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Abstract: Viral populations are large and highly heterogeneous. Despite the evolutionary relevance
of such heterogeneity, statistical approaches to quantifying the extent to which viruses maintain a
high genotypic and/or phenotypic diversity have been rarely pursued. Here, we address this issue
by analyzing a nucleotide-to-protein sequence map through deep sequencing of populations of the
Qβ phage adapted to high temperatures. Tens of thousands of different sequences corresponding
to two fragments of the gene coding for the viral replicase were recovered. A diversity analysis
of two independent populations consistently revealed that about 40% of the mutations identified
caused changes in protein amino acids, leading to an almost complete exploration of the protein
neighborhood of (non-silent) mutants at a distance of one. The functional form of the empirical
distribution of phenotype abundance agreed with analytical calculations that assumed random
mutations in the nucleotide sequence. Our results concur with the idea that viral populations maintain
a high diversity as an efficient adaptive mechanism and support the hypothesis of universality for a
lognormal distribution of phenotype abundances in biologically meaningful genotype–phenotype
maps, highlighting the relevance of entropic effects in molecular evolution.

Keywords: genotype–phenotype map; viral quasispecies; deep sequencing; phenotypic bias;
non-silent mutations; in vitro evolution; genotype networks

1. Introduction

Life is endowed with an amazing ability to adapt to harsh circumstances. This ability
is particularly prominent at the smallest scales of definition of organisms, where sequences
of nucleotides (RNA or DNA, in most cases) change relentlessly to produce raw variations
that subsequently modify the phenotypes of organisms, where natural selection eventually
acts. Knowledge of the breath of variation in genotypes (molecular sequences of nucleotides
in the current context) that extant organisms hold has significantly changed in the last
80 years. In the mid-1930s, mutations were akin to new alleles, whose fate was either to
become fixed in the population or disappear. It was broadly assumed that variants had
either a positive or a negative effect on the phenotype and rarely appeared in populations,
which were, therefore, depicted as homogeneous ensembles of organisms.

Over a decade had to elapse before the nature of the hereditary substrate was uncov-
ered and began to be understood: DNA was shown to be the genetic material of bacteria in
the mid-1940s; the structure of the DNA molecule was described in 1953; the first sequence
of RNA was obtained in 1965. The first efficient sequencing technique dates back to 1977.
In turn, however, formal descriptions of the dynamics of population genetics largely relied
on original assumptions and mostly conformed to simple deterministic rules [1], with
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exceptions such as Moran’s or Wright–Fisher’s models (reviewed in [2]). The separation of
time scales between the generation of variation and its fixation in a population kept aside
the stochastic nature of evolutionary processes behind the generation of diversity and its
consequences.

Conceptually, a remarkable breakthrough arrived when Motoo Kimura, upon examin-
ing DNA sequencing evidence, realized that mutations were actually abundant in coding
sequences, but most of them were neutral, with no effects on protein sequences and, there-
fore, on phenotypes [3,4]. Contrary to previous assumptions, this observation suggested
that populations could bear variation at no cost and accumulate it through genetic drift. The
clash between scientific communities adhering to the one-gene–one-function paradigm and
those embracing the possibility of a large molecular diversity within populations is well
reflected in two papers signed by Frank B. Salisbury [5] and John Maynard Smith [6]. The
colossal size of genotype spaces, Salisbury argued, absolutely prevented the achievement
of the smallest functional molecule. To this statement, Maynard Smith replied with his
fine intuition that, instead, the resilience of molecular function supported the existence
of protein networks, which must form “a continuous network which can be traversed by unit
mutational steps without passing through nonfunctional intermediates” [6].

Fifty years after Maynard Smith’s paper, no doubts remain regarding the high genotype-
to-phenotype (GP) redundancy that underlies molecular function [7]. Computational and
empirical studies have shown that the same molecular phenotype can be obtained from an
astronomically large number of different genotypes [8] and that such genotypes indeed al-
low the cost-less exploration of genotype spaces. It is in this way that molecular innovation,
in the form of new, accessible phenotypes, occurs [9].

The set of genotypes that map to a phenotype can be typically depicted as a large geno-
type network that spans the whole space of genotypes. That is, almost any two genotypes
in that set are mutually accessible through a sequence of mutations, thus guaranteeing
the navigability of genotype spaces. The RNA-sequence-to-secondary-structure (S3) map
has been, since the early 1990s, an inspiring model system for probing the architecture
of the GP map. Many different properties of the latter were first described in an RNA S3
map and, subsequently, shown to be shared by a large number of biologically sensible
GP maps [8,10,11]. Some examples of such properties are very high redundancy [12] and
a skewed distribution of phenotype abundance or phenotypic bias [13–16], the increase
in robustness with the size of the phenotype [17,18], or the preference of highly neutral
sequences for clustering together (and vice versa) [18], a property known as assortativity in
the parlance of complex networks. Our current understanding of the GP map depicts geno-
type spaces with a network-of-networks structure in a very high-dimensional space [19]
such that, even if random searches are necessarily local, most abundant phenotypes can
be found within a small radius (in terms of the number of mutations) from any initial
sequence; this is the idea of shape space covering, as first introduced for RNA S3 [20]. The
overall structure of genotype spaces has consequences in the evolutionary process [21],
such as the unavoidable appearance of punctuated dynamics at various levels [22,23].

The subset of genome spaces that a natural molecular population visits depends
on multiple variables—notably, on the population size, the mutation rate, and the time
allowed for exploration [24]. Larger populations and higher mutation rates, as well as
shorter generation times, should better cover the unfathomably large region available
for exploration along adaptation. These features are broadly accepted to be adaptive
traits that are responsible for the evolutionary success of viruses—especially those with
RNA genomes, with their typically higher mutation rate [25], are suitable systems for
comparing theoretical expectations with natural observations. As a practical example of
their plasticity, SARS-CoV-2 dramatically illustrates how a steady generation of variation
translates, in a relatively short time span, into the emergence of new phenotypes that
escape selective pressures and guarantee survival [26]. Still, the collective movement of
viral populations in genome spaces remains largely unknown. This study delves into
the diversity of viruses, an important milestone towards understanding how molecular
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populations explore Maynard Smith’s networks and find new phenotypes that allow
persistence under changing environmental conditions.

Specifically, here, we quantify the standing genotypic and phenotypic diversity of Qβ
as a representative of a class of systems with a large population size in a high-mutation
regime. The Qβ phage was the first virus in which high heterogeneity was described,
leading to the conclusion that two genomes in a viral population of the phage differed in
about one or two nucleotide positions [27]. Subsequent studies with Qβ and other viruses
have shown that high diversity is a constitutive characteristic of such organisms [28] and
is central for endowing them with a high adaptive ability. Indeed, high adaptability has
to be a trait characteristic of any viral species, since, perhaps with rare (unknown, as
of yet) exceptions, viruses in their multiple forms infect all cellular organisms on Earth.
Previous works on the Qβ phage have already illustrated its adaptive ability under various
conditions [29–32] and have characterized some of the main mutations driving adaptation.
Recent experiments [24] on adaptation of the Qβ phage have revealed multiple non-silent
mutations in its sequence that reach high abundance (above 50%) in different populations,
thus appearing in the consensus sequence of populations, as characterized through Sanger
sequencing [33]. This variability is indirectly indicative of the possible existence of mul-
tiple adaptive pathways—that is, of various mutations occurring in the neighborhood of
dominating variants that are able to yield similar adaptive advantages.

In the current study, we first explored nine independent mutations that changed the
protein sequence and have been repeatedly observed in experiments on the adaptation of
the Qβ phage to high temperatures. This analysis illustrates the difficulty in determining
the effects of non-neutral mutations in the phenotype and their possible dependence
on other mutations in the population. Subsequently, we analyzed the diversity of two
regions of the phage genome in two different populations adapted to a temperature of
43 ◦C. Each population resulted from a large number of in vitro passages starting with a
high- or low-diversity ancestral population. In both cases, we retrieve a huge variability
in nucleotide and protein sequences in the one-mutant neighborhood of most abundant
sequences, supporting that, at a local level and in a sequential way, viral populations
explore a significant fraction of genotype spaces. Analyses of the probability distributions
of genotype and phenotype diversity abundance revealed that the order of magnitude of
non-neutral mutations was comparable to that of neutral ones. Finally, we show that the
functional form of that distribution can be explained with a neutral model, suggesting that
diversity generation is strongly shaped by random substitutions, masking the effect of
selection at short time scales.

2. Materials and Methods
2.1. Experimental Adaptation of the Qβ Phage to High Temperatures

Plasmid pBRT7Qβ, which contained the bacteriophage Qβ cDNA cloned in the plas-
mid pBR322 [34], was used to transform Escherichia coli DH5-α, which can express viral
genes and perform the assembly of the particles, but cannot be infected, since it lacks the F
pili. An overnight culture supernatant obtained from a transformed colony was used to
infect E. coli Hfr (Hayes) on semi-solid agar at a multiplicity of infection (moi) that allowed
the generation of well-separated lysis plaques. Under these conditions, there was a high
probability that each lysis plaque was the result of the replication of a single virus during a
short number of generations and, therefore, could be considered a biological clone. The
viral progeny contained in a randomly chosen lysis plate were extracted by collecting
the agar occupied by the plaque and incubated in 1 mL of phage buffer (1 g/L gelatin,
0.05 M Tris-HCl, pH 7.5, and 0.01 M MgCL2) with 50 µL of chloroform for 1 h at 28 ◦C and
850 rpm in a thermoblock. This was then centrifuged for 15 min at 12,000 rpm, and the
supernatant was collected. The clonal population thus prepared was subjected to Sanger
sequencing and found to have no mutations with respect to the sequence of the cDNA
cloned in pBR322. This clone was considered an analog of the wild-type virus and was
named the Qβ wild type (Qβ-wt).
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The Qβ-wt virus was used to infect an exponential-phase E. coli Hfr culture using an
moi of 0.1 in a final volume of 1 mL of NB medium (8 g/L Nutrient Broth from Merck and
5 g/L NaCl). After 2 h of incubation at 37 ◦C, the culture was treated with 1/20 volumes of
chloroform, incubated in a thermoblock for 15 min at 37 ◦C and 600 rpm, and centrifuged
for 10 min at 12,000 rpm. Finally, the supernatant was collected and used to infect a new
culture of E. coli Hfr in the exponential phase, keeping the moi around 0.1. The process was
repeated 25 times, each corresponding to a passage or serial transfer. Populations obtained
at passages 2 (P2) and 25 (P25) were the ancestors of the evolutionary lines propagated
at 43 ◦C and analyzed in this work. Propagation at 43 ◦C took place by following the
same procedure as at 37 ◦C, with the only difference being the replication temperature.
Adaptation to 43 ◦C lasted for 60 triplicate passages, giving rise to three populations of
C43P2(P60) and three C43P25(P60) that differed in the initial ancestor. Every ten passages,
populations were sequenced through the Sanger method [32]. In this work, we analyzed
only one of these triplicates for each population.

2.2. The 3D Structure of the Qβ Replicase

The crystal structure of the Qβ replicase protein is available from the PDB with ID
3MMP [35]. This was the basis for evaluating the structure of our wt sequence (with a
99.83% homology with that in 3MMP), as well as the studied mutants (incorporating from
one to three changes in protein sequence). First, the 3D protein structure of the Qβ replicase
was obtained through homology modeling based on the actual crystal structure by using
Swiss-Model [36]. Different models were constructed for the wild-type (wt) ancestral
protein and for variants with mutations A33V, V141A, I319M, S350P, I477T, L509I, L509V,
L517F, and G531S.

The obtained models were aligned to the wt protein, and the RMSD was obtained
using the matchmaker tool in Chimera [37], showing minor differences (in all mutants,
below 0.6 ) with respect to the 3MMP model. The transcription-initiation complexes with
the viral protein, the bacterial proteins, and RNA were generated from the β subunits
produced through homology modeling, and the transcription factors and RNA molecule
were generated from the 3AVT crystallographic structure [38] deposited in the PDB. They
corresponded to the initial phase of replication.

2.3. Protein Stability Prediction Methods

The folded stable state of a native protein has a difference in Gibbs energy ∆G with
respect to the unfolded conformation. Protein stability prediction (PSP) algorithms quantify
the difference in the Gibbs energy of a mutated protein with respect to the native protein:

∆∆G = ∆G(mutant)− ∆G(wt) (1)

Stabilizing mutations, therefore, yield ∆∆G > 0, and vice versa.
We used six different algorithms to quantify the change in stability in the 9 mutations

listed in the previous section: two variants of I-Mutant 3.0 [39] based on a 3D structure
(Structure) and sequence (Seq), MUpro [40], CUPSAT [41], iStable [42], and FoldX [43].

In order to assess the overall statistical effects of mutations on the protein stability,
we measured ∆∆G with FoldX in the following three sets: (i) the top 1000 mutants in
C43P2(P60) and (ii) C43P25(P60), with mutants weighted according to their abundance, and
(iii) 1000 mutants with two random residue changes, on average, on the reference wild-type
protein. The number of mutations for each mutant was drawn from a Poisson distribution
with a parameter of λ = 2. The latter case served as baseline for comparison with the
evolved populations in (i) and (ii). Considering that the data (the distribution of mutant
abundance) did not follow a normal distribution, Vargha and Delaney’s A test was used to
compare the distributions of ∆∆G.
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2.4. Deep Sequencing Analysis of the C43P2(P60) and C43P25(P60) Populations

Deep sequencing analysis of line 3 of population C43P2(P60) and line 1 of C43P25(P60)
(see [32] for a description of each line) was carried out at the Genomic Unit of Parque
Científico de Madrid. Viral RNA was extracted and purified with the QIAamp Viral RNA
mini kit (QIAGEN). It was amplified by RT-PCR using SuperScript II Reverse Transcriptase
(Invitrogen) and Q5 Hot Star High fidelity (Biolabs) with two pairs of specific nucleotide
primers that allowed the generation of amplicons I and II [(P1 forward: 5’GGTGCTTTCG-
GTAACATTGAG3’ with P1 reverse: 5’TGAATGAAATACACTCAGCCTCAG3’ to amplify
from nucleotide position 2123 to 2516 (amplicon I), and P2 forward 5’AGATTTCTTC-
TATGGGTAACGG3’ with P3 reverse 5’CCAGTATTAAATCGGCAGGAC3’ to amplify from
nucleotide position 3306 to 3623 (amplicon II)]. PCR products were quantified and tested
for quality (TapeStation 4200, Agilent Technologies) prior to the Illumina Ultra Deep Se-
quencing analysis (MiSeq platform, with the 2 × 250 bp mode and v2 chemistry). After
removing the sequence of the primers, amplicon I covered from position 2123 to 2516, which
overlapped with the sequence of the replicase gene from nucleotide 2352, and amplicon II
covered from position 3306 to 3623, which entirely corresponded to the replicase (Figure 1).

Figure 1. Organization of the Qβ genome and the 3D structure of the virus–cell replicative complex.
(A) Crystal structure of the capsid of the Qβ phage [44] (left, 1QBE entry in the PDB) and its genome
(right). Qβ is an RNA virus with a genome of positive polarity and a capsid composed of about
180 copies of CP protein and a small number of Prot A1 copies, which self-assemble into a 28-nm-
diameter icosahedral particle. The genome of Qβ has a length of 4217 nucleotides and contains three
open reading frames that encode four proteins: the maturation/lysis protein A2; the coat protein CP; a
readthrough of a leaky stop codon in the coat protein, called A1; the β–subunit of an RNA-dependent
RNA-polymerase (RdRp), termed the replicase. The two regions overlapping with the proteins that
were sequenced (amplicons I and II) are indicated in the picture. (B) Two views of the 3D structure
of the replicase protein (Subβ unit, in purple) in interaction with the cellular elongation factors (EF,
green); see the Materials and Methods for 3D reconstruction methods. We highlight the regions of the
replicase corresponding to the folded structure of amplicons I (orange) and II (blue).
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2.5. Processing of Deep-Sequencing Data

The Illumina MiSeq Next Generation Sequencer produced high-quality paired-end
reads. The following pipeline was applied to the four datasets—amplicons I and II for each
population (C43P2(P60) and C43P25(P60)).

We first performed a quality control of paired-end reads using FastQC v0.11.9 [45]
and MultiQC v1.9 [46] to generate a single report for each amplicon in all populations.
Cutadapt v3.0 [47] was then used to remove primers, barcode sequences, and low-quality
bases (Phred Quality Score < 25) at the 3’ end of forward and reverse reads. Reads that
could not be trimmed properly or whose length was smaller than 50 bp were discarded.
Since forward and reverse reads overlapped over multiple base pairs, Flash2 v2.2.0 [48]
was used to merge paired-end reads in a second step. This step produced high-quality
single-end reads [48]. In the third step, we used the BWA v0.7.17 package [49]—specifically,
the BWA-MEM aligner algorithm—to map reads against the reference bacteriophage Qβ
genome. Next, in a fourth step, reads from the previous step were sorted and indexed, and
unmapped reads were filtered with SAMtools v1.11 [50]. In addition, we used AWK to
filter reads that contained either insertions or deletions or whose length was different from
that of the reference amplicon. Subsequently, the BAM files were converted into FASTA
using SAMtools. Since each of the files corresponding to an experimental population
contained a large number of duplicate reads, we used the Collapser tool from the http://
hannonlab.cshl.edu/fastx_toolkit/ (accessed on 26 October 2022), FASTX-Toolkit v0.0.14 to
collapse duplicated reads into a single read, but while keeping a record of their abundance.
All of the steps of the pipeline were implemented in parallel using GNU Parallel [51]
and with a customized Bash script. Table 1 shows the number of sequences after data
processing and the number of haplotypes (different sequences) obtained after collapsing
multiple reads of the same sequence. The scripts used to filter data are available in a Github
repository (https://github.com/HSecaira/Quasispecies_TFM/tree/main/Preprocessing
(accessed on 26 October 2022)). The two sets of sequences obtained after applying this
filtering pipeline to the raw data can be downloaded from the following Github repository:
https://github.com/ariadnavillam/QuasispeciesData (accessed on 26 October 2022).

Table 1. Total number of sequences and haplotypes identified through deep sequencing of the two
analyzed populations. We show, for each amplicon, the coverage of sequencing (total number of
sequences after data processing), the fraction of truncated proteins (those with a non-sense mutation,
causing a premature stop codon), the number of different sequences (haplotypes), and the total
number of different protein sequences.

Population Amplicon Number of
Sequences

Truncated
Proteins (in %)

Number of
Haplotypes Proteins

C43P2(P60) I 319,825 0.15 7721 4043
II 364,907 0.5516 20,942 9743

C43P25(P60) I 806,701 0.1631 15,851 8101
II 692,048 0.4911 34,292 17,094

3. Results

Previous studies have identified multiple non-silent mutations in the Qβ phage that
become highly abundant in the consensus sequence of adapting populations. Specifi-
cally, experiments on the adaptation of the Qβ phage to high temperatures showed that,
systematically, the growth rate of the phage, which was initially impaired by the new
selective pressure, recovered along adaptive passages. In the 60 passages of the adaptation
experiment, however, populations did not attain growth values as high as those in the
initial population at 37 ◦C [32,52,53]. Though specific genomic changes behind adaptation
are difficult to disentangle, the fitness of the population, which was measured in those
experiments as its growth rate in competition experiments, significantly increases.

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
https://github.com/HSecaira/Quasispecies_TFM/tree/main/Preprocessing
https://github.com/ariadnavillam/QuasispeciesData
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Table A1 lists a representative sample of mutations identified through the Sanger
methods and some details on the experiments where such mutations emerged. Presumably,
they should have played a role in the adaptation of the phage to high temperatures;
however, the phenotypic traits affected by such mutations are, so far, unknown. These
mutations are used here to evaluate their possible effects on protein stability and to illustrate
the difficulties in determining the values of single mutations in heterogeneous genomic
and population contexts. These analyses may, at best, offer a partial understanding of the
role of isolated non-silent changes. Actually, a clonal analysis of one of such populations
adapted to high temperatures showed that mutations never occurred as single mutations
in the viral genomes [53]. Thus, their beneficial effects were possibly due to their joint
effect on fitness. As a first step towards a more systemic understanding of the evolutionary
process, we subsequently studied the genotypic and phenotypic diversity of the phage
population along adaptive transients.

3.1. Effects of Single Mutations on Protein Stability

It is customary to explore the effects of non-silent mutations that are fixed in popu-
lations of organisms to evaluate their potential adaptive effects. In this section, and as a
way of providing an example, we examine the possible effects of several single mutations
observed in populations of the Qβ phage adapted to high temperatures (see Appendix A)
regarding their effects on molecular structure and protein stability.

Several high-abundance mutations found in the experiments with the phage are
represented in Figure 2. None of these were located in the active RdRp site, so these
mutations were not expected to affect the interactions with the RNA of the phage, at least
at the initial phase of replication. In addition, these mutations were not mutually close in
the folded protein, so no direct interactions among them were, in principle, expected. In
the following paragraphs, we describe the possible effects of specific mutations found in
the adaptation of Qβ to high temperatures.

Residue 33 (Figure 2A) sits in an exposed α−helix—though the residue itself is in an
internal part—in a hydrophobic environment with amino acids such as Phe and Ile. The
substitution Ala→ Val increases hydrophobicity, probably causing a better fit of its lateral
chain. The opposite effect might take place in the substitution V141A (Figure 2B). The
affected residue is found in an external turn, and a more exposed chain could enhance
its interaction with water molecules. A change with weak a priori expected effects is the
substitution I319M (Figure 2C) though Met incorporates electric charges due to the electrons
of sulfur in the new amino acid.

There are two substitutions that involve hydrogen bonds. The first one is S350P
(Figure 2D). The hydroxil (-OH) and amino (-NH3) groups of Ser form two hydrogen bonds
with the surrounding amino acids. The residue is located in an exposed turn, a mutation
that was also detected in similar structures in mutagenesis studies of the adaptation of
enzymes to high temperatures, where Pro enhanced the rigidity of the loop. The second
substitution I477T generates a hydrogen bond with a nearby Ser474. Further, Ile (a long-
chain amino acid) is substituted by a polar amino acid with a shorter chain.

Other mutations are related to the π−stacking of α−helices, thus improving, in princi-
ple, the stability of the folded state. Residue Ile509 sits on an internal α−helix surrounded
by aromatic residues (Figure 2F). Aromatic rings interact through π−stacking, causing
strong interactions. The observed substitution of Leu by Ile could avoid steric hindrances
while maintaining the hydrophobicity of the residue. The original Leu in residue 517 is
substituted by Phe, likely enhancing π−stacking interactions with a nearby Phe (at position
513) (Figure 2G). Though Phe is a hydrophobic residue and position 517 is exposed to
the solvent, partial electric charges in the aromatic ring induce the formation of hydrogen
bonds with water. A third Phe belonging to ET-Tu factor sits near Phe513, so residues in
that region of the replicase might be relevant in the interaction complex. The last abundant
mutation entails a substitution of Gly by Ser in residue 531 (Figure 2H). Since this residue



Biophysica 2022, 2 388

sits in a turn that is fully exposed to the solvent, a hydrophilic amino acid such as Ser
interacts with water molecules, potentially improving the stability of the folded state.

Figure 2. Localization of various non-silent mutations in the structure of the Qβ replicase. Mutations
in green were found in the consensus sequences of different populations (see Table A1). We high-
lighted the closest residues and the distance (in Å) between such residues and the fixed mutation.
The new residue is shown in orange and the side chains of the closest amino acids are shown in green.
EF: Elongation factors of the cell that belong to the replication complex. Sub-β: β subunit of the viral
replicase. As usual, nitrogen atoms appear in blue and oxygen atoms appear in red. (A–H): See the
main text for details on each mutation.

Beyond this qualitative analysis, several PSP methods in the literature allowed a
quantitative estimation of the effects of mutations on the folded state of proteins. The
reliability of such methods in assessing the effects of single mutations is known to be low,
with confidence intervals around ±1− 1.5∆∆G. Aware of such limitations, we used six of
these methods (see Material and Methods) to quantify the predicted changes in free energy
caused by the amino acid substitutions observed. All mutations in Appendix A, within
one standard deviation when averaging over the six different methods, caused changes
within the error interval of the PSP methods used, around or below ±1∆∆G (see Table A1).
In light of the results obtained, we cannot conclude that any of the mutations studied had a
clear stabilizing or destabilizing effect on the protein.

Our qualitative and quantitative results with single mutations illustrate the difficulties
of assessing the effects of point mutations in isolation, even if only a particular pheno-
typic trait (protein stability in this case) is taken into account. PSP methods have limited
reliability—though, together with independent considerations, they could be indicative of
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a sign of specific changes. Expectations thus derived could be improved through molecular
dynamics, for example. It is in this way that we obtained independent data supporting the
potential stabilizing effect of the mutation I477T [54], for example. It could also be that ob-
servable beneficial effects only occur due to the joint action of two or more simultaneously
occurring mutations, as experiments measuring population growth rates have shown [53].

3.2. Protein Stability Changes in Ensembles of Mutants

Though stabilizing effects cannot be ascribed to single mutations, previous studies
have shown that the analysis of collections of mutants may yield significant trends [55].
Therefore, we explored the overall effects of mutations in our evolved populations. To
this end, we calculated changes in folding energy ∆∆G in naturally occurring mutants
with respect to the wild-type protein using FoldX. Both amplicons in the two populations
were considered and compared to a randomly generated population of mutants with
the same number of mutations on average, but they occurred at random positions along
the sequence.

Figure 3 summarizes our results. The obtained distributions are notably left-skewed,
indicating that mutations, in general, have a destabilizing effect. Since the wild-type protein
was likely optimized not only for function, but also for stability throughout evolution, this is
a consistent result. However, evolved populations have selected variants that minimize the
destabilizing effects of randomly occurring mutations, severely suppressing those with a
large negative effect in stability (especially in population C43P2(P60)). Indeed, the different
dispersions of the distributions in the two evolved populations apparently reflected the
different diversities of their ancestral populations. For amplicon I, population C43P25(P60)
presented values of ∆∆G that were higher than that of the random population, though the
difference was not very large. This difference was larger for amplicon II. The differences
were larger for population C43P2(P60), and, actually, both populations significantly differed
when their two amplicons were compared. The values from Vargha and Delaney’s A
test are reported in Table 2. Summing up, evolved populations increase the stability of
the replicase protein overall (or minimize the destabilizing effects of mutations), yielding
distributions of changes in folding energy that are significantly narrower than those of
random mutants in what can be understood as a signature of positive selection.

Figure 3. Changes in protein stability for evolved and randomly mutated sequences. The panels
show a histogram of changes in folding energy ∆∆G for the two amplicons studied and three different
sets of sequences, as indicated. From top to bottom, the distributions correspond to the evolved
populations C43P2(P60) (labeled P2 in the y−axis), C43P25(P60) (labeled P25), and 1000 sequences
with two (on average) amino acid substitutions at random positions. Mean values are indicated with
a dashed line.
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Table 2. Vargha and Delaney’s A-values for pairwise comparisons of distributions of changes in
protein folding energy. An A-value of 0.5 indicates that there is no significant difference.

Amplicon Populations A-Value

I C43P2(P60) vs. random 0.87
I C43P25(P60) vs. random 0.61
I C43P2(P60) vs. C43P25(P60) 0.82
II C43P2(P60) vs. random 0.98
II C43P25(P60) vs. random 0.83
II C43P2(P60) vs. C43P25(P60) 0.93

3.3. Genotypic Diversity of Qβ Populations

A summary of the processed datasets obtained from the two populations of the Qβ
phage evolved at 43 ◦C, with each starting from a different ancestral population (see the
Materials and Methods), can be found in Table 1. Current single-molecule sequencing
techniques impose a sharp limit on the sequence length that can be faithfully retrieved.
Amplicon I had a total length of 328 nucleotides (out of which 121 overlapped with the
sequence coding for the replicase protein), while amplicon II reached 274. This yielded
replicase (sub)sequences with lengths of 40 and 91 amino acids, respectively. The ensemble
of possible different sequences for nucleotides and proteins of equivalent length was
attainable neither empirically nor computationally [56]. The figures reached 4274 ' 10165

nucleotide sequences or 2091 ' 10118 amino acid sequences. These numbers were also
indicative of the amount of redundancy induced by the degeneration of the genetic code
alone: 10165 � 10118; thus, astronomically many different nucleotide sequences must map
to the same protein sequence. The fraction of genotype and protein spaces explored by
the viral populations and detected through deep-sequencing sampling was, therefore, tiny
(see the data in Table 1), on the order of 10−161 for genotype sequences and 10−87 for
protein sequences. Still, the mechanism of natural selection is able to find and fix functional
phenotypes in such minute regions, as many previous experiments have shown, and to
improve the fitness (growth rate) of Qβ populations [24,30,32,53,57]. These results agree
with the expectation that abundant and sufficiently fit phenotypes can be found a few
mutations away from any initial sequence.

Figure 4 shows the measured abundances of different haplotypes for ancestral and
evolved populations and for the two regions analyzed (amplicons I and II). There are
no major differences in the shapes of the four curves shown in each of the two panels,
though the total number of haplotypes has almost doubled during evolution (for example,
the values for amplicon II of ancestral populations were 13,083 (P2) and 18,188 (P25),
which will be compared with the values of evolved populations in Table 1). Ancestral
populations appearred to be slightly depleted in terms of highly abundant haplotypes (low-
rank values) and rare haplotypes (rightmost part of the curve). Presumably, the population
tended to increase the abundance of fitter haplotypes during evolution, with a concomitant
exploration of their mutational neighborhood. The shape of the rank distribution, which
was compatible with a power-law function in the evolved populations, seemed to be
indicative of a hierarchical organization in haplotype abundance. This structure might
have just resulted from the replication process of each haplotype together with its diffusion
to neighboring haplotypes through random mutations, a hypothesis that could be tested
through appropriate dynamical models on genotype networks. In any case, the process of
adaptation to high temperatures does not obviously translate into functional modifications
of the statistical abundance of haplotypes (but see below).
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Figure 4. Rank ordering of haplotype abundance for ancestral and evolved populations in the regions
corresponding to (A) amplicon I and (B) amplicon II. See the main text for a discussion.

To complement the above analysis, we calculated the average number of mutations
that a haplotype in the population had with respect to the most abundant sequence. To
this end, we estimated the frequency of mutations in each amplicon as the ratio between
the average number of mutations and the length of the amplicon (the results are in the
first column under Nucleotides in Table 3). An estimation of the expected number of
mutations that the replicase protein could carry was obtained by multiplying the two
independent estimations of mutation frequency (with either replicon) by the total length of
the protein. Our results consistently showed that each sequence of nucleotides coding for
the replicase in the viral population carried between three and seven mutations (second
column under Nucleotides in Table 3), which cause around 2–3 non-silent mutations in
the translated protein sequence (columns under Amino Acids in Table 3). These results
reveal a high genotypic and phenotypic diversity contained in single populations of the Qβ
phage. Protein diversity is further explored in the next section.

Table 3. Mutation frequency in the ensemble of sequences and expected average number of mutations
per sequence (nucleotides and amino acids) in the whole protein. Different phenotypes carry multiple
amino acid changes when compared to the most abundant protein sequence in the populations.

Nucleotides Amino Acids

Population Amplicon Frequency Average Frequency Average

C43P2(P60) I 0.0041 6.916 0.0062 3.68
II 0.0031 5.235 0.0032 1.89

C43P25(P60) I 0.0022 3.701 0.0038 2.25
II 0.0022 3.769 0.0033 1.91

3.4. Protein Diversity in Qβ Populations

The distribution of protein abundance in genotype spaces can be analytically calculated
according to the limit of independent and uniform site mutation probability in amino acid
sequences. This distribution corresponds to the total number of haplotypes that yield the
same protein sequence and represents an instance of the distribution of phenotype size
(number of genotypes mapping to the same phenotype), as commonly referred to in the
literature [8].

Consider an amino acid sequence of length N. Assume that we deal with the m = 20
common amino acids listed in Table 4. Let us label these common amino acids, αi, with an
index i = 1, . . . , m, as sorted in the table (while this order is inconsequential). Additionally,
let us label amino acids along our sequence, α(j), with a different index j = 1, . . . , N. Note
that, at each position j along the sequence, {α(j), j = 1, . . . , N}, we have that α(j) = αi for
some i. While the values of αi are unique, along the sequence, we might find the same
amino acid several times. Specifically, let us note as ni ≤ N the number of times that we
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find αi repeated in our sequence. Take as an example the chain GATTACA, with each letter
standing for an amino acid, as presented in Table 4. This sequence contains one glycine
(n14 = 1), three alanines (n13 = 3), two threonines (n16 = 2), one cysteine (n5 = 1), and
none of the other amino acids (ni = 0 for any αi, i /∈ {5, 13, 14, 16}).

Table 4. List of the 20 most frequent amino acids with their abbreviations. They are ordered according
to their versatility (number of different codons for each amino acid) and alphabetically within each
versatility value. Three stop codons are not considered, since they correspond to nonsense mutations
causing truncated proteins that have been removed from the dataset.

Amino Acid Abbreviation One-Letter
Abbreviation i Versatility, vi

Methionine Met M 1 1
Tryptophan Trp W 2 1
Asparagine Asn N 3 2
Aspartic acid Asp D 4 2
Cysteine Cys C 5 2
Glutamine Gln Q 6 2
Glutamic acid Glu E 7 2
Histidine His H 8 2
Lysine Lys K 9 2
Phenylanlanine Phe F 10 2
Tyrosine Tyr Y 11 2
Isoleucine Ile I 12 3
Alanine Ala A 13 4
Glycine Gly G 14 4
Proline Pro P 15 4
Threonine Thr T 16 4
Valine Val V 17 4
Arginige Arg R 18 6
Leucine Leu L 19 6
Serine Ser S 20 6

As remarked above, the space of possible proteins of length N is vast for large values
of N. Let us assume that, within this vast space, a small (but also vast) subset of sequences
folds into some functional shape. We illustrate this in Figure 5A: The space of all possible
combinations of seven amino acids is large (sized 207 ∼ 109). Within it, we observe two
functional sequences: GATTACA and REDRESS. Let us further assume a neutral model—
i.e., that all functional sequences have the same fitness, such that biases in how often we
find them do not stem from an evolutionary advantage. Finally, let us assume that the α(j)
within each functional sequence are uniform and independently drawn from the m = 20
amino acids, {αi}, and that functional sequences are, in turn, uncorrelated with each other.

In this framework, each functional sequence (each possible sequence, actually) defines
a phenotype. While we have assumed fitness neutrality, evolutionary biases might arise
from other kinds of constraints. An example is phenotypic size, i.e., the number of different
haplotypes that result in a given amino acid sequence. As our data will show, this simple
mathematical constraint operates at different scales.
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Figure 5. Illustration of phenotypic redundancy in a neutral nucleotide-to-amino-acid-sequence
model. (A) The space of protein sequences of the same length is vast and contains a variety of
functional sequences. (B) The number of codons representing amino acid i varies; here, it corresponds
to its versatility vi. Codons coding for glycine (G), alanine (A), threonine (T), cysteine (C), arginine (R),
glutamic acid (E), aspartic acid (D), and serine (S) are shown here explicitly as examples. (C) Possible
nucleotide sequences coding for GATTACA (above) and REDRESS (below).

Following the previous literature [11,16,58], let us consider the versatility, vi, of αi as
the number of different codons that map into that amino acid (summarized in Table 4).
The product of the versatilities, v(j), across all positions in a functional sequence gives
us the number of different haplotypes that map to that phenotype. This is its phenotypic
size. In the case of GATTACA, ∏N

j=1 v(j) = 4096 different genetic sequences result in that

same chain of amino acids, while this number increases to ∏N
j=1 v(j) = 10,368 for REDRESS

(Figure 5B). In general, the phenotypic size S of a protein of a known composition is given
by S ≡ ∏N

j=1 v(j) = ∏m
i=1 vni

i .
Taking logarithms, we get:

ln S =
m

∑
i=1

ni ln vi ≡
N

∑
j=1

ln v(j). (2)

We assumed above that amino acids within a functional sequence are uncorrelated
and uniformly distributed. Thus, Equation (2) contains a sum of stochastic variables with a
bounded average (〈ln v〉 ' 0.98) and variance (σ2

〈ln v〉 ' 0.27). Hence, in the large N limit,
the frequency of ln S behaves as a normal distribution with µ ≡ N〈ln v〉 ' 0.98N and
σ2 ≡ Nσ2

〈ln v〉 ' 0.27N. In other words, we expect the phenotypic size of protein sequences
to follow a lognormal distribution with

µS = µ +
σ2

2
' 1.12N,

σ2
S =

(
eσ2 − 1

)
e2µ+σ2 ' e2.51N . (3)

We plot the theoretical distribution of ln S in Figure 6A,B (solid, thick blue curves).
Alongside this, we plot the distributions of the actual ln S (as calculated with Equation (2))
for each observed amino acid sequence in all experimental conditions (red histograms for
experiments with ancestor P2, black histograms for ancestor P25; Figure 6A for amplicon
I, Figure 6B for amplicon II). Leaving aside for a moment the mismatch between both
distributions, we note that all observed phenotypes (red and black histograms) lie on
the right half of the theoretical abundance curve (solid blue line). This means that only
very large phenotypes (i.e., amino acid sequences produced by a vast number of genetic
haplotypes) show up in experiments.
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Figure 6. Empirical versus theoretical distributions of phenotype sizes. (A,B) Abundance distribution
of protein sequence (phenotype) sizes calculated with various approaches, as shown in the legend
and explained in the main text for amplicon I (A) and amplicon II (B). (C,D) Abundance distribution
of empirical protein sequences calculated as the sum of different empirical haplotypes (nucleotide
sequences) that map to the considered protein. All mutations in the nucleotide sequence must,
therefore, be silent. These distributions decay from a maximum at size 1 and have fat tails. Two
examples are shown: one corresponding to amplicon I that evolved from ancestor P2 (C) and one
corresponding to amplicon II that evolved from ancestor P25 (D).

Let us now tackle the “mismatch” between the theory and experimental data. First,
note that the empirical phenotype sizes are well described by a lognormal distribution,
nevertheless: the dashed lines in Figure 6A and B show lognormal distributions with the
numerical average and variance from the data. This strongly suggests that the abundance
of protein sequences in our empirical dataset is well described by a model where amino
acids in the sequence are uncorrelated.

Next, let us descend one level deeper—to the empirical genotype sequence—to see
how size bias might operate again. Phenotypes are explored by random mutations in the
nucleotide chain. Of the large number of genetic haplotypes that map to the same functional
sequence (Figure 5B), the exploration of the genotype space can only sample a tiny fraction
(Figure 5C). In Figure 6C,D, we show the distributions of genetic haplotypes that were
experimentally sampled for each amino acid sequence detected in our experiments. We see
that, for most different amino acid sequences, only one genetic haplotype was observed
(left side of the empirical abundance distribution).

Actually, we considered that amino acids were equally likely in our calculations above;
but, in fact, they were not uniformly sampled. Instead, the process was biased towards
those αi with higher versatility, vi. The yellow curves in Figure 5A,B show lognormal
distributions with average µω ≡ 〈ln v〉ω ' 1.24N and variance σ2

ω ≡ σ2
〈ln v〉ω

' 0.49N,
where the average 〈ln v〉ω weights each amino acid proportionally to its versatility. These
distributions are closer to the empirical ones.

A discrepancy still remains, as several factors cannot be accounted for in this simple
approach. On the one hand, our process is heavily influenced by its initial condition, i.e.,
an ancestral population with a specific diversity composition, around a highly abundant
sequence. This introduces a bias towards the abundances of each amino acid in that original
population. On the other hand, while the hypothesis of mutation independence within each
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sequence seems to hold, the experimentally observed sequences are highly correlated with
each other, since they all stem from a pre-existing parental sequence through replication
and mutation. In addition, in the adaptation experiments with the phage, it was the viral
quasispecies as a whole that showed adaptation. This violated the assumption of fitness
neutrality. Finally, different sequences that are present in the quasispecies might interact
with each other, causing cross-interactions and complementation or interference among
variants that our simplifying hypotheses cannot capture.

Notwithstanding these and several other overlooked factors, our calculations come
quantitatively close to the observed distributions. They are also informative, revealing
how phenotype bias operated at two different scales in this experiment. On the one hand,
more versatile amino acids were more readily sampled during the exploration of genotype
space. This led us to the theoretical distribution with weighted averages (yellow curves
in Figure 6A,B). On the other hand, the existence of functional sequences should be a
matter of the phenotype space alone. The likelihood that a protein shape is functional
cannot depend on the versatility of its constituent amino acids. In other words, assuming
fitness neutrality, functional sequences should be sampled uniformly, leading to our first
theoretical prediction (blue curves in Figure 6A,B). Tellingly, the parameters (mean and
variance) of our empirical distributions lie somewhere in between. However, the fact that
the functional form of the distribution remains unchanged supports a dominant role of
neutral processes in the evolutionary search.

4. Discussion

The elevated mutation rate that viral genomes experience under replication generates
viral populations of high standing diversity, a main adaptive feature of such organisms [24].
Though there might be one to a few sequences of high abundance, the quasispecies is a
complex ensemble with many variants of medium and low abundance that are steadily
generated through evolution [59]. The maintenance of a variable background of rare
mutants is at once the result of selection acting on a heterogeneous population and an
evolutionary strategy to carry out a parallel exploration of the many potentially beneficial
solutions in new environments.

It is sensible to assume that the increase in abundance of certain variants in a given
environment (such as high temperature, in our case) circumstantially supports their adap-
tive value. This hypothesis can be tested through a variety of methods that hint at possible
specific mechanistic effects of certain mutations. However, disentangling in full the cross-
effects of a plethora of simultaneous mutations in different genomes remains a challenge
for the future.

Studies of the effects of single mutations go beyond the structural analysis performed
here and often involve in vitro measures using site-directed mutagenesis. This procedure,
however, is both time- and resource-consuming; at least in the case of highly heterogeneous
molecular ensembles, such as viruses, it is barely reliable due to the absence of the in vivo
molecular environment. Overall, the value of a single mutation depends on its genomic
context (the composition of the genome in which it occurs) and on the composition of
the accompanying population, with crucial effects in the case of viral quasispecies. For
example, neutral mutations that do not change protein sequences can, however, affect
the stability of the viral RNA or modify molecular interactions that involve the genomic
sequence (as occurs when the genome is packed inside a capsid, or when it replicates
using the molecular machinery of the infected cell). Genomic, population, and cellular
contexts are impossible to single out for specific viral genomes; this is also a futile effort,
since the biological value of genomic changes is meaningless in isolation. On the one hand,
and though current techniques permit the determination of the full genomic sequence of
individual mutants (through clonal isolation), it is not yet possible to determine the full
sequence of a statistically large number of individual variants within a viral population.
On the other hand, the effect of a specific mutation cannot be measured in the absence of
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the population context due to the many interactions occurring among variants within a
quasispecies.

The rapid adaptation of viruses to new environments occurs concomitantly with
genomic changes not only due to specific point mutations that rise to fixation in the con-
sensus sequences, but also to collective changes in genome space [60,61]. This is one of
the main tenets of this contribution, where we have illustrated the difficulty (and, perhaps,
impossibility) of assessing the effects of single mutations, even if they are fixed in the
consensus sequence of a viral population. In turn, statistical measures might yield a more
reliable signal of adaptation. The search through random mutations is compatible with
a neutral process in which mutations would have no effect on fitness while, at the same
time, indications of adaptation are retrieved when a phenotypic trait (protein stability) is
measured. That is, a population may undergo high diversification during evolution (com-
patible with neutrality) while, at the same time, it picks out fitter phenotypes (compatible
with selection). This reflects the vastness of genotype and phenotype spaces, where the
simultaneous occurrence of both facts strongly suggests that multiple haplotypes (and,
likely, multiple evolutionary pathways) can promote adaptation.

Our results also support the hypothesis that only very large phenotypes (in our case,
those amino acid sequences produced by a vast number of genetic haplotypes) show up
in experiments and, arguably, throughout evolutionary history. This observation is in
agreement with previous studies addressing the main role of phenotypic bias in evolution,
since natural selection seems able to fix only highly abundant phenotypes even if fitter, but
less abundant, alternatives exist [62–65].

We are far from fully understanding how genomic changes in complex heterogeneous
populations cause adaptive changes in phenotypic traits [8]. Adaptation of heterogeneous
molecular populations to new environments is a collective process in which the parallel
search of genotype spaces becomes deeply intermingled with the identification of fitter
states. The latter states are analogous to emergent properties and, as such, cannot be
reduced to the sum of individual contributions: The collective state results from non-trivial
interactions among mutants and as a nonlinear addition of minor changes (beneficial,
neutral, or even deleterious at the individual level) that turn out to improve fitness at the
population level.
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Abbreviations
The following abbreviations are used in this manuscript:

GP Genotype-to-phenotype map
PDB Protein Data Bank
PSP Protein structure prediction
RdRp RNA-dependent RNA polymerase
RMSD Root-mean-square deviation

Appendix A. Mutations in the Qβ Replicase Detected in the Consensus Sequence

In previous experiments of adaptation of the Qβ phage to various conditions, sev-
eral mutations in the Qβ replicase rose to high abundance, as detected through Sanger
sequencing in the consensus sequence. Table A1 lists these mutations, which were used in
our study of protein stability described in Section 3.1, and the evolutionary lines in which
they were detected. All mutations obtained in the adaptation experiments at 43 ◦C were
reported in [32], with the exception of mutations U3784C and C3879A, which were detected
in other experiments of adaptation to 43 ◦C [24,30,53,57].

Table A1. High-abundance non-synonymous mutations in the replicase of the Qβ phage adapted
to 43 ◦C. Experiments were performed in triplicate, and L1, L2, and L3 indicate that each of the
three independent lines simultaneously evolved. The initial Met amino acid is not considered in the
enumeration of amino acid positions. The last column shows the average and standard deviation
of changes in the folding free energy of the protein with that mutation with respect to the sequence
without it, estimated through six different PSP algorithms. See the main text and the Materials and
Methods for details.

Nucleotide Mutation Amino Acid Mutation Evolutionary Line ∆∆G

C2452U A33V C43P2, L1 0.31± 0.79
U2776C V141A C43P2, L1 and L3 −1.24± 0.43
U3311G I319M C43P2, L2; C43P25, L1, L2 and L3 −1.07± 0.70
U3402C S350P C43P2, L3 0.14± 1.02
U3784C I477T Occasional on adaptation to 43 ◦C −1.45± 0.94
C3879A L509I Frequent on adaptation to 43 ◦C −0.64± 0.63
C3903U L517F C43P2, L2; C43P25, L2 and L3 −1.21± 0.77
G3945A G531S C43P2, L1 and L2; C43P25, L1, L2 and L3 −0.80± 0.88
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