffusional components are considered. From these simulations, a maximum
polarizing rate ranging from 0.0057 s−2 to 0.031 s−2 is obtained. These results indicate that RBL-2H3
mast cells possess both temporal and spatial memory, and cell polarization is possibly linked to a
Turing-type pattern formation.

Keywords: mast cell; immunological synapse; convolution; cross-correlation; polarization; cell
memory

1. Introduction

The RBL-2H3 mast cell signaling pathway plays an important role in human inflamma-
tory and allergic responses. Mast cells signal by an immunological synapse that forms upon
receptor contact with antigens [1,2]. In a synapse, receptors that have been activated by
binding usually form clusters all over the cell, but eventually aggregate in a central patch at
the point of first contact. The tracking of single receptors within these clusters reveals what
appears outwardly to be a diffusion-mediated reaction process [3]. To quantify this process
mathematically, various forms of the reaction–diffusion equation, i.e., the Smoluchowski
equation, were solved both analytically and numerically by several authors [4–6]. Each
form of the Smoluchowski equation employed a slightly different capture mechanism for
the central patch aggregate, yet the results of their simulations had significant differences.
Capture mechanisms used include those of infinite (perfect) absorption, finite absorption,
and enhanced diffusion at the capture site. Infinite absorption resulted in a standard Gaus-
sian probability distribution that moves from initial location (Dirac Delta initial condition)
toward the capture site, while finite absorption produced a slower overall concentration
decrease that can be controlled by a capture rate constant, making it ideal for fitting to real
experimental data. Capture rate constants can also be used in enhanced diffusion, where
a capture potential gathers the probability density distribution into an energy minimum
at the capture site, rather than absorbing them out of the system. In a harmonic potential,
probability density is Gaussian as usual, but its dynamics differ from that of finite absorp-
tion. With a linear V-potential, probability density is no longer Gaussian. The boundary
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conditions used to solve these differential equations also contribute to differences in the
results. Thus, by choosing the appropriate capture term, boundary condition, and initial
condition, these diffusion–reaction equations could have a wide range of applications in
molecular systems such as excitons, photosynthetic units, crystal aggregates, and receptor
clusters [4].

In the case of receptor clusters, very specific capture conditions are required. In a
recent experiment [7], receptors in an immunological synapse on mast cells were observed.
Receptors form initial clusters spread over the area of contact, followed by a slower move-
ment towards the point of first contact to form the central patch. While the mechanism
for RBL-2H3 mast cell synapse cluster formation has not been directly found, evidence [1]
supports the theory of cytoskeletal rearrangement that occurs during cell contact with
antigens. This cluster formation causes a delay in the aggregate of the central patch, since
the central patch must compete with other clusters for free receptors. However, cytoskeletal
rearrangement favors the point of initial contact, and all receptors in the clusters eventually
diffuse into the central patch. Therefore, according to these observations, the initial proba-
bility distribution is uniform throughout the cell, Neumann boundary conditions are given
by the boundary of the contact area, and the capture process at the central patch is delayed
by peripheral clusters, where the radius of the central patch increases over time.

A study of mast cell receptor dynamics using some of these conditions is given in
reference [7]. The authors improve upon previous theories by incorporating a dynamic
radius, R(t), for the central patch, which increases its area (radius) in proportion to the
amount of free receptors remaining outside the central patch,

R2(t)− R2(0)
R2(∞)− R2(0)

=
Q(0)−Q(t)

Q(0)−Q(∞)
(1)

where R(0) is the initial central patch radius, R(∞) the final radius; Q(0) the initial fraction
of total receptors remaining outside of the central patch, Q(∞) the final fraction. Q(t) is
calculated by integrating (in polar coordinates) the probability density function, P(r, θ, t),
of receptors over the area outside the central patch, thus giving an equation for R(t) once
the probability density is found.

Using Laplace transform, P(r, θ, t) is then calculated from the solution to the Smolu-
chowski equation with a specific capture term,

dP(r, θ, t)
dt

= D ∇2P(r, θ, t)− 2 π

r
δ(r− R)

∫ t

0
ds C(t− s)P(r, θ, s), (2)

where the Laplacian term represents the diffusion process with diffusion coefficient D, and
the Dirac Delta term represents the reaction process, or the capture, with discrete point traps
at radius R from the origin. In polar coordinates, the delta function forms the boundary
of the central patch, and the integral from time zero to t is the convolution-type memory
function which will be discussed below. Since the delta function represents infinite capture
and is thus unphysical in this case (the Dirac Delta representation is used in quantum
systems, which is not the case here), the authors replace the infinite delta function solution
with a finite reaction rate obtained from their previous work [5]. The result is an analytical
solution Q(ε, r0, R(0)), where ε is the Laplace variable, and r0 refers to an initial condition
of receptors laying along a ring of radius r0. Then, approximating the peripheral clusters by
circular rings outside the central patch and integrating Q(ε, r0, R(0)) over the area outside
the central patch, the authors obtain a solution for Q(ε) subject to absorption at a stationary
central patch boundary, with an initial condition of concentric circular receptor rings. The
combined effect of the central patch capture and peripheral cluster distribution on the
quantity Q(ε) is described by

Q(ε) = N
∫ r0′

R(0)
Q(ε, r0, R(0)) r0 dr0, (3)
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where N is the normalization factor that normalizes the maximum of Q(ε) to one, r0′ the
entire contact area radius, and Q(ε, r0, R(0)) is an analytical solution that not only depends
on the Laplace variable ε but also on the initial central patch radius R(0).

However, we note that the central patch boundary is a dynamic quantity, with the
radius increase described by R(t) in Equation (1). Increasing the central patch size over
time is equivalent to dynamically increasing the overall absorption rate. Replacing R(0) in
Equation (3) with R(t) drastically increases the complexity of the integral, making it less
attainable by analytical methods. Therefore, we suggest the use of numerical approaches to
solve such problems.

Additionally, the convolution-type function in the capture term reflects and quantifies
the physical situation of the delayed central patch aggregation caused by peripheral clusters
competing for free receptors. This convolution-type function has deep physical meanings
not only in signal processing but also in quantitative studies of memory and learning [8,9].
In reference [7], the authors refer to these types of functions as memory functions to
approach this problem from a cell recollection point of view. With this approach, a cell is
able to “learn” from what happened to it in the past, in this case its past history of free
receptors. This memory term also makes it possible to study signals that cause the cluster
formation and, therefore, illuminate possible underlying mechanisms. However, using
memory capture, the theory was fitted to experimental data and a polarizing time constant
of 10−12 s−1 was obtained. The inverse of this number, 1012 s, far exceeds the time duration
of most cellular processes.

Nevertheless, in a related field of study [10], it is shown that cells are able to commu-
nicate through local polarization and depolarization upon contact, providing a new insight
into the inner workings of the mast cell immunological synapse. In fact, polarization plays
an important role in the immunological synapse of many cells [11,12]. It is also known that
polarization in different types of cells is stimuli-specific. Most cell types respond to chemical
stimuli, but some will respond to mechanical and other types of contact. Moreover, different
cell types also react to polarization stimuli in different ways: some cell types rearrange
their cytoskeletal components, while others alter their cytosolic signaling molecules [13].
In the case of RBL-2H3 mast cell, polarization appears to be initiated by antigen binding
and is mediated by actin and myosin, resulting in cytoskeletal rearrangement [14]. Thus,
in the present study, we continue to build into this theory a capture term that consists of
both convolution-type and cross-correlation-type signals, which corresponds to the depo-
larization and polarization event, respectively. Additionally, to transition from polarization
to depolarization, we build into the theory a time-delayed Fokker–Planck potential term.
Using these theories, we then obtain polarizing time constants ranging from 0.022 s−1 to
0.031 s−1, and maximum polarization is reached approximately 112 s after polarization
initiation. This is consistent with experimental observations in the literature [13], where
cell polarization can take seconds to minutes, depending on the cell type.

2. Materials and Methods

Due to high symmetry, the 2-D Smoluchowski equation, Equation (2), can be reduced
to 1-D when the center of the capturing trap is located at the origin. The only asymmetric
component in this problem would be the initial distribution of receptor clusters around the
central patch. When these clusters are approximated as circular rings, as was carried out
in the previous study, the problem can still be reduced to 1-D. Reducing the problem to
1-D or to 2-D circular rings saves both computational memory and time, although doing so
does not allow details of the 2-D solution such as movement speed of independent clusters
toward the central patch to be simulated. With 1-D capture, such features are then hidden
in the capture term’s delay-type memory function, i.e., C(t) in Equation (2).

The memory function in reference [7] is an important improvement over previous
diffusion reaction capture terms, without the use of such functions the central patch
aggregation delay could not be properly simulated in 1-D. Illustrations in Figures 1 and 2
show two major types of memory functions used in this study.
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the capture strength, 𝛼 the polarizing time constant, and 𝑥0 represents an arbitrary point 

in the 1-D probability density function, 𝑃(𝑥0, 𝑠), in terms of convolution time 𝑠. The rec-

tangular shape is used here for illustrative purposes only and does not depict the real 

density profile of free receptors. Figure 2 follows the same format for cross-correlation-
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Figure 1. Convolution-Type Signal Delay: (a) Using idealized values α = 0.01 s−1,
c2 = 1 s−1, and tmax = 400 s, the memory function, C(t) = c2α Exp(−αt), is replaced by
C(t− s) = c2α Exp(−α(t− s)) in convolution time s. This has the effect of reflecting C(t) across
s = 0 s and shifting it to the right as time t progresses. (b) the idealized rectangular receptor probabil-
ity density function has the value of one at s = 0 s and drops to zero instantaneously at s = 400 s.
(c) the integral

∫ t
0 C(t− s)P(x0, s)ds gives the convolution of C(t) with P(x0, t). This convolution

integral describes the capture rate of the central patch. Notice the way capture is delayed: Starting
from zero at time t = 0 s, the capture rate increases quickly initially, slows near tmax, and drops back
down to zero the same way. Both real time t and convolution time s are measured in seconds.
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Figure 2. Cross-Correlation-Type Signal Delay: (a) Using idealized values α = 0.0112 s−1, c2 = 1 s−1,
and tmax = 400 s, the piecewise memory function, C(t) = c2α Exp(αt) for 0 ≤ t ≤ tmax and
0 elsewhere, is replaced by C(t− s) = c2α Exp(α(t− s)) for 0 ≤ (t− s) ≤ tmax and 0 elsewhere
in cross-correlation time s. This has the effect of reflecting C(t) across s = 0 s and shifting it to
the right as time t progresses, while achieving maximum C(t− s) at s = tmax. (b) the idealized
rectangular receptor probability density function has the value of one at s = 0 s, and drops to zero
instantaneously at s = 400 s. (c) the integral α

∫ t
0 C(t− s)P(x0, s)ds gives the cross-correlation of C(t)

with P(x0, t). The extra factor of α makes sure the integral is normalized to the maximum of one.
This normalization is not required for convolution due to the form of convolution function C(t− s)
naturally decreasing as time t progresses (see Figure 1a). The cross-correlational integral describes
the capture rate of the central patch. Notice the way capture is delayed: starting from zero at time
t = 0 s, the capture rate increases slowly initially, quickens near tmax, and drops back down to zero
the same way. Both real time t and cross-correlation time s are measured in seconds.

Figure 1 shows convolution-type capture delay. The convolution-type capture memory
function, C(t) = c2α Exp(−αt) is shown in Figure 1a, while an idealized rectangular prob-
ability density function for free receptors is shown in Figure 1b. Variable c2 is the capture
strength, α the polarizing time constant, and x0 represents an arbitrary point in the 1-D
probability density function, P(x0, s), in terms of convolution time s. The rectangular shape
is used here for illustrative purposes only and does not depict the real density profile of free
receptors. Figure 2 follows the same format for cross-correlation-type capture delay, with
C(t) replaced by a piecewise function of c2α Exp(αt). Using the rectangular probability
density function, differences in convolution and cross-correlation results can be seen clearly
in Figures 1c and 2c. Assuming the upward increase in capture rate (Figure 1c) is caused by
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mast cell polarization upon contact with antigens and the downward curve by depolariza-
tion, the convolution-type capture gives fast initial polarization and depolarization. The
same reasoning in Figure 2c gives cross-correlation-type capture slow initial polarization
and depolarization.

Convolution and cross-correlation provide a physical way to distinguish between polar-
ization and depolarization events, but the Dirac Delta function in front of the capture term in
Equation (2) is still unphysical because it represents an infinite capture rate. Thus, replacing

the Dirac Delta function with a rescaled normal distribution, n(t) = Exp
(
− r2

(R(t)/2)2

)
, we

obtain a capture trap size of height one, with the radius R(t) set to 2
√

2 standard deviations
away from the center of trap (see Figure 3).
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Figure 4. Physical capture results: (a) gives the scaled convolutional capture term as a function of 

real time 𝑡 (in seconds), while (b) gives the same for cross-correlational capture. Unlike the unphys-

ical captures in Figures 1c and 2c, the capture processes here stop when there is nothing more to 
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Altogether, the 1-D Smoluchowski equation now reads: 

Figure 3. Increase in capture trap size from time t1 to a later time t2: Using n(t) = Exp(− r2

(R(t)/2)2 )

at time t = t1 and t2, (a) gives the capture trap size, n(t1), at time t1 when the central patch radius,
R(t1), is at 1 µm, while (b) gives the trap size, R(t2), at a later time t2 when the central patch radius,
R(t2), has increased to 2 µm.

Lastly, we note that, in Figure 1b, P(x0, t) drops to zero at t = 400 s, yet the capture
process in Figure 1c does not stop until t = 800 s. This effectively gives a negative P(x0, t)
for times greater than t = 400 s and is again unphysical. The same is true for Figure 2.
Therefore, we rescale the capture term with the probability function itself at time t, i.e.,
multiply the capture term in Equation (2) by P(x0, t)/P(x0, 0), to obtain the physical capture
results for convolution in Figure 4a and cross-correlation in Figure 4b.
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at the trap site.
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Altogether, the 1-D Smoluchowski equation now reads:

dP(r, t)
dt

= D ∇2P(r, t)− Exp

− r2(
R(t)

2

)2

 P(r, t)
P(r, 0)

∫ t

0
ds C(t− s)P(r, s), (4)

with initial condition P(r, 0) = 1 µm−1 uniform throughout the surface of the cell (the initial
peripheral clusters are now taken into account by the delay memory functions, instead of
being built into the initial condition as 2-D circular rings) and Neumann conditions at the
cell contact boundary r = ± r0′.

Moreover, evidence shows that the RBL-2H3 mast cell synapse receptor dynamics
is affected by their distance from the central patch, where the peripheral receptor cluster
average 2-D speeds are faster when they are further away from the central patch [6].
Assuming the radial 1-D speeds of the peripheral clusters are also faster than the central
region and the clusters’ overall movement is toward the center, this results in an enhanced
absorption where peripheral clusters are pulled into the central patch. Such movements
appear to be due to an underlying cytoskeleton rearrangement [14] associated with cell
polarization. Representing this cytoskeletal rearrangement by a specific 1-D diffusional
potential and linking it to the transition from polarization to depolarization, we add a
Fokker–Planck potential term to Equation (4), obtaining

dP(r, t)
dt

= D ∇2P(r, t)− d
dr

(
P(r, t)

d
dr

u(r)
)

P(r, t)
P(r, 0)

∫ t

0
ds Π(t− s)P(r, s)− Exp

− r2(
R(t)

2

)2

 P(r, t)
P(r, 0)

∫ t

0
ds C(t− s)P(r, s), (5)

where Π(t) is equal to Γα Exp(−αt) for convolution, and a piecewise function of Γα Exp(αt) for
cross-correlation. Π(t) has the same time delay dynamics (same polarizing time constant α) as C(t),
and, similar to how c2 describes the capture strength, Γ describes the strength of the potential. Thus,
the capture term would describe the external receptor aggregation of the central patch, while the
potential term describes the internal cytoskeleton rearrangement of the cell. Here, the V-potential
is used, u(r) = |r|. This V-potential is chosen not only because it creates a richer motion than the
harmonic potential [6], but also it is the median of 3 possible potential configurations (see Figure 5).
Note that, due to the delays caused by C(t) and Π(t), the effect of both capture and potential is most
prominent around the time of maximum capture, tmax (see Figures 1c and 2c). This tmax also marks
the transition from polarization to depolarization, so the memory function is in fact a mathematical
representation of such transitions.
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Figure 5. The three possible potential configurations are depicted here, with potential strengths
Γ = 1 µm2s−1. (a) u(r) = r2 is the harmonic, or U-potential, that causes receptors to move with high
speeds into the potential minimum at r = 0. (b) u(r) = |r| is the V-potential with medium-speed

receptors, and (c) u(r) =
∣∣∣r1/2

∣∣∣ describes the Y-potential with low-speed receptors.



Biophysica 2022, 2 434

To determine Q(t), which represents the fraction of total free receptors remaining at time t, we
integrate the fraction P(r, t)/P(r, 0) over the cell contact area,

Q(t) =
∫ r0′

0
dr

P(r, t)
P(r, 0)

. (6)

Equations (4) and (5), together with their initial and boundary conditions, are solved numerically
by Wolfram Mathematica version 13. Memory-function-type equations such as these are called delay
partial differential equations (DPDE) [15]. The quantity R(t) is an equation that depends on Q(t),
which is a function that depends on the solution P(r, t) itself. More importantly, P(r, s) is a memory-
linked function that depends on the history of P(r, t). These features make it difficult to solve the
equations analytically, so numerical approximation methods are usually used [16]. One effective
strategy, documented in the Python language [17], uses what is known as “history functions”. The
history function represents a function that holds the approximate value of the solution P(r, t) while
the differential solver slowly corrects and pushes it towards the true solution. This strategy employs
solving an initial partial differential equation (PDE) that is similar to the task at hand, using that
solution as an initial history function for P(r, s) in the DPDE, and then repeatedly solving the DPDE
in a loop, each time updating the history function P(r, s), until the history function becomes almost
identical to the solution P(r, t). The Mathematica NDSolve function currently does not support non-
constant delays [18], so users must implement these loops manually (see accompanying code). Here,
we have chosen Mathematica for this study due to our familiarity and experience with the language.

3. Results
To compare experiments with Mathematica simulations, observed mean data on the central

patch radius in the RBL-2H3 mast cell synapse is taken from reference [7] and fitted with an arctan
curve that resembles the experimental data points (Figure 6). This is carried out to provide visual
comparisons with simulation curves and also to obtain better estimates for the initial central patch
radius R(0) and the final central patch radius R(∞). This estimate is necessary because the initial
and final mean radius data points do not appear to lie on the same curve as the rest of the data. If
the initial and final mean data points were used directly as R(0) and R(∞), simulation results on
central patch radius would deviate greatly from a large number of the data points. The source of this
error might be due to the difficulty in estimating polarization initiation and end times when these
measurements were made.

The shifted and scaled arctan curve thus obtained achieves a high-accuracy fit with an χ-Squared
value of 61.2542. The choice of this arctan fit is arbitrary, as any sigmoidal curve with a sufficiently
high R2 and low χ2 values can be used. Thus, the arctan function is not the only sigmoidal curve that
can be used to fit the data, but we note that other sigmoidal curves do not produce any χ2 values that
are significantly different. We then compare the arctan curve with our simulation results using the
same initial and final central patch radii as the arctan curve in our simulations.

From the arctan curve, Rarc(t), we determine an initial central patch radius of 1.31 µm and a final
central patch radius (by taking the arctan limit to ∞) of 3.15 µm. We also calculate the approximate
time when maximum capture rate is achieved, tmax, from Rarc(t), by setting its second derivative to
zero. This gives a tmax value of 112 s, and, as we shall see below, this value is important for estimating
cross-correlation-type capture delay.

Then, taking experimental values from [7], we use an initial Q(0) of 1, a final Q(∞) of 0.26, a cell
contact radius of 5.75 µm, and a diffusion constant of 0.011 µm2 s−1 to numerically solve variations
in Equation (4) for P(r, t) and determine Q(t) from Equation (6). Finally, we plot the corresponding
R(t) using Equation (1) for several different cases of capture in the subsequent results.

To see the effect of un-delayed capture, Equation (4) is modified using an un-delayed constant
capture rate c0 = 0.4 µm−1 s−1, as in Equation (7). The equation is then solved numerically, and the
resulting central patch radius, Ruc(t), is plotted in Figure 7.

dP(r, t)
dt

= D ∇2P(r, t)− Exp

− r2(
R(t)

2

)2

 c0
P(r, t)
P(r, 0)

(7)
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Figure 6. Experimental Curve Fitting: Rarc(t) is a shifted and scaled arctan curve that resembles
experimental data points taken from reference [19]. These data points represent the observed mean,
but each point in the data also records an observed standard deviation error (not shown in the above
figure). Since data points appear sporadic, the arctan curve is used to estimate the initial and final
central patch radii. This curve is also used to estimate the time of maximum capture, tmax. The curve
fit equation is shown with its χ-squared and R-squared values. The χ-squared value is given by

the formula χ2 = ∑258
i=1

(
Rarc(i)−µ(i)

σ(i)

)2
, where µ(i) is the observed data mean radius at time i with

standard deviation σ(i). The R-squared value is given by Mathematica version 13.0 as a result of
fitting the curve.
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Figure 7. Un-delayed capture radius: The central patch radius resulting from un-delayed capture,
Ruc(t), is plotted against the arctan curve and the data points. Their χ-squared values are given by the

formula χ2 = ∑258
i=1

(
R(i)−µ(i)

σ(i)

)2
, where R(i) is the corresponding radius at time i.

To see the effects of delayed capture, C(t) in Equation (4) needs to be defined for both cross-
correlation and convolution. From the shape of the delayed captures, Figures 1c and 2c, one could
see that the experimental curve in Figure 6 must be due to a cross-correlation-type polarization
before tmax, and a convolution-type depolarization afterward. Additionally, unlike convolution, cross
correlation memory function must be constructed in pieces. Thus, we define a piecewise function for
cross-correlation (Equation (8)) and a non-piecewise function for convolution (Equation (9)),

C(t) =
{

c2 α2 Exp(α t) , 0 ≤ t ≤ tmax
0 , elsewhere

(8)
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and
C(t) = c2 α Exp(−α t) (9)

where the extra dimensionless α factor in cross-correlation is due to its integration form (see Figure 2c).
Then, by setting α Exp(α tmax) to c2, adjusting the value of c2 and solving for α, we obtain c2 = 0.3 s−1

and α = 0.0229 s−1 for the cross-correlation type. Convolution values for c2 and α are similarly
obtained, with values c2 = 1 s−1 and α = 0.031 s−1. The cross-correlation and convolution values are
then used to numerically solve Equation (4) using Equation (8) and Equation (9), respectively, and the
results of their central patch radii, Rcc(t) for cross-correlation and Rco(t) for convolution, are plotted
in Figure 8. Both Rcc(t) and Rco(t) are more accurate (lower χ2) than Rarc(t) in their respective time
intervals (t < 112 for cross correlation and t > 160 for convolution).
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.

Finally, to see the effect of a time-dependent V-potential, Equation (5) is numerically solved for
the case of cross correlation, where Π(t) is described by C(t) in Equation (8), with c2 replaced by Γ.
Using the values Γ = 0.185 µm2s−1, c2 = 0.26 s−1, and α = 0.022 s−1, the resulting radius, Rccv(t), is
plotted in Figure 9, where Rccv(t) is, again, more accurate than Rarc(t).
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The resulting time and strength constants from the above simulations are summarized in
Table 1, where c2 is the capture strength in units of s−1, α the polarizing time constant in s−1, c2 α the
maximum polarizing rate in s−2, and Γ the potential strength in µm2 s−1.

Table 1. Time and strength constants for different types of capture delays.

c2 (s−1) α (s−1) c2α (s−2) Γ (µm2 s−1)

Cross-Correlation 0.30 0.023 0.0069 0
Convolution 1 0.031 0.031 0

Cross-Correlation and Potential 0.26 0.022 0.0057 0.19

4. Discussion
As expected, the un-delayed capture radius does not match experimental data points (Figure 7).

However, the latter part of Ruc(t) in Figure 7 does coincide with the data points and the arctan
curve. Physically, this is due to the receptors being absorbed out of the system (into the central patch)
naturally, which has nothing to do with depolarization. This reflects the fact that, unlike polarization,
depolarization is simply not observed in many systems due to the natural decline of the primary
cellular process. In Figure 8, the central patch radius increase is well-described by cross correlation
for t < 112 s, and by convolution for t > 160 s. This corresponds to a slow initial polarization
and a fast initial depolarization in the RBL-2H3 mast cell, although it remains unclear whether the
decrease in the capture rate for times t > 160 s is due to depolarization or the natural decrease in the
number of free receptors. The maximum polarizing rate, c2 α, is 0.0069 s−2 for the cross-correlation
type, and 0.031 s−2 for the convolution type. The fact that these values are different for polarization
and depolarization suggest that these processes are controlled by separate events in the RBL-2H3
mast cell.

Additionally, the transition from polarization to depolarization, from time t = 112 s to t = 160 s,
is not well-described by either the cross-correlation or the convolution-type capture delay, so we
suspect some kind of phase change has occurred in the mast cell during this time. This phase
change can be simulated by adding a diffusional potential delay, i.e., by considering cytoskeleton
rearrangement. The result of this is shown in Figure 9, where experimental data are well-described
by using a cross-correlation-type delay in both the capture and potential terms in our simulations
(Equation (5)). Thus, the receptor clusters are dynamically attracted to the center of the trap, which is
also consistent with experimental observations [6]. The maximum polarizing rate obtained with the
inclusion of the V-potential is 0.0057 s−2.

The key features of Equation (5) are the memory function, C(t), and the V-potential, u(r). We
note that if the V-potential is replaced by the Y-potential (Figure 5c), slower radial diffusion speeds
would bring the latter part of the cross-correlation curve, Rccv(t) in Figure 9, slightly closer to a
plateau, which could make the curve even more accurate. The success of this equation has deep
physical implications. It means that the cell has not only a temporal memory from C(t), but also a
spatial memory from u(r), especially in the case of the Y-potential. The cell can “remember” the exact
location at r = 0, the point of initial contact, throughout the entire process of immunological synapse
polarization. The application of the potential and memory functions here is especially crucial, since it
could be the first of many types of cell memory that can be represented mathematically.

The mechanism behind the cluster formations that caused these capture and potential delays
has to do with polarization and cytoskeleton rearrangement, and perhaps some insights can be
gathered from the famous Turing patterns [20]. The Turing patterns are formed by a system of two
reaction–diffusion equations, each describing the 2-D diffusion of a different molecule, one inhibiting
the other. The pattern thus formed describes the color pigment formation of spots on animal coats.
We suspect something similar occurs in the cluster formation on mast cells, where the stability of
the diffusion field that forms the peripheral clusters is broken and disturbed by the increase in the
central patch. This breaking point then marks the beginning of the transition from polarization to
depolarization. If this was the case, then a molecule that inhibits polarization as well as a molecule
that causes it would have to be simulated at the same time in 2-D. Thus, what appears to be delayed
captures and potentials in 1-D would then be equivalent to the Turing pattern formation in 2-D with
a central patch that increases in time but captures receptors at a constant rate at its boundary.

The idea of using 2-D pattern formation to describe polarization is not new, and much work has
been conducted in this area [13,21]. The Turing-type diffusion reaction equations are widely used to
form polarization patterns in these works, which consist of both simulations and experiments [22,23].
Specifically, polarization activators are represented by the active form of either cytosolic or cytoskeletal
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proteins, while polarization inhibitors by the inactive form [24,25]. Thus, it is the interplay between the
active and inactive form that shapes the stable regions in the Turing-type diffusion field. Mathematical
theories on polarization go beyond Turing-type simulations when intracellular dynamics is involved,
however. Monte Carlo and phase fields are both effective tools when intracellular regions greatly
affect the overall polarization [13].

In summary, the choice between delay function and Turing-type simulation has to do with
simulation time and biological background considerations. The disadvantage of simulating delayed
functions is that it requires an extremely long run time, even for 1-D models. With most common
hardware specifications, 1-D simulations take approximately 1 h, while 2-D simulations take signifi-
cantly longer, anywhere from days to weeks depending on how efficiently the code is programmed
and what language is used. With Turing-type simulations, the delay functions are not required since
the delay emergence can be built into the Turing-type diffusion field dynamics. Without the delay
functions, the 2-D Turing-type reaction–diffusion equations take mere minutes to simulate.

The advantage of simulating delayed functions in 1-D is that it gives numerical values for
capture strength and polarization time constants that would not be so readily acquired in Turing-type
simulations. These constants can provide a basis for comparison between two different types of
cells. For example, one can compare the capture strength of normal cells with that of cancer cells,
if a difference in polarization is suspected. On the other hand, Turing-type simulations provide
more information on cluster formation, but it does so at the expense of making the assumption
that the polarization event is based on a two-component reaction–diffusion system (inactive and
active proteins). Making such assumptions requires the researcher to have in-depth knowledge
on the polarization mechanism of the interested cell type. Such assumptions are not necessary for
delay function simulations. Thus, the choice of 1-D delay function vs. 2-D Turing-type simulation
depends on how much experimental biological information the researcher has on the interested cell
and whether polarization capture strength and time constants are required for comparison purposes.

5. Conclusions
Using convolution and cross-correlation from signal processing, we can characterize the polar-

ization and depolarization speed of a mast cell synapse formation in 1-D. We found that polarization
follows a cross-correlation-type signature, while depolarization follows a convolution-type signature,
giving the mast cell a slow initial polarization and a fast initial depolarization. When transition
effects are simulated by a time dependent potential term, cross-correlational delay alone is enough to
describe the data points to a high degree of accuracy. Two-dimensional simulations of these events
could reveal much more interesting details about the nature of cluster formation and possible cellular
phase changes, and that might provide a way to link these events to molecular changes in RBL-2H3
mast cells.
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