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Abstract: Estimation of solvent entropy from equilibrium molecular dynamics simulations is a
long-standing problem in statistical mechanics. In recent years, methods that estimate entropy using
k-th nearest neighbours (kNN) have been applied to internal degrees of freedom in biomolecular
simulations, and for the rigorous computation of positional-orientational entropy of one and two
molecules. The mutual information expansion (MIE) and the maximum information spanning tree
(MIST) methods were proposed and used to deal with a large number of non-independent degrees of
freedom, providing estimates or bounds on the global entropy, thus complementing the kNN method.
The application of the combination of such methods to solvent molecules appears problematic because
of the indistinguishability of molecules and of their symmetric parts. All indistiguishable molecules
span the same global conformational volume, making application of MIE and MIST methods difficult.
Here, we address the problem of indistinguishability by relabeling water molecules in such a way
that each water molecule spans only a local region throughout the simulation. Then, we work out
approximations and show how to compute the single-molecule entropy for the system of relabeled
molecules. The results suggest that relabeling water molecules is promising for computation of
solvation entropy.

Keywords: entropy; solvation; assignment problem; hungarian algorithm; relabeling

1. Introduction

The estimation of free energy and entropy from molecular dynamics calculations is a
long-standing problem in biomolecular simulations [1–8].

Pathway methods [9] based on free-energy perturbation [10] or thermodynamic in-
tegration [11] are accurate but difficult to apply for large systems, moreover linking the
results of the calculation to single molecular components is difficult.

Entropy can be also computed from the dependence of the computed solvation free
energy, or using pathway methods using the proper integrand [12].

In this work, we focus on ensemble methods, which display large fluctuations, and
therefore converge slowly, but may be applied also to large systems and allow in principle
to link the results to all the degrees of freedom of the system.

Treatment of solvation with ensemble methods is challenging due to the large number
of correlated degrees of freedom. Most solvation theories have been proposed based on
distribution functions, which are accessible experimentally and can be easily visualized. In
this context, inhomogeneous fluid solvation theory (IFST) [13,14], has provided the theoret-
ical reference frame for a number of applications such as WaterMap [15,16], GIST [17,18],
SSTMap [19]. Other used models, which depart from straightforward solvent simulation
analysis, include Grand Canonical Monte Carlo simulations [20], the reference interaction
site model (3D-RISM) [21] and other methods as recently reviewed [22].
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Molecular dynamics simulations provide a large number of configurational samples
from which single-molecule distribution functions can be computed. Such distribution
functions are more practical; however, less informative than the actual set of configurations
recorded in a simulation.

Because in molecular dynamics simulations, the enthalpy is obtained as the ensemble
average of the recorded energy, the problem of estimating the free energy of a system is
essentially that of estimating the entropy, demonstrating the importance of this task.

In the last decade, methods based on the k-th nearest neighbour [23] (kNN) to compute
the entropy of a system based on the k-th nearest neighbour have been proposed and
applied to solutes and solvent. Most applications of the kNN methods have concerned
internal degrees of freedom [17,24–32] although the method was also used for computing
positional-orientational entropies [17,30,32–42]. The latter applications required in turn to
define a distance in positional-orientational (most commonly refered to as translational-
rotational) space [35,37], and the study of an accurate approximation of the volume of a
ball in such a six-dimensional space [37,38].

The application of the kNN method, and other methods for entropy estimation,
has been complemented by approximations to deal with the high-dimensionality of the
configurational space of typical biomolecular systems. In particular, first Gilson and
co-workers developed the mutual information expansion (MIE) [26,43] and later, the
Maximum Information Spanning Tree approach by Tidor and co-workers [44] was applied
by the same authors [45,46] and others[30,47–50] to entropy estimation.

Here, we focus on specific issues connected to the application of the approach to
solvent molecules. For the sake of illustration, we will consider water but the treatment
will be generally applicable to other solvent molecules.

For what concerns water, Berne and coworkers [27] used before the k-th nearest
neighbour method to compute the Shannon pairwise orientational entropy. The correlation
among positional and orientational degrees of freedom was simplified considering three
distance ranges, and the orientational degrees of freedom were reduced from five to four
by neglecting the dihedral angle defined by the rotation of one water molecule dipole
about the oxygen–oxygen interatomic vector with respect to the other water molecule. The
framework and the approximations followed previous work by Lazaridis and Karplus [51].

The remaning four angular dimensions were treated by repeated application of the
generalized Kirkwood superposition approximation [52], resulting in formulae containing
joint probabilities of at most two variables. After suitable changes of variables, they could
estimate two-dimensional entropies by using the kNN approach, providing an accurate
estimate of the excess entropy of water.

In the application of the kNN method to water molecules, a significant improvement
was the consideration of distances in the six-dimensional translation-rotation space [35,37],
which removed the need to decouple positional and orientational coordinates. In our
previous work, the correctness of the approach and its accuracy were demonstrated [37]
and recently extended to two translation-rotations [38].

Along this line, Irwin and Huggins [40] presented the application of the kNN method
to the solvation of a Lennard–Jones molecule in neon in the context of the inhomogeneous
fluid solution theory (IFST), which is based in turn on a generalization of the Kirkwood
approximation [53].

Recently the unbinned weighted histogram analysis method (UWHAM) approach
by Levy and coworkers [54,55] led to very accurate (95%) estimation of excess solvation
energies from end-point simulations or just with the addition of one intermediate state.
The approach focuses on a single water molecule at a time at fixed position, e.g., a crystal-
lographic solvated water.

Compared to the latter and other methods, the analysis presented here differs in
one basic aspect: our aim here is to define a framework to turn a problem involving
indistinguishable molecules spanning the whole configurational space into a problem
involving distinguishable molecules, each spanning a localized configurational space. If
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this task can be accomplished, one can treat solvent entropy based on the kNN and MIST
methods, on the same ground as for other biomolecular systems with a large number of
correlated degrees of freedom. To do this, we focus on mapping the problem involving
indistinguishable solvent molecules into a problem where solvent molecules retain their
identity, which is done here via a relabeling of water molecules and hydrogen atoms.

After this paper was first submitted, we became aware that a similar approach was pro-
posed by Reinhard and Grubmüller in the context of the quasiharmonic approximation [56]
and very recently by Heinz and Grubmüller [41,42]. The approach described here differs
in that it is built on the exact theory developed previously for the kNN method applied
to translation-rotations [8,37] and the entropy calculation after relabeling is not based
on pairwise distances between relabeled molecules, but rather on the distances from
chosen references.

Here, we outline the relabeling method, apply this to pure water and water around a
fixed water molecule, and highlight its features in relation to entropy estimation.

The paper is organized as follows: (i) the k-th nearest neighbour method is sum-
marized; (ii) the metric in single-molecule translational-rotational space is reviewed; (iii)
the distance between single molecules is used to define a distance between ensembles
of molecules, thus providing a criterion (the search for minimal distance) to optimally
relabel indistinguishable molecules (and atoms); (iv) the hungarian algorithm for optimal
relabeling of solvent molecules is reviewed; (v) the original problem of the computation
of entropy on the ensemble of indistinguishable molecules is mapped to the problem of
the computation of entropy on the ensemble of relabeled and localized molecules (and
atoms). The approximations under which the equations are valid are discussed; (vi) the
systems and the simulations used to test the theory are described; (vii) results are presented
and discussed.

2. Methods
2.1. The K-th Nearest Neighbour Method for Entropy Estimation

The k-th nearest neighbour method has been proposed by Kozachenko and
Leonenko [57] and further developed and corrected by Demchuk and coworkers [23].
We have recently reviewed the method and its practical implementation [38], we sum-
marize here the main features of the method. The central idea is that the local density of
a distribution may be estimated by constructing a ball with radius equal to the distance
from each of n samples to its k-th nearest neighbour. Since the ball contains k samples, the
probability density is reasonably estimated by:

ρ̂ =
k

nV
(1)

and therefore, if Vik is the volume of the ball centered at sample i, with radius up to its
k-th nearest neighbour, the probability density at each sample is reasonably estimated by
the following:

ρ̂i =
k

nVik
(2)

The entropy, which is expressed as follows:

S = −kB

∫
ρlog(ρ) (3)

is thus naively estimated by the ensemble average of −kB log(ρ̂), i.e.,

Ŝnaive = −kB < log(ρi) >= −kB
∑i log( k

nVik
)

n
(4)
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Demchuk and coworkers [23] worked out the exact theory based on this idea and
found the unbiased estimator:

Ŝn,k = kB ∑
i=1,n

(log(Vi,k) + log(n)− Lk−1 + γ)

n
(5)

= kB ∑
i=1,n

log(Vi,k)

n
+ log(n)− Lk−1 + γ (6)

where Lk−1 − γ plays the role of log(k) in the naive formula and is defined iteratively by
L0 = 0, Li = Li−1 +

1
i and γ is the Euler–Mascheroni constant (0.5722. . . ).

It is crucial, for the application of the method, that it is possible to compute the
volume of a ball in the space of samples, which is not in general as straightforward as
in euclidean spaces. The next subsection addresses this issue for the single-molecule
translational-rotational space.

2.2. Metric in Translational-Rotational Space

The metric in the translational-rotational space of one and two molecules has been
addressed in our previous work [37,38], we resume here the main properties.

The definition of distance in translational-rotational space combines the distance in
translational space with that in rotational space. Many definitions of a metric in the space
of rotations are possible with different properties [58]. The distance in rotational space
can be combined with the translational space distance according to the euclidean product
metric [59], which can be shown to be a metric. Such a way of combining the two distances
into a single distance was first proposed by Huggins [35] and we introduced the idea of
using a length to make the two distances homogeneous, and provided the formula for the
volume of a ball in translational-rotational space [37] and its approximation for use in the
kNN approach.

We represent the translation-rotation state of a molecule by a translation vector,~t, and
a rotation matrix, R, with respect to a fixed frame of reference.

A natural definition of distance in rotation space is given by [33,58,60]:

da,b = arccos
[
Tr(R−1

a Rb)− 1
2

]
(7)

where the subscripts a, b indicate solvent molecule a and b, respectively, and Tr indicates
trace operation.

If two solvent molecules (say a and b) are superimposed to a reference one by rotation
Ra/b and translation~ta/b, we define their compound distance d in translational-rotational
space as follows [35,37]:

da,b =

√√√√||~ta −~tb||
2
+ l2 ||arccos

[
Tr(R−1

a Rb)− 1
2

]
||

2

(8)

where, the subscripts a, b indicate solvent molecules a and b, respectively, and l is a length
for making translational and rotational distances homogeneous. The latter can be chosen
arbitrarily, in principle, but it is convenient to have a similar weight for cartesian and
angular components of the compound distance.

Furthermore, if there are symmetric parts in the molecule, the distance may be chosen
as the minimum distance among all possible symmetrically related configurations.

2.3. Distance in the Configurational Space

The configuration of a system of indistinguishable molecules may be described by
a class of equivalence, including all possible permutations of their labels. If solvent
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molecules display symmetry, all symmetrical configurations must be included in the same
class of equivalence.

Since any permutation of labels will be consistent with the same system configuration,
it is not obvious how to define a distance, at variance with the case where molecules
are distinguishable. For instance, the root mean square deviation (RMSD) between
molecules with the same labels would result in distances larger than zero for the same
configuration with different labeling. A similar consideration applies to symmetry-related
molecular configurations.

For this reason, we must first define a distance independent of both labeling and
molecular symmetry operations.

In order to do this, we first choose a reference configuration (e.g., one of the configura-
tional samples, but it could also be a regular arrangement of the system or a minimized
configuration). Then, the labels of the molecules in each configuration are permuted and
symmetry operations are performed in such a way that the distance (defined hereafter)
from the reference configuration is minimal.

Using the distance in rotational-translational space defined for the single molecule in
the previous section, we define the distance (dL) between two different labeled configura-
tions as the sum of the distances, di of each labeled molecule i in one configuration from
the molecule with the same label i in the other configuration:

dL = ∑
i=1,N

di (9)

and we find the permutation of indices, which among all permutations P of the sample
molecules is the one that makes ∑i=1,N di minimal. This is executed algorithmically as
detailed in the next section.

The distance between two configurations is defined as follows:

d = min
{P}

dL (10)

Note that if the defined single-molecule distance di is a metric, it can be shown that
the minimal distance d between the two configurations defines a metric in the space
of configurations.

The definition of a distance between samples is necessary to provide an optimal
criterion for relabeling solvent molecules, which is described in the next subsection. Using
the relabeled system, we show how single-molecule entropy can be computed, as detailed
in the following sections.

2.4. Optimal Relabeling of Molecules

Relabeling molecules aims at transforming the indistiguishable molecules system into
a system where all molecules are labeled and span a localized configurational region. We
choose a reference configuration where each water molecule has its own label. We sort all
molecules by their distance from the solute and renumber accordingly the water molecules
in each configuration obtained from snapshots from molecular dynamics simulations. Then,
for each configuration, we aim at relabeling each water molecule in such a way that the
configuration distance from the reference configuration, i.e., the sum of each molecule
distance between the two configurations (see previous subsection), is minimal.

The problem is not trivial and here it is recast in the framework of the assignment
problem that deals with the optimal assignment of N (or more) tasks to N persons, with
costs that vary depending on the task and on the person.

In other words, this amounts to assigning each different task i to each different
person labeled j in such a way that the set of assigments j(i), with j, i = 1, 2, . . . , N, is a
permutation of labels 1, 2, 3, . . . , N, i.e., each task is assigned to a single person and each
person is assigned a single task.
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Here, the cost of assigning molecule j of the snapshot configuration to molecule i of
the reference configuration is the distance in translational-rotational space.

Another way of looking at this problem, which leads us directly to our problem, is the
following: we have a cost matrix with N rows and N columns and we look for a one-to-one
mapping of rows onto columns.

In our relabeling problem, we set up the cost matrix by assigning the distance from
each solvent molecule (column) in the sample configuration to each solvent molecule (row)
in the reference configuration. The minimal cost found by the assignment algorithm will
be the sum of distances in Equation (10). The problem is solved by the so-called Hungarian
algorithm [61,62].

2.5. The Hungarian Algorithm

The Hungarian algorithm finds the best matching between columns and rows of a
cost matrix such that the sum of costs is minimal.

For the sake of illustration, consider the matrix in the panel A of Figure 1 where
for each of the five molecules W1, W2, W3, W4 and W5 in the reference configuration,
all costs (i.e., the distances from all the same five molecules in the sample configuration)
are reported.
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Figure 1. A sketch of some steps of the Hungarian algorithm. (A) The initial cost matrix (e.g.,
distances among five water molecules in the sample and reference configuration) is shown. The
minima in each row are underlined and subtracted from the relative rows to yeld a new cost matrix.
(B) The minimima different from zero in each column are underlined and subtracted from each
column to yeld a new cost matrix. (C) In the new cost matrix, some “matching” zeroes (shown in
bold) match one column and one row uniquely. Non-matching zeroes are underlined. Paths starting
and ending on an underlined zero and alternating matching and non-matching zeroes, such as the
one highlighted by the thick dashed line, are sought and new matching zeroes are chosen. If no such
path exists, the algorithm performs subtractions and additions to the columns and the rows which do
not alter the solution and create new paths [62]. This step is iterated until completion, to yeld a new
matrix with a unique chosen zero on each row and each column. (D) The set of chosen zeroes in the
matrix (one per row and column) is the sought assignment, i.e., in this example, W1 in the sample is
assigned the label W5, W2 is assigned the label W3, etc.

The task is to find the one-to-one correspondence of molecules in the reference to the
ones of the sample configuration such that the total cost is minimal.

The Hungarian algorithm uses two key concepts: (i) if we add or subtract a constant
cost to a row, the solution is not affected (i.e., if all distances of a reference molecule to all
sample molecules are increased by the same amount, the costs of all assignments will be
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equally affected); (ii) if we add or subtract a constant cost to a column, the solution is not
affected (by the same token as for the rows).

The algorithm proceeds iteratively using these ideas and finding intermediate tentative
assignments whose number can be augmented at each step until a complete assignment is
found. All details are reported in a book by Knuth [62] (ASSIGN_LISA algorithm), and are
too elaborate to be described here. The elements of the algorithm are sketched in Figure 1.

At the end of the algorithm, each solvent molecule is relabeled in such a way as to
make the distance from the reference configuration minimal.

2.6. Entropy Calculation after Relabeling

We assume that the solvent molecules are sufficiently rigid as to treat them as rigid
bodies as far as intermolecular interactions are concerned.

The classical partition function of N nearly rigid interacting bodies, assuming in-
tramolecular interactions decoupled from intermolecular interactions and neglecting possi-
ble symmetries is

Qclass =
1

N!
qN

p qN
intraZN (11)

where qp and qintra are the momentum integral and the partition function for intramolecular
interactions, and ZN is the classical configurational integral:

ZN =
∫

VN
e−

U(x1,...,xN )
kT (12)

where U(x1, . . . , xN) describes intermolecular interactions.
Momentum and intramolecular interactions integrals factor out and cancel out upon

comparison of different macrostates of the same system at the same temperature. Since we
assume nearly rigid molecules, we consider only positional and orientational coordinates
indicating as xi all the six variables refering to water molecule i (e.g., center of mass position
and axis-angle of rotation with respect to a reference system).

For such a system, the configurational entropy is given by

S = −∂(−kBT log(ZN/N!))
∂T

(13)

= −kB

∫
VN

ρ(x1, . . . , xN) log(ρ(x1, . . . , xN)) (14)

−kB log(N!) (15)

with

ρ(x1, . . . , xN) =
e−

U(x1,...,xN )
kT

Z
(16)

We can partition the ith single-molecule integration space Vi in N (equal to the number
of molecules) disjoint domains Ωi,ki

, where the first index refers to the molecule and the
second indicates the domain, covering the integration space. The same partitioning is
applied to all molecules’ configurational space. The N-molecule space VN can thus be
written as the product of the spaces Vi of each molecule.

The configurational integral may be rewritten accordingly as

S = −kB

∫
V=ΠiVi=Πi

(
∑ki

Ωi,ki=1,N

) ρ(x1, . . . , xN) log(ρ(x1, . . . , xN))− kB log(N!) (17)

= −kB ∑
{C(k1,k2,...,kN)}

∫
Πi

(
Ωi,ki

) ρ(x1, . . . , xN) log(ρ(x1, . . . , xN))− kB log(N!) (18)

where {C(k1, k2, . . . , kN)} stands for all possible combinations of indices ki.
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In order to proceed further, we make a key assumption, for which the limits will be
assessed later: we assume that the density of the molecules is so high that each of the Ω
domains contains one, and only one, molecule.

This implies that all integrals over domains in the product ΠiΩi,ki
in which ki = k j

results in a zero contribution to the integral, which implies in turn that only combinations
of indices {ki} that are permutations of the indices {i} contribute the integral. Thus, the
summation is restricted to the set of permutations of the indices ({P(k1, k2, . . . , kN)}).

S = −kB ∑
{P(k1,k2,...,kN)}

∫
Πi

(
Ωi,ki

) ρ(x1, . . . , xN) log(ρ(x1, . . . , xN))− kB log(N!) (19)

Since all molecules are indistinguishable, indices may be permuted without affecting
the integral; the latter can be rewritten as

S = −kBN!
∫

Πi

(
Ωi,ki

) ρ(x1, . . . , xN) log(ρ(x1, . . . , xN))− kB log(N!) (20)

with indices permuted in such a way that molecule 1 is in Ω1, molecule 2 is in Ω2, . . . ,
molecule N is in ΩN .

In order to establish a correspondence between the permutation and the relabeling dis-
cussed in the first sections, we now define a new probability distribution ρ′(x1, . . . , xN) =
N!ρ(x1, . . . , xN)Πiδ(xi ∈ Ωi), with δ(xi ∈ Ωi) = 1 if xi ∈ Ωi and 0 if xi /∈ Ωi. All variables
are thus locally and disjointedly distributed, in such a way that∫

Πi

(
Ωi,ki

) ρ′(x1, . . . , xN) = 1 (21)

To complete this picture, let us denote the probability distributions of each relabeled
molecule, which are all localized and different, as ρ′i(x) = N!ρ(x1, . . . , xi = x, . . . , xN)Πj
δ(xj ∈ Ωj).

The probability density that any of the molecules is found at x, ρ(x), is given by the
integral of the distribution over other particles and a factor N corresponding to the number
of possibilities for the first index:

ρ(x) = N
∫

ρ(x1 = x, x2, . . . , xN)dx2dx3...dxN = ∑
i

ρ′i(x) (22)

The latter equation will be useful to calculate the single-molecule entropy.
The entropy of the localized probability distribution ρ′(x1, . . . , xN) is related to the

entropy S of the probability distribution ρ(x1, . . . , xN) of N indistingushable molecules,
under the assumption of disjoint configurational domains, by the equation:

Sρ′(x1,...,xN) = S (23)

Now, the original problem involving indistinguishable molecules has been turned
into a problem where molecules 1, 2, 3, . . . span localized spaces Ω1, Ω2, Ω3, . . . and the
factor log(N!) linked to permutation of indistinguishable molecules cancels out. Although
extremely difficult, the problem, cast in this way, can now be faced with tools such as MIE
or MIST, which deal with the entropy of many-variables probability distributions.

2.7. Single-Molecule Entropy Calculation after Relabeling

After relabeling, the set of molecules with the same labeling are the first nearest-
neighbours (compatible with one-to-one correspondence of labels) with respect to the
reference configuration and define, along the trajectory, an ensemble of configurations
distributed according to the function ρ′(x1, x2, . . .) defined in the previous subsection.
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For each snapshot, molecules are first renumbered, with lower numbering according
to the lesser distance from the solute or from a set of fixed coordinates.

The ensemble of configurations is dependent on the reference configuration chosen. In
order to average over possible reference configurations, 100 snapshots were taken from the
simulation and for each of these snapshots, water molecules of the other 9999 snapshots
(including also the other 99 snapshots chosen for averaging) were optimally relabeled
using the Hungarian algorithm as described above and in the reference cited.

The pairwise distances between molecules in each ensemble of configurations (one
for each molecule and for each of the reference configurations) were used to estimate the
single-molecule entropies according to the k-th nearest neighbour method, applied to the
6N dimensional space of configurations.

The entropy obtained in this way for each molecule was averaged over the 100 differ-
ently referenced ensembles.

Reference-state entropies were obtained by considering independent molecules each
spanning the same reference state translational volume Vt and a rotational space of 4π2,
independently.

Sre f = kB

(
log(Vt) + log(4π2)

)
(24)

Single-molecule entropies were computed from the k-th nearest neighbour distances
according to Equation (6). The volume of the ball up to the nearest-neighbour distance
d was approximated by a series expansion [37], with l the length to mix positional and
orientational distances equal to 1 Å:

Vd = π3 × (
d6

12l3 −
d8

384l5 +
d10

23040l7 −
d12

2211840l9 + . . .) (25)

The approximation that each relabeled molecule spans non-overlapping volumes has
been assessed by considering the overlap coefficient, i.e., the integral of the minimum of
two distributions, for pairs of molecules close in the reference configuration.

Then, the effect of such overlap on the entropy of two molecules close in the reference
configuration was assessed by calculating the entropy of the two ensembles separately and
comparing this with an ensemble obtained by pooling the two ensembles.

Note that we aim at estimating the single-molecule entropy:

− kB

∫
ρ(x) log(ρ(x))dx = −kB

∫
∑

i=1,2

ρ′i(x)
2

log

(
∑

j=1,2

ρ′j(x)

2

)
≤ − kB

2

∫
∑

i=1,2
ρ′i(x) log(ρ′i(x)) (26)

where the latter inequality is an equality if the distributions ρ′i(x) are disjoint.
The difference between the entropy of the pooled ensembles and the average of the

two isolated ensembles is a good measure of the overlap of the two distributions. For
non overlapping distributions, the difference is kB log(2), whereas for identical completely
overlapping simulations, the difference is 0.

2.8. Molecular Dynamics Simulations

Molecular dynamics simulations of a cubic box of 714 TIP3P water [63] molecules was
performed, keeping the pressure constant using a Langevin piston with barostat decay
time of 100 fs and barostat oscillation period of 200 fs [64,65]. The 310 K temperature was
controlled using Langevin dynamics with a relaxation time of 200 fs. Water bond lengths
and angles were constrained using the Settle algorithm [66].

The integration timestep was 1 fs for bonded interactions and 2 fs for non-bonded
interactions. The cutoff was set to 1.2 nm with a switching region starting at 1 nm. A 100 ns
simulation was performed. Configurations were saved at 100 ps intervals.

The starting configuration was obtained after an equilibration simulation of 3 ns at
constant pressure and temperature.
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Two simulations were run. In one (which we will name the “restrained” simulation),
a water molecule was fixed at the center of the box. In the other (which we will name the
“free” simulation), all molecules were free to move.

For both simulations, the reference consisted of the positions of atoms of the fixed
molecule in the restrained simulation, placed at the center of the box.

In each snapshot, before the analysis is started, the molecules are renumbered accord-
ing to the minimum distance from the reference, so that molecules with lower numbering in
the restrained simulation are more affected by the presence of the fixed molecule, whereas
in the free simulation, all molecules behave independently from their numbering.

All simulations have been performed using NAMD v2.12b [67] and visualization has
been performed using VMD 1.8 [68].

3. Results and Discussion
3.1. Optimal Labeling of Water Molecules

After 3 ns equilibration, 714 water molecules were simulated at constant pressure and
temperature for 100 ns. Snapshots were saved every 10 ps.

The distance in the positional-orientational space was computed as defined in the
Materials and Methods with a length of 1 Å to mix spatial and angular distances. To deal
with the equivalence of water protons, the distance was computed for the two alternative
labeling of protons and the one corresponding to the lesser distance was chosen.

The average distance, and the average of its standard deviation, of each relabeled
water molecule from the reference ones were 1.77 and 0.67 Å, respectively.

The effect of relabeling may be seen in Figure 2, where snapshots of a single water
molecule along the trajectory are displayed before and after relabeling. It is readily seen
that the volume spanned by the molecule in the relabeled state is comparable to V/N.

Figure 2. 10,000 snapshots for a single molecule from the dynamics are shown in gray and 1000 snap-
shots in black after relabeling.

Relabeling of molecules results in moderate overlap of the spaces covered by each
molecule. In order to evaluate the extent of the overlap among distributions, we considered
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the closest (in the reference configuration) relabeled molecules (Figure 3) and computed the
average separation of the centers of the distributions (2.99 Å) and the average root mean
square deviation along the principal axes of the distributions (1.09 Å).

Figure 3. 10,000 snapshots for two neighbouring relabeled molecules from the dynamics are shown
in gray and black, respectively.

The distribution of the oxygen atom of each relabeled molecule may be approximated
by a three-dimensional Gaussian distribution, allowing the calculation of the overlap
integral, defined as the integral of the minimum of the two distributions (centered at
2.99 Å distance and showing a root mean square deviaton of 1.09 Å along the axis connect-
ing the two centers), which amounts to 0.17.

An assessment of the effect of such overlap on the entropy of single-molecule distribu-
tions is discussed in the following subsection.

3.2. Single-Molecule Entropy from Single-Molecule Distributions

We have used the formulae reported in the Methods section to estimate the single-
molecule entropy for the distributions of all relabeled molecules. In practice, each relabeled
molecule has its own localized distribution with associated entropy. The sum of the
entropies of the individual distributions is similar, but in general different than the real
entropy because the distributions are spread, not disjoint and show some overlap with
each other as described above.

We first sorted the neighbours in the reference configuration by their oxygen–oxygen
distance, then we considered all pairs of molecules closer than 12 Å, and the list of the
first 40 neighbours, i.e., those likely to be more affected by overlap, was retained. For each
of these closest neighbours, we have estimated the entropy of the distribution obtained
considering each snapshot of the reference molecule and the neighbour as snapshots of the
same molecule as detailed in the methods section. The computed entropy of such a pooled
ensemble (say for molecule i and j) corresponds to:

− kB

∫ ( (pi(x) + pj(x))
2

log
(pi(x) + pj(x))

2

)
(27)

In practice, for the normalized sum of two non-overlapping distributions, the entropy
will be the mean of the entropy of the two distributions plus a kB log(2) term arising from
the two disjoint spaces where the molecule can be found with a probability of a 1

2 each.
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If the distributions are overlapping, then the difference in the entropy with respect
to the mean of the two distributions will be lower than kB log(2) and zero if the two
distributions are exactly the same.

To assess the effect of overlapping on entropy, ten molecules were selected randomly
and for each of their 40 neighbours, the entropy of their disjoint and pooled distributions
were computed using the kNN method.

The practical implementation of the kNN method has been thoroughly described
previously [38], and the figures we describe in the following are obtained by smooth
extrapolation of the entropy to zero kNN distance. All the details and examples are given
in the cited reference [38].

The set of snapshots relabeled based on the first snapshot results in a cloud of config-
urations for each molecule, as shown for two such overlapping distributions in Figure 3.
Relabeling of hydrogen atoms is also based on the first snapshot. It is important to keep
in mind that, when computing distances between configurations, the labeling of protons
should be chosen so as to make the distance shorter. If this is not done, i.e., if the in-
distinguishability is not taken into account, after the first relabeling, the entropy of the
distribution and the overlap are overestimated. Although the spatial overlap of the dis-
tributions for neighbouring molecules in the first reference snapshot is not negligible, the
entropy difference between pooled and single distributions is almost exactly equal to the
term kB log(2). The apparent contradiction is due to the fact that the different orientations
of the molecules and relabeling of protons make the distance from molecules in the pooled
set to molecules in their original set shorter than for the other set.

If we take a central molecule and select only the four closest neighbour molecules, the
overlap of distributions lowers the computed entropy on average by 0.09± 0.13 kB; the
effect is thus very small.

The configurational entropy Sth expected for the system of N = 714 randomly dis-
tributed indistinguishable molecules in an average volume of V = 27.87923 Å3, where one
of the two rotational states (symmetric upon swapping protons) is selected, is −4.695 kB,
with respect to the 1 M, random orientation standard state.

The entropy computed for the distribution of molecules referenced to the first snapshot
is larger than expected (−4.695 + 0.689± 0.146 kB, only incidentally numerically similar
to log(2)). The reason why this happens is that the probability density is not uniform but
decreases with the distance from the reference molecule.

In the approach presented here, this bias is not, however, relevant because the distances
are computed for each molecule along the trajectory relative to the molecule with the
same label in the reference configuration and the latter is at the center of the distribution
(because molecules are relabeled in order to minimize the distances from molecules in
the reference configuration). Close to this position, i.e., in the space sampled by the first
nearest neighbours, the density arises almost entirely from molecules which are relabeled
according to the reference molecule, and it, therefore, approximates very well the true
single particle density.

The mean entropy computed along the trajectory −4.731± 0.136 kB indeed matches
within fluctuations in the theoretical value.

3.3. Accuracy

The accuracy of the kNN method applied to translation-rotation and its dependence on
the neighbour, number of samples and scaling parameter has been thouroughly reviewed
previously [37]. The scheme presented here differs from previous applications in that for
each ensemble of molecules, all distances are taken with respect to the single reference
snapshot instead of using all pairwise distances among snapshots. To assess the accuracy
of this procedure, we choose 100 reference snapshots and 10 molecules from the free water
simulation at 310 K, for which the single-molecule entropy is known and equal to the freely
rotating molecule at the given concentration of 54.72 M with the choice of one labeling of
the hydrogens (−4.695 kB) with respect to the 1 M, freely rotating state. For each of the 100



Biophysica 2021, 1 291

reference snapshots, we optimally relabel all other snapshots and compute for each of the
10 chosen molecules the entropy using the kNN method. The analysis is performed in the
realistic scenario of a 500 ns simulation with snapshots taken at 10 ps intervals.

Entropy estimation for a single molecule and for a single reference snapshot is rather
noisy depending on the distance to the first nearest neighbours. For this reason, averaging
is essential. Figure 4 shows the plot of the average estimated entropy versus the average
k-th nearest neighbour distance (increasing with k) and the estimate from extrapolation
to zero distance. The variance of the estimated entropy increases with decreasing k in
agreement with theoretical estimates [23].
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Figure 4. The average estimated entropy (and its extrapolation to zero distance) is plotted against
the average distance to the first 20 nearest neighbours with error bars on both distance and entropy
estimate. The vertical error bars are equal to the standard deviations of the entropy estimate drawn
for each individual molecule in a single snapshot from the first 20 neighbours in all other snapshots.

From the figure, the uncertainty of each entropy determination referenced to a single
molecule may be assessed.

3.4. Computational Time

The complexity of the Hungarian algorithm as implemented by Knuth [62] is O(n3).
To assess the actual dependence of the computational time on the increased number of
molecules considered for relabeling, we performed 100,000 optimal relabelings for an
increasing number (from 80 to 680 in steps of 40) of water molecules. The log–log plot
of the running time versus the number of molecules is a straight line with slope 2.272,
less than the expected 3, most likely due to the non-random structure of the distance
matrix, where each row and column display 4 to 6 distances that are much shorter than
all others. The running time of molecule pairwise distance computation and relabeling
for two snapshots on a single core of an Intel(R) Core(TM) i7-4900MQ CPU running at
2.80 GHz is 3.66× 10−7 × n2.272 s, where n is the number of molecules.

3.5. Application Example: Waters around a Fixed Water Molecule

As an application example, a simulation was run where a water was fixed. The
distribution of other water molecules in proximity of the fixed molecule is preferentially
oriented so as to form hydrogen bonds. The temperature (310 K in the simulation) results
in fluctuations about optimal positions. Since molecules are indexed in each snapshot
based on distance from the fixed molecule, the entropy computed for all molecules should
increase with their index.
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In Figure 5, 100 snapshots along the trajectory of the molecules relabeled according to
the four molecules closest to the fixed molecule in the first snapshot, are shown.

The single-molecule entropy corresponding to each molecule, computed as described
in the Materials and Methods and averaged over 200 snapshots, is reported in Figure 6.
The reduction in entropy for the four molecules closest to the fixed molecule is apparent.
By symmetry, it could be expected that the entropy of the first four molecules should be
the same, but in practice, the molecules matched to the closest molecules in the reference
snapshot are on average more restricted than more distant ones. This effect is visible in the
figure. The entropy computed for the first closest molecules is significantly less than that
for more distant molecules for which it approaches the theoretical value for independent
molecules at the same concentration with the same symmetry.

Figure 5. 100 snapshots along a 10 ns trajectory of the molecules matched to the four molecules
closest to the fixed water in the reference snapshot. Oxygen atoms are shown in red and hydrogen
atoms in white.
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Figure 6. The entropy of the relabeled molecules (continuous line) indexed based on the distance
from the fixed molecule. The entropy corresponding to the non-interacting symmetric molecules is
shown by the broken line.
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Summing up the differences with respect to the independent molecules, for the closest
nine molecules, i.e., up to the last molecule with entropy less than for the independent
molecules’ case, a value of −12.76 kB is obtained corresponding to −7.8 kcal/mol at 310 K.
This value is smaller but similar to the value (−6.7 kcal/mol) obtained using SSTMap [19] by
difference with respect to the free simulation, for the sum of orientational and translational
entropies in a grid of 8× 8× 8 Å3 centered on the fixed molecule.

4. Conclusions

The estimation of entropy of solvation is a long-standing problem in biomolecular
simulations. The indistinguishability of molecules results in theoretical and practical
approaches mostly based on distribution functions, which form the standard basis to
analyse molecular dynamics simulations of liquids.

Here, we have mapped the problem into a problem where all molecules and their
symmetric parts are relabeled in such a way that the global distance from a reference
configuration is minimal.

The approach has some distinct advantage in that, after relabeling, molecules display
localized distributions, making it possible to analyse global distributions in terms of
single molecules. For example, a bound water exchanging with bulk would always likely
receive the same label, making the analysis easier. Moreover, in the process of relabeling,
the distances from the reference configuration can be used to estimate the entropy of
individual molecules, giving a direct measure of restrictions in translational and rotational
freedom. For pure water at 310 K, the agreement with the expected theoretical entropy is
within 0.04 kB.

The perspectives opened by the approach are two-fold.
First, the two-molecule entropies and mutual information can be computed in order

to use established methods such as the MIE or MIST approach to entropy estimation. The
main drawback is that the kNN method, being based on pairwise distances and sorting, is
a slow method. Moreover, pairs of molecules are described in a 12-dimensional space, and
therefore, the number of snapshots needed to achieve a reasonable resolution is large, in
the range of 100,000, which makes the method even slower.

Second, the cost of matching in the Hungarian algorithm defines a metric on the space
of configurations (if the cost of matching a molecule is a metric). Such a distance could be
used in a kNN approach to estimate the entropy of an ensemble of configurations. The
same limitations described above apply here. Both these directions will be explored in
future work.
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