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Abstract: Bioprinting is an emerging tissue engineering method used to generate cell-laden scaffolds
with high spatial resolution. Bioprinting parameters, such as pressure, nozzle size, and speed, highly
influence the quality of the bioprinted construct. Moreover, cell suspension density and other critical
biological parameters directly impact the biological function. Therefore, an approximation model
that can be used to find the optimal bioprinting parameter settings for bioprinted constructs is highly
desirable. Here, we propose a type-2 fuzzy model to handle the uncertainty and imprecision in the
approximation model. Specifically, we focus on the biological parameters, such as the culture period,
that can be used to maximize the output value (mineralization volume 21.8 mm3 with the same
culture period of 21 days). We have also implemented a type-1 fuzzy model and compared the results
with the proposed type-2 fuzzy model using two levels of uncertainty. We hypothesize that the type-2
fuzzy model may be preferred in biological systems due to the inherent vagueness and imprecision
of the input data. Our numerical results confirm this hypothesis. More specifically, the type-2 fuzzy
model with a high uncertainty boundary (30%) is superior to type-1 and type-2 fuzzy systems with
low uncertainty boundaries in the overall output approximation error for bone bioprinting inputs.

Keywords: bioprinting; fuzzy systems; type-2 fuzzy logic; optimization; approximation

1. Introduction

Additive manufacturing is a process by which three-dimensional objects are generated
by material deposition in sequential layers [1,2]. Bioprinting is an emerging field of additive
manufacturing in which bioactive scaffolds can be quickly generated by depositing layers of
cell-laden biocompatible materials, such as collagen or other hydrogels. After specifying the
exact geometry of the construct, a G-code containing the extrusion path and parameters is
generated to direct fabrication by one of several commercially available desktop bioprinters.
Indeed, the ability to place cells in biologically relevant scaffold materials with a high spatial
resolution has made bioprinting a popular fabrication method for tissue engineering [3,4].

In addition to the specific geometry of the bioprinted construct, the parameters used to
perform the bioprinting procedure itself will have significant effects on the final properties
of the model. Therefore, it is essential to fully characterize and optimize the bioprinting
parameters (e.g., print speed or bioink viscosity) necessary to reach the desired outputs,
such as high cell viability, appropriate cell function, and necessary mechanical properties [5].
For example, increasing the nozzle size on the bioprinter decreases the shear stress placed
on the biomaterial during extrusion, which results in increased cell viability and reduced
print resolution [6]. Therefore, determining the optimal print parameters is imperative
for success in bioprinting. As a result, several studies have been performed in the field of
bioprinting optimization, such as optimization of a solid model for 3D bioprinting, bioink
optimization, and bioprinting parameter selection [7,8].

Determining printability using universal parameters is challenging due to the variabil-
ity of customized bioinks. Moreover, this complexity is increased in bioinks with multiple
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extracellular matrix (ECM) components that affect the rheological properties and can re-
sult in non-linear relationships between input and output parameters [9,10]. The results
from our previous study suggest that the computational approach is useful for optimizing
printing parameters and will improve reproducibility across diverse bioinks as well as
provide an objective characterization of bioprinting precision for newly formulated bioinks.
In this paper, we investigate the computational optimization of the ECM components
in bioprinting.

Nonetheless, there is a significant degree of imprecision and uncertainty inherent in
bioprinting optimization. A potential approach to handling this issue, which arises from
normal biological variation, is through the implementation of approximation systems based
on computational methods [11]. In recent years, systems biology has become a critical
multidisciplinary research area between computer science and biology. Studies in this field
aim to develop computational models of biological processes, which requires both a robust
dynamic model and well a large dataset of experimental results.

Developing a dynamic model is challenging and requires well-characterized control
parameters to approximate laboratory experiments’ outcomes. Nonetheless, recent studies
have observed that computational optimization algorithms can effectively approximate out-
put parameters using either a deterministic or stochastic biological model. A partial list of
the approaches employed to this end includes meta-heuristic, evolutionary, global optimiza-
tion, genetic programming, simulated annealing, simplex, ant-colony, fuzzy genetic hybrid
system, and multi-objective optimization. In-silico models have helped reproducibility and
quality in the in-vitro experiments significantly in tissue engineering [12,13].

Here, we have developed a quantitative model of a biological system using the fuzzy
system approach, which is a potential solution for overcoming uncertainty in an experi-
mental dataset. In fact, previous studies have shown that the accuracy of a fuzzy system
approach is the same as the deterministic mathematical approach (ordinary differential
equations) for the same kinetic dataset. Moreover, fuzzy systems can be utilized to find
the qualitative system response when a quantitative dataset is not available [14]. Theoret-
ical fuzzy models have been used in decision making systems to predict biomechanical
properties as stress/strain of a bone structure in a biological process [15].

Fuzzy logic is an extended model of standard logic. In standard logic, truth values
can only be either completely false or completely true (with degrees of truth equal to 0
or 1, respectively), whereas, in fuzzy logic, values can have a degree of truth between 0
and 1. This generalization provides a mathematical framework to move from discrete to
continuous values. In other words, in contrast to sets in classical logic, a fuzzy set is a set
without a crisp boundary. For instance, if the reference set X is a Universe of discourse for
elements x, the fuzzy set A is defined as:

A = { (x, µA(x))|x ∈ X}

where µA(x) is called the Membership Function (MF) for the fuzzy set A. The MF maps
each element of the Universe set X to a grade between 0 and 1, i.e., a membership of 0
means that the associated element is not included, whereas a membership of 1 means an
element is fully included.

A fuzzy rule-based system is a modeling framework that uses the above fuzzy set
theory along with a set of “if-then” rules where the antecedents and consequents are fuzzy
logic propositions. This rule-based fuzzy system is used for modelling the inputs and their
relationships with the output variables. A type-1 Fuzzy System (T1 FS) is a framework
consisting of weighted rules, membership functions, and a fuzzy inference system. This
system takes the crisp data (fuzzy singletons) or fuzzy inputs and generates fuzzy outputs
based on the given if-then rules. A method of defuzzification is then used to extract a crisp
value inferred from the fuzzy model.

A type-2 fuzzy system (T2 FS) is also similar to its type-1 counterpart, but includes a
type-reducer and defuzzifier, which generate a type-1 fuzzy set output and then a crisp
number, respectively. T2 FS have been widely applied to a variety of problems where
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handling uncertainty is critical, including decision making, function approximation, and
data preprocessing [16–18]. One example is a model with noisy and uncertain training data:
in this model, uncertainty exists in the antecedent and consequents. The level of uncertainty
and information regarding it can be used in mathematical modeling of antecedents and
consequents. Moreover, non-quantitative data is often disseminated using words that
convey an indistinct level of certainty [19]. T2 FS has the capability to grade these linguistic
representations into membership functions, which shows a more robust algorithm rather
than T1 FS in inferencing input data. However, the computational cost of T2 FS is higher
than the T1 FS [19].

The main objective of this study is to implement fuzzy systems to model and find the
optimal bioprinting parameters. We hypothesize that the implementation of a T2 FS would
reduce the error in the output in biological systems with inherent uncertainty in both the
inputs and outputs.

To directly test this hypothesis, in Section 2 we implement type-1 and type-2 fuzzy logic
systems with the experimental dataset. We then evaluate and compare the performance of
each for use in the approximation of bioprinting output in Section 3. Section 4 describes
how fuzzy systems can optimize the bioprinting and biological parameters.

Type-2 Fuzzy System

The concept of a Type-2 fuzzy set is an extension of the ordinary type-1 fuzzy set, as
originally introduced by Zadeh [20]. In contrast to a T1 FS, Type-2 fuzzy sets have grades
of membership that are themselves fuzzy both in primary and secondary memberships. A
primary membership is the same as a type-1 membership that maps each element to a grade
between 0 and 1. Relative to each primary membership, there is a secondary membership (a
grade between 0 and 1) that describes the uncertainty in defining the primary membership
using a fuzzy set construct.

The general diagram of a T2 Mamdani fuzzy logic system is shown in Figure 1, includ-
ing the fuzzification, fuzzy inference, Karnik–Mendel type reduction, and defuzzification
steps. Considering the crisp inputs (n inputs) and one output:

x1 ∈ X1, . . . , xn ∈ Xn and y ∈ Y,

the k-th (k = 1, . . . , K) rule in Mamdani T2 FS is expressed as:

Rk : i f x1 is F̃k
1 and . . . and xn is F̃k

n , then y is G̃k

where F̃k
1 and G̃k are type-2 fuzzy sets. In this system, rules represent the fuzzy relations

between multiple dimensional input space X , X1 × . . .× Xn and output space Y. The
definitions below are paraphrased from the Mendel and Liang article in T2 FS [21]:

Definition 1. (Footprint of Uncertainty of a Type-2 Membership Function): Uncertainty in
the region between the upper and lower boundaries of a Type-2 membership function is
called the footprint of uncertainty. It is the union of all primary membership grades.

Definition 2. (Upper and Lower MFs): A type-1 fuzzy upper and lower boundary MFs
for the Footprint of Uncertainty, and (FOU) of an interval type-2 MF. The upper and
lower bounds of the region are the maximum and minimum membership grades of FOU
(Figure 1-fuzzification [21]).



Biophysica 2022, 2 403
Biophysica 2022, 2, FOR PEER REVIEW 4 
 

 

 
Figure 1. Type-2 Fuzzy Logic Algorithm and Study Design. General overview and different features 
of the Type-2 Fuzzy system including fuzzification, rules, inference engine, type reduction, and de-
fuzzification. The T2 FS structure includes the min and max operations as fuzzification and inference 
engine process. 

Definition 1. (Footprint of Uncertainty of a Type-2 Membership Function): Uncertainty 
in the region between the upper and lower boundaries of a Type-2 membership function 
is called the footprint of uncertainty. It is the union of all primary membership grades. 

Definition 2. (Upper and Lower MFs): A type-1 fuzzy upper and lower boundary MFs 
for the Footprint of Uncertainty, and (FOU) of an interval type-2 MF. The upper and lower 
bounds of the region are the maximum and minimum membership grades of FOU (Figure 
1-fuzzification [21]). 

The over and under bars show the upper and lower MFs, respectively. The member-
ship function of  𝐹  is represented as: 𝜇 (𝑥 ) = 1/𝜔 ∈[ ( ), ( )]  (1)

The upper and lower boundaries on a Gaussian primary function with an uncertain 
standard deviation is represented below. In this representation, the Gaussian primary MF 
has a fixed mean 𝑚  and an uncertain standard deviation 𝜎 𝜖 𝜎 , 𝜎 : 𝜇 (𝑥 ) = exp[ (  ) ] (2)

where 𝑘 ∈ ( 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡𝑠) 𝑙 ∈  ( 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠) 

The upper and lower MF of 𝜇 (𝑥 ) are: 𝜇 (𝑥 ) =  𝒩(𝑚 , 𝜎 ; 𝑥 )   upper MF 𝜇 (𝑥 ) =  𝒩(𝑚 , 𝜎 ; 𝑥 )  lower MF 

In the interval T2 non-singleton fuzzy system with type-2 fuzzification and minimum 
or product t-norm, the output fuzzy set is represented as: 

Figure 1. Type-2 Fuzzy Logic Algorithm and Study Design. General overview and different features
of the Type-2 Fuzzy system including fuzzification, rules, inference engine, type reduction, and
defuzzification. The T2 FS structure includes the min and max operations as fuzzification and
inference engine process.

The over and under bars show the upper and lower MFs, respectively. The membership
function of F̃k

1 is represented as:

µF̃k
1
(xk) =

∫
wl∈[µ

F̃k
1
(xk),µF̃k

1
(xk)]

1/ωl (1)

The upper and lower boundaries on a Gaussian primary function with an uncertain
standard deviation is represented below. In this representation, the Gaussian primary MF
has a fixed mean ml

k and an uncertain standard deviation σl
kε
[
σl

k1, σl
k2

]
:

µl
k(xk) = exp[−1

2

(
xk −ml

k

σl
k

)2

] (2)

where
k ∈ ( 1, . . . , number o f antecedents)

l ∈ ( 1, . . . , number o f rules)

The upper and lower MF of µl
k(xk) are:

µl
k(xk) = N

(
ml

k, σl
k2; xk

)
upper MF

µl
k
(xk) = N

(
ml

k, σl
k1; xk

)
lower MF

In the interval T2 non-singleton fuzzy system with type-2 fuzzification and minimum
or product t-norm, the output fuzzy set is represented as:

µB̃(y) =
∫

b∈[[ f 1?µ
G̃1 (y)]∨...∨[ f N?µ

G̃N (y)],[ f
1
?µG̃1 (y)]∨...∨[ f

N
?µG̃N (y)]]

1
b

(3)

In (3), f and f are the result of the input and antecedent operations (Figure 1-Inference
engine), based on the value of xk, in which the supremum occurs as xl

k,max and xl
k,max:

f
l
k = µX̃k

(
xl

k,max

)
? µF̃l

k

(
xl

k,max

)
(4)
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f l
k
= µ

X̃k

(
xl

k,max

)
? µ

F̃k

(
xl

k,max

)
(5)

In the algorithm above, we follow the following steps to obtain the crisp output:
(1) fuzzification, (2) fuzzy inference, (3) type-reduction, and (4) defuzzification. The result
of crisp input and antecedents is an interval type-1 fuzzy set, defined by the lower and upper
MF f and f , respectively. Referring to (3), the fired output value, which is the combined
output consequent set µB̃(y), is computed. The type-2 fuzzy system is computationally
intensive to implement. A potential solution is a type-reduction method, as proposed by
Kendrick and Mendel for the type-1 defuzzification method for reducing the type-2 to
type-1 fuzzy system [21].

Various forms of type-reduction algorithms are proposed as centroid and center-of-
sets [22]. In our method, we have used the center-of-set type-reduction method (Figure 1-
type reduction):

yl =
∑M

i=1 f i
l yi

l

∑M
i=1 f i

l

and yr =
∑M

i=1 f i
ryi

r

∑M
i=1 f i

r
, (6)

where the maximum and minimum value of y are yr and yl , respectively; yr and yl depend
only on a mixture of f and f values, because f i ∈ Fi = [ f , f ]. Due to y being an interval
non-convex set, we defuzzify it by using the average of yr and yl (Figure 1-defuzzification).

f (x) =
yr + yl

2
= d, (7)

where d is the defuzzified output in the above formula.

2. Methods
2.1. Fuzzy Inference Engine

The first step to develop this approximation model is to make a fuzzy inference system,
such as the Mamdani or Sugeno systems. For this study, we chose the Mamdani inference
engine due to the intuitive interpretable nature of its rule-base inferencing.

The main difference between Mamdani-type and Sugeno-type Fuzzy Inference System
(FIS) is the method of how the output result is obtained. In Mamdani FIS, the crisp result
is obtained through defuzzification of the rules. However, Sugeno FIS uses a weighted
average of the rules to compute the crisp output. Moreover, Mamdani FIS can be applied
to both “Multiple Input, Single Output” (MISO) and “Multiple Input, Multiple Output”
(MIMO) systems, which is advantageous for biologic systems that frequently have multiple
outputs. It is important to note that Sugeno-type systems can be used for MISO systems.

2.2. Membership Function Variables and Parameterization

We obtained optimization data for the variables in our model from a previously
published experimental study [23]. As shown in Figure 2, the bioprinting approximation
system has two inputs, which are the number of cells (millions per milliliter) and the culture
period (days), and one output variable, which is the mineralized volume of the bioprinted
construct (mm3). The prior knowledge defines the membership function values and If-Then
rules in the T2 fuzzy model as shown in Figure 2.

The mineralized volume of the bioprinted bone was calculated based on registered
microCT scans using previously established methods [24]. Here, microCT imaging was
performed after 7, 14, 21, 28, 35, and 42 days in culture [23].
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Figure 2. Schematic of our study design optimization technique, with two inputs (cell suspension
density and culture period) and one output (mineralization volume).

Next, the membership functions (MFs) were defined. MFs are distributed evenly
by dividing the full input data range by the number of MFs, which is the input labels
shown in Table 1 and Figure 3. The membership function is a 2D curve (type-1 fuzzy) that
describes the variables’ degree of membership to a fuzzy set, using a value between 0 and
1. Membership functions are used in a fuzzification process to convert the crisp values to
fuzzy values [25]. Membership functions can be implemented using a variety of functions,
such as triangular, Gaussian, or gamma. Here, we chose the Gaussian membership function
due to the similarity of this function with many biological processes. In general, Gaussian
membership functions are popular because of their smoothness and concise notation [26].
MFs designed with Gaussian forms are modified by tuning the standard deviation and
their mean values, as shown in Table 2. Table 1 indicates the fact that low mineralization
volume and close data points in a 7-day culturing period compared to the 14- and 21-day
periods results in a smaller standard deviation than the two other MFs.

Table 1. Input Bioprinting data.

Culture Period (Days) Cell Suspension Density
(Million Cells /Milliliter) Mineralization Volume (mm3)

7 0 0

7 1.67 0.1

7 5 0.1

7 15 0.2

14 0 0

14 1.67 1

14 5 3

14 15 12

21 0 4

21 1.67 14

21 5 21

21 15 24
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boundaries are as illustrated.

Table 2. Gaussian membership functions range [Sigma, Mean].

Linguistic Variable Culture Period
(Days)

Cell Suspension
Density (Million
Cells /Milliliter)

Mineralization
Volume (mm3)

Low [0.5011 6.78] [1.981 1] [1.54 0.1]

Medium [2.109 14] [1.981 5.667] [3.38 8.11]

High [2.476 21.03] [1.981 10.33] [3.384 16.03]

Very High - [1.981 15] [3.384 24]

The membership functions based on the input value representation (Table 1) are
plotted in Figure 3. The Type-1 membership functions were converted to Type-2 with a
prescribed 20 and 30 percent uncertainty using the Fuzzy Logic System toolbox (Matlab).
The lower and upper boundary of the MFs type-2 FS with 0.2 lag are plotted in Figure 3.

2.3. If-Then Rules Establishment

The next step in designing a fuzzy system is to define the fuzzy IF-THEN rules. As
shown in Table 2, we utilized previously published results from an experimental bioprinting
study [23]. The model rules are shown in Table 3.
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Table 3. Type-1 and Type-2 Fuzzy system rules.

Rule Culture Period (Days) Cell Suspension Density
(Million Cells/Milliliter)

Mineralization
Volume (mm3)

1 Low Low Low

2 Low Medium Low

3 Low High Low

4 Low Very High Low

5 Medium Low Low

6 Medium Medium Medium

7 Medium High Medium

8 Medium Very High High

9 High Low Medium

10 High Medium High

11 High High Very High

12 High Very High Very High

2.4. Fuzzy Inference Process

Finally, we implemented the type-1 fuzzy inference process using the following procedure:

1. Fuzzification of the input variables;
2. Application of the fuzzy operator (AND) in the antecedent;
3. Implication from the antecedent to the consequent;
4. Aggregation of the consequent across the rules;
5. Defuzzification.

Next, the type-2 fuzzy system is implemented using the following process:

1. Fuzzification of the input variables;
2. Application of the fuzzy operator (AND) in the antecedent;
3. Convert T1 MF to T2 MF with 0.2 and 0.3 lag;
4. Implication from the antecedent to the consequent;
5. Aggregation of the consequent across the rules;
6. T2 FS to T1 FS type reduction by Karnik–Mendel;
7. Defuzzification.

In the above process, we use “Minimum” for AND (Step 2), “Minimum” for Impli-
cation (Step 4), “Maximum” for Aggregation (Step 5), and “Centroid” for defuzzification
(Step 7). We used the “Centroid” defuzzification because it has the highest correlation in
defuzzification methods in comparison to the other methods, such as bisector, mean of
maximum, and largest of maximum for non-interval data, as previously described [22]. The
3D surface of the implemented type-1 fuzzy and type-2 fuzzy (20% and 30% uncertainty)
rules based on the two inputs and one output is plotted in Figure 4.
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3. Results

Type-1 and type-2 fuzzy systems were implemented as described using input data
from a previous experimental study [23]. Table 4 shows the T1 and T2 FS approximated
values. In these tables, in addition to the experimental input data, the type-2 fuzzy model
has an additional input, which is the uncertainty boundary (either 20% or 30%). This
uncertainty boundary is used as an input to compare the mineralization volume output
with different noise levels in the input data.

First, we generated approximated values at each of the input value combinations
available (Table 4). A graphical visualization of these values has been generated as a 3D
surface, for the T1 FS (Figure 4a), 20% T2 FS (Figure 4b), and 30% T2 FS (Figure 4c). Next,
we compared the experimental output value (mineralization volume) to the approximated
values in each of the three fuzzy systems (Table 4). Here, we calculated the root mean
square error (RMSE) between the experimental and approximated values with the same
input values.

The equation of the measurement is given as follows (8):

RMSE =

√
∑N

i=1(xi − xi)
2

N
(8)

Compared to the T1 FS, we observed that the 20% T2 FS increases the overall error
of the approximation (+5.3%). In contrast, we observed that the 30% T2 FS decreases the
overall error of the approximation (−2.8%), relative to the T1 FS.
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Table 4. Accuracy of Type-1 and Type-2 (20% and 30% uncertainty) Fuzzy Systems.

Culture
Period
(Days)

Cell Suspension
Density

(Million Cells
/Milliliter)

Mineralization Volume (mm3)

Experimental
Values
(Actual)

Zero
Uncertainty
(T1 FS)

20%
Uncertainty
(T2 FS)

30%
Uncertainty
(T2 FS)

7 1.67 0.1 1.84 1.32 1.2

7 5 0.1 2.04 2.1 2.73

7 15 0.2 1.75 1.32 1.31

14 1.67 1 7.6 5.8 4.0

14 5 3 8.28 8.21 8.21

14 15 12 15.57 15.58 15.87

21 1.67 14 9.43 8.89 8.9

21 5 21 14.9 15.4 15.45

21 15 24 21.2 21.81 21.89

RMSE N/A 3.6 3.79 3.5

4. Discussion

Bioprinting research is a time-consuming and expensive process requiring the use
of cells that may be difficult to source followed by a lengthy culture period. Finally,
quantification of the suitability of the bioprint itself can be challenging. As a result, it is
difficult to exhaustively optimize a bioprinted construct experimentally. Here, we have
demonstrated that approximating bioprinting output parameters using fuzzy systems
based on input variables is a viable approach to accelerate research, reduce experimental
costs, and improve outcomes. Furthermore, our fuzzy model approach can be redesigned
with additional input and output variables, qualitative results, or expert knowledge using
linguistic rules.

In this study, we implement a fuzzy logic-based model using both type-1 and type-
2 fuzzy systems to compare the results in handling the uncertainty associated with the
bioprinting process. This uncertainty can arise from noisy input data or imperfect expert
knowledge. Using experimental data, we have demonstrated that the implemented fuzzy
logic can convert the discrete crisp input data to fuzzy sets to achieve a continuum data
surface with high accuracy.

Additional work may be necessary to determine the specific level of uncertainty neces-
sary to achieve the highest accuracy. Moreover, further experimental work is required to
scrutinize the accuracy of this model. Nonetheless, since the increased range of uncertainty
may increase the overfitting variance, we used 30% percent uncertainty level as the highest
boundary to alleviate the bias–variance tradeoff [27]. In this experiment, the results with
two different uncertainty percentages indicate a high correlation with experimental data.
Furthermore, the 30% type-2 fuzzy model can accommodate more imprecision with higher
accuracy. In contrast, the 20% type-2 fuzzy model could not provide higher accuracy
relative to the type-1 fuzzy model.

We have provided 3D surfaces generated by the fuzzy rules (e.g., Figure 4) as an
intuitive tool to help researchers design new studies for the experimental optimization of
bioprinted constructs. For example, researchers should avoid performing new experiments
in “flat” areas of the 3D model. In our study, the 3D surface illustrates a relatively flat area
for moderate cell suspension densities and culture periods of around 14 days. Therefore,
if a researcher wishes to maximize mineralization volume with a low number of cells
(e.g., 5 × 106 cells/mL), they may prefer to increase their culture time to 21 days rather
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than attempt to triple their cell number in order to traverse the flat area of the surface. In
total, implementation of this system may help researchers optimize their study design to
eliminate unnecessary experimentation.

We also note that the 3D surfaces generated for the type-2 fuzzy models (Figure 4b,c)
are both qualitatively smoother than the surface generated using the type-1 fuzzy system
(Figure 4a). In particular, we observe a sharp edge around a culture period of 8 days
(Figure 4a). This smoothness in Figure 4b,c is likely to result in higher accuracy in approx-
imated values, as biological mathematical models ought to have a smooth transmission
when increasing the input values.
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