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Abstract: This paper proposes an optimized mobile robot navigation strategy using a functional firefly
algorithm (FFA) and choice function. This approach has two key advantages: first, the linear objective
function performs efficiently with the single degree and finite-order polynomial time operation, and
second, the cartesian constraint performs compactly with the chosen degree of freedom on the finite
interval. This functional approach optimizes the size of operational parameters in context with key
size, operation time, and a finite range of verification. The choice function achieves parameter order
(size) reduction. The attraction characteristic of fireflies is represented by the choice function for
optimizing the choice between low and high intensities of fireflies. In 2D and 3D environments,
the proposed robot navigation performs well in an uncertain environment with static and dynamic
obstacles. This efficiency includes the robot’s speed as determined by the choice function’s minimum
path lengths. The collision-free path is achieved by the non-void family of non-void sets. The obtained
results are optimal in terms of path length and navigational time. The proposed controller is also
compared with the other existing controllers, and it is observed that the FFA gives the shortest path
in less time for the same environmental condition.

Keywords: mobile robot navigation; firefly algorithm; choice function; path planning; obstacle avoidance

1. Introduction

With the growing demand for autonomous systems in household work, industry,
entertainment, medical care, transportation, and especially national security, mobile robots
play an important role and are heavily utilized. These mobile robots are used as UAVs, ma-
rine robots, or ground robots to perform critical tasks, especially where human interaction
is impossible [1]. While performing the task in an unstructured environment, autonomous
navigation is the major challenge for any mobile robot, as it involves many non-linear
constraints. To enable the means for autonomous navigation, the mobile robot should be
equipped with a power control unit, sensory mechanisms, and an intelligent path-planning
algorithm [2]. The success of any autonomous system completely depends on selecting and
implementing effective path planners. Therefore, path planners must be able to determine
the best-fit parameters among all possibilities to generate an optimal path by avoiding
obstacles. Autonomous navigation is not limited to a single objective function; hence, an
artificially intelligent computational approach is required to deal with the multi-objective
problem of fulfilling the goal of effective navigation in a complex, unstructured environ-
ment [3]. In mobile robot navigation (MRN) [4], the major challenges observed are path
planning in the presence of static and dynamic obstacles, path planning in the presence
of dynamic goals, and navigation in the presence of multiple robots. These challenges
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become very complex when counting over-optimization (obtaining the shortest path in the
minimum navigational time). Additionally, they require significant computing efforts for
seemingly simpler problems, including comparison with other intelligent approaches.

This work presents the application of the FA along with the CF as a multifunctional
approach to static and dynamic conditions. Real-time robots encounter challenges in
real-world scenarios, including noisy sensor data, perceptual uncertainties, dynamic envi-
ronmental complexities, computational efficiency constraints, limited model generalization,
and the critical need for safety and collision avoidance. To address these issues comprehen-
sively, strategies such as sensor fusion for data refinement, adaptive obstacle avoidance,
efficient algorithm design, machine learning for environment adaptation, and robust safety
protocols must be implemented to enhance the robot’s performance and reliability in
dynamic, uncertain environments. Achieving the goal of navigation requires the quick
computation of efficient paths, which is presented here by introducing first the CF and then
the FA. The key advantage of adopting the CF in MRN is an extension of the option for
selecting the optimum path by the characteristics of the non-void family and non-void set.
Another noteworthy advantage is to present the optional optimal paths into the classes
by FL. The obstacles are classified into non-void sets, allowing the robot to make a quick
decision and become more efficient. The choice of probability and the choice of optimality
are the two major characteristics of the choice function. These characteristics are applied to
improve the firefly algorithm for mobile robot navigation. The chaos of fireflies is trans-
formed into the index set of the non-void family in this paper. The obstacle avoidance
function comprises the distributed probability, and the distance–time function comprises
the fuzzy logic-based index set. Thus, MRN is studied and applied using mobile robot
navigation, multiple mobile robots, chaotic target seeking, multiple targets seeking, chaotic
obstacle position, topological spaces, and the firefly’s micro- and macro-attraction. The
simulation and real-time results are provided for validation in an uncertain environment,
and the obtained results are optimal compared to other navigational controllers. As per the
author’s belief and knowledge, very little work has been published on the path planning
of mobile robots in an unstructured environment in the presence of static and dynamic
(obstacle and goal) conditions using FA.

This paper is organized as follows. The introduction to the literature review is pre-
sented in Section 2. Section 3 presents the proposed functional firefly algorithm with its
mathematical analysis. In Section 4, the simulation and experimental results are presented
and compared. The conclusion and the future scope are presented in Section 5.

2. Review of Literature

From the review of the available literature on intelligent path-planning techniques
such as cell decomposition [5], fuzzy logic [6], neural network [7], particle swarm op-
timization algorithm [8], ant colony algorithm [9], bacterial foraging optimization [10],
harmony search algorithm [11], cuckoo search algorithm [12], and dragonfly algorithm [13],
it is clear that the applications of metaheuristic algorithms for solving mobile robot nav-
igational problems are growing rapidly compared to heuristic algorithms due to their
high-performance capabilities. The “randomization” and “local search” features of the
metaheuristic algorithm are critical. Randomization provides a good way to move away
from local search to search on a global scale, and therefore, the metaheuristic algorithm is
intended to be suitable for global optimization.

In 2008, Yang [14] proposed the firefly algorithm based on the behavior of fireflies for
solving various optimization problems in engineering. This firefly algorithm holds two
main characteristics of fireflies, i.e., flashing patterns and biological behavior. However,
this firefly algorithm follows the three fundamental principles under the two characteristics
as defined below:

1. Fireflies are unisex, but their attraction is based on intensity rather than gender;
2. The attraction is proportional to brightness, from lesser brightness to greater brightness;
3. The brightness interacts with the landscape of the objective function.
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These three rules are necessary and sufficient for applying the FA in various behavioral
applications. The generalization of these rules is possible because of the specific require-
ments and applications, i.e., 3D navigation of mobile robots, target-seeking applications,
chaotic obstacle positions, topological spaces, etc.

The basic formula of attractiveness interacts with the intensity of light presented
as follows:

β = β0e−γr2
(1)

where β is the variation of the attractiveness, γ is the light absorption coefficient, and β0 is
the attractiveness at γ = 0. Here, the choice of the axiom is applied to the existing firefly
algorithm. Next, the movement of a firefly (i) attracts a firefly (j) due to greater brightness,
and it is presented as follows:

xt+1
i = xt

i + β0e−γr2
ij
(

xt
j − xt

i

)
+ αtε

t
i (2)

where α and ε are the randomized parameters, although ε is a vector of random numbers
defined over the Gaussian number as uniform distribution.

FA has been studied and implemented to solve various optimization problems in
engineering and science. The fault detection in robots [15], economic emission dispatched
problem [16], reliability–redundancy optimization [17], mixed variable structural opti-
mization problem [18], cooperative networking problem [19], combinatorial optimization
problem [20], learning from demonstration problem [21], and the dynamic environment
problem [22] are a few of them. The FA has shown great performance and created a
good impact in the category of the population-based algorithm. The FA has the ability
to solve multi-model optimization and extremely non-linear problems excellently. It has
a better convergence speed for finding a global solution in a complex environment and
starts iteration processes without a good initial solution. As a result, FA and CF are chosen
here to investigate the environment for mobile robot navigation, which includes dynamic
obstacles and dynamic goals. Many researchers use the FA to solve mobile robot naviga-
tion problems. However, very few of the papers meet the requirements of the navigation.
The navigation of the mobile robot using FA in the presence of a static environment was
demonstrated by Liu et al. [23] and Hidalgo-Paniagua et al. [24]. However, in both ap-
proaches, the navigation strategies were presented in the simulation environment in the
presence of the static obstacle. The navigation task is difficult in the presence of a moving
obstacle, so Brand et al. [25] and Patle et al. [26] worked to develop the FA for a dynamic
environment. In their work, the environment with single and multiple moving obstacles
was tested for a single mobile robot system, respectively. The analysis of a multi-mobile
robot system in the presence of multiple obstacles was demonstrated by Kim et al. [27],
but the results of the navigation were limited to the simulation environment only and not
to the real environment. The study of single and multiple mobile robot systems over real-
time experiments was carried out by Patle et al. [28,29]. His work shows multiple mobile
robots navigating multiple obstacles. The application of FA is not only limited to ground
robots but also includes the navigation of aerial and underwater robots. Wang et al. [30]
developed an FA-based path-planning strategy for the aerial robot. It outperformed other
approaches in avoiding hazardous areas in a complex, crowded environment and reducing
fuel costs. Similarly, the FA-based underwater path planning strategy was examined by
Sutantyon et al. [31]. Their work primarily focused on the scheduling strategy of swarm
robots to avoid interface and jamming in underwater conditioning using the principles of
FA. In other work, they also presented underwater navigation in a partially known environ-
ment using a leavy-flight–firefly-based approach. To explore and enhance the performance
of the mobile robot system, the FA has been introduced into a few techniques such as
Q-learning [32], invasive weed optimization [33], radial basis function neural network [34],
pareto-based optimization algorithm [35], and many more. Table 1 gives an overview of
the related work using the firefly algorithm.
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Table 1. Comparison of Related Work for the Firefly Algorithm.

Reference No.

Single Robot/Multi-
Robot/Aerial

Robot/Underwater
Robot

Simulation Experimental Static/Dynamic
Obstacle

Hybrid
Technique Used

[20] Single Y N Static N
[21] Single Y N Static N
[22] Single Y N Static and dynamic N
[23] Single Y N Static and dynamic N
[24] Multi-robot Y N Dynamic N
[25] Multi-robot Y Y Dynamic Y
[26] Multi-robot Y Y Dynamic Y
[27] Aerial robot Y N Dynamic N
[28] Underwater Y N Dynamic N

3. Proposed Functional Firefly Algorithm

Various challenges exist in the real environment; some of them are the localization of
position in the environment, the determination of a goal and an organized path towards
it, obstacle avoidance mechanisms, and the generation of an optimal path in a minimal
amount of time. Figure 1a shows that no obstacle is present in the environment between the
robot and the goal position; hence, the robot reaches the goal position by using Euclidian
distance, which is optimal. But in Figure 1b, when the robot moves from its initial position
to the goal position, it detects the obstacle and stops. The obstacle avoidance mechanism
activates, and then, the robot avoids the obstacle, as shown in Figure 1c. While avoiding
the obstacles, it may produce several paths up to the goal position, while achieving the
shortest path from the robot’s initial position to the robot’s goal position is the proposed
study’s primary goal. The proposed algorithm addresses the issues mentioned above of
robot navigation over the choice function. Any mobile robot navigation is based on the
likelihood of selecting the best path, which is a function of distance and time. Therefore,
probability plays an important role in executing the navigation of mobile robots. As a
non-void family, CF comprises a set of probabilistic choices. Here, the axiom of choice
generalizes to FA. The fireflies are defined over a finite set, and the set of fireflies with
a distributed probability then generates the function of choice. The non-void family of
fireflies with a distributed probability comprises the classification. The proposed FFA holds
several advancements in context to theory and application. Flashing pattern feasibility is
defined on the finite interval to optimize the trajectory. The basic firefly algorithm is based
on a variation of the attractiveness of fireflies. The variable β is attractiveness. β0 exists if
attractiveness is defined at the distance γ = 0.
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Figure 1. Navigational challenges for a mobile robot in (a) exploring the environment for the shortest
distance, (b) obstacle avoidance, and (c) selection of an optimal path.

The key idea of this paper is to define attractiveness at the neighborhood of the
distance of not γ = 0 exactly but very close to zero. This approach is called calculus. The
neighborhood of β0 is defined by an interval (β0 − δ, β0 + δ), where δ is the small, positive
real number. β0 − δ is the point at the left-hand side from γ = 0, and β0 + δ is the point
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at the right-hand side from γ = 0. The reason for applying this concept is to achieve
optimization. This is an optimal input that gives the optimal output correspondingly. For
example, if β0 is 2, and δ is 0.0001, then the neighborhood will be (2− 0.0001, 2 + 0.0001)
or (1.9998, 2.0001). Thus, this is very close to 2 but not exactly equal to 2, and hence, the
resultant output β will be approaching the corresponding value. Hence, Equation (3) holds
the limit (L) represented by |β− L| < ε, where ε is a small, real positive number. Hence,
Equation (3) is represented by a limit as follows:

limγ→0β = L (3)

The attractiveness is measured from the left-hand side (from β0− δ to β0) and denoted
by βe for attractiveness at the point β0 − δ, represented as follows:

limγ→0−β− = βee−γr2
(4)

Similarly, the attractiveness is measured from the right-hand side (from β0 + δ to β0)
and denoted by βl for attractiveness at the point β0 + δ, represented as follows:

limγ→0+ β+ = βle−γr2
(5)

If limγ→0−β = limγ→0+ β, then Equation (1) exists, which will be unique.
The source of brightness and its area are also formulated in the proposed FFA. It

depends on the size of the firefly, although the difference is minor but measurable. The
source of brightness (S) is defined as a function of β0, βe, and βl , which is defined as follows:

S = f (β0, βe, βl) (6)

The distance between two fireflies that are attracted to each other is also reviewed as
an advantage of the FFA. A firefly attracts those whose distance is less than other fireflies,
although brightness is the same. The deviation in the distance is δ, although the intensity
remains the same, presented as follows:

Left-Hand Deviation : β = βee−γδ2
(7)

Right-Hand Deviation : β = βle−γδ2
(8)

The position of the firefly is measured over its central tendency in the proposed FFA.
This lies in the displacements, i.e., up, down, diagonal, horizontal, etc., although brightness
is the same. The deviation in the position of the fireflies exists when the following is true:

βee−γδ2 6= βle−γδ2
(9)

The discrete approach of attractiveness is studied in this paper. The proposed FFA
establishes robot navigation based on the natural conjugation of fireflies. The probability
of attraction is only by brightness, but its discrete and continuous distributions are also
generalized in the proposed FFA. The choice function plays a crucial role in executing the
idea of a functional firefly algorithm for robot navigation. This approach achieves optimum
navigation. The application of the choice function receives the dynamic decision. The
choice function is a mathematical rule applied as the association of the elements of the two
non-empty sets such that each element of the first set has the unique image of the element
of the second set. Notable is the self-map mechanism, where the pre-image and image
are identical. This identity characteristic establishes a distinct path for navigation. The
self-image approach is associated with the firefly position, and its pre-image selects the
unique and optimal path. The mathematical definition of the choice function is presented
as follows:
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Choice Function: Let Λ be a non-void set and λ ∈ Λ. f is said to be a choice function
if f (λ) ∈ λ, ∀λ ∈ Λ. Its application to robot navigation is presented as follows: Λ is the
non-empty finite set of the position of fireflies, which is coordinated in three dimensions.
The brighter firefly is denoted by λ ∈ Λ, and the movement is defined by the displacement
from the less-bright firefly as the pre-image or the domain as the first set to the image as
the co-domain of the second set. This displacement is referred to as the range f (λ) ∈ λ of
the function, which is the real number obtained by the choice rule.

Axiom of Choice Function: There exists a choice function (f) for each non-void family of
non-void sets if {Xλ : λ ∈ Λ} is a family of sets such that Λ 6= φ and xλ for each λ ∈ Λ;
then, there exists f on Λ such that f (λ) ∈ Xλ for each λ ∈ Λ.

Cartesian-Choice Operator: Let {Xλ : λ ∈ Λ} be an arbitrary collection of sets induced
by Λ. Then, the cartesian product of this collection is the set of all mapping.

X : Λ→ λ = {Xλ : λ ∈ Λ} : X(λ) ∈ Xλ (10)

For all, λ ∈ Λ, and it is denoted by the following:

Λ{Xλ : λ ∈ Λ} or by; x{Xλ : λ ∈ Λ} (11)

The set Xλ is called the λth coordinate set of the product. It is used as a symbol Xλ for
the image X(λ) of X under the mapping X. Here, Λ is an index set, and λ ∈ N is the set of
natural numbers.

Then,
Xλ = {x : x ∈ N, x is the multiple of N}

Hence,
X1 = {1, 2, 3, . . . }

X2 = {2, 4, 6, . . . . . . . . . . . . . . . . . . }

Xn = {n, 2n, 3n, . . .}

Here, f is the function of choice on Λ such that

f (λ) ∈ Xλ; λ ∈ Λ

Thus, the axiom of the choice function is generalized to the resultant formula of firefly
for the attractiveness over the initial position, defined as follows:

xt+1
i : Λ→ U

{
xβ : β ∈ Λ

}
: x(λ) ∈ xλ (12)

where Λ is the index set of existing properties of the FA, and U is the proposed transforma-
tion over the seven characteristics of fireflies. Hence, the resultant formula of attraction
over the axiom of choice is presented as follows:

xt+1
i = xt

i +
Λ
U
[
(

β0e−γr2
ij
)(

xt
j − xt

i

)
] + αtε

t
i (13)

Here, Λ is an index set.
λ ∈ N (the set of natural numbers)
Then,

xλ = {x : x ∈ N, x is the multiple of N}

The robot navigation architecture is presented in Figure 2. In an uncertain environment,
the finite set of obstacles is O = {o1, . . . , on}, the finite set of fireflies of lower and higher
intensity of light is X =

{
xl

1, xh
1 , . . . , xl

n, xh
n

}
, and the robots’ initial position is R(xl

1) and the
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goal position G(xh
n). The robot (less-bright firefly) R(xl

1) is attracted towards the brighter
firefly (xh

1) with obstacle o1 avoidance by the optimal choice function f (λ1); λ1 ∈ Λ.
Similarly, R(xl

1) follows the preceding rule and reaches the goal G(xh
n) by the optimal

choice function navigation: C : R(xl
1)

f (λn)→ G(xh
n).
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𝐶 = {𝐶𝑙 , 𝐶ℎ} = {{𝑥𝑛−1
𝑙 , 𝑥𝑛

𝑙 }, {𝑥𝑛−1
ℎ , 𝑥𝑛

ℎ}} = {𝑋𝜆: 𝜆 ∈ Λ} (14) 
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Figure 2. Functional firefly navigation space.

The robot navigation follows the attraction behavior of fireflies as the difference(
IH − IL ≥ 0

)
of the intensity of light of fireflies by

(
IH > IL), where IH and IL are high

intensity and low intensity, respectively. Thus, the objectives of optimal navigation, i.e., the
shortest path in the minimal time and collision-free path, are achieved by the CF simultane-
ously. Let the non-void family of the non-void set be X =

{{
xl

1, xh
1

}
, ...,

{
xl

n, xh
n

}}
; then,

the choice function is f (x) =
{{

xl
1

}
,
{

xl
1, xh

2

}
,
{

xl
2, xh

3

}
, ...,

{
xh

n

}
. Thus, the firefly-choice

function-based robot navigation is presented as FFA: f : R→ G.
The set of lower-intensity fireflies = X1 = Xl

λ =
{

xl
1, ..., xl

n

}
;

The set of higher-intensity fireflies = X2 = Xh
λ =

{
xh

1 , ..., xh
n

}
.

Then, the set of functional fireflies is defined by the choice function as follows:

C = {Cl , Ch} =
{{

xl
n−1, xl

n

}
,
{

xh
n−1, xh

n

}}
= {Xλ : λ ∈ Λ} (14)

Here, f is a function defined on Λ such that f (λ) ∈ Xλ for each λ ∈ Λ. This choice
function is applied to the above-defined sets of fireflies and modified again as follows:

f : λ→ λ Or, f : Xλ → Xλ Or, f : X1 → X2 Or, X2 = f (X1) (15)

Next, the objective function is formulated. The decision variables are as given: The
choice-function-based navigational path function is f (λ1), . . . , f (λn); respective time is

t1, . . . , tn; and the navigation rate is xh
n−xl

n
tn

.
Hence, the objective function is given:

min f (λ) =

(
xh

1 − xl
1

)
t1

+ . . . +

(
xh

n − xl
n

)
t1

, f (λ) ∈ Xλ, λ ∈ Λ (16)

This is subject to Cm1
1
t1
+ . . . + Cmn

1
t2

= f (λn) and t1, . . . tn ≥ 0. The navigation
function table is presented as follows in Table 2.
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Table 2. Navigation Functions.

SN. Navigation Direction Representations

1 Left Move β0 + δ
2 Straight Move β0 = δ
3 Right Move β0 − δ
4 Up Move β0/δ
5 Down Move δ/β0
6 Constant β0
7 Left Curve Move (β0 + δ)n; n ≥ 2
8 Right Curve Move (β0 − δ)n; n ≥ 2

Hence, by the Cartesian product of the X1 and X2, we find the move according to the
position of obstacles. There are finite options to choose the move, as defined by the choice
function.

f : X1 × X2 =
{(

xl
1, xh

1

)
, ...,

(
xl

n, xh
n

)}
(17)

The distance vector is defined for controlling the obstacle position. Let the set of the
position point of the obstacle be {D1, ..., Dn}. Each point has the vector by the characteristic
of this set of finite sums of intervals that hold the probabilistic decision of optimal path.
The probability of optimal path is {p(D1), ..., p(Dn)}. The domain of probability for the
rule (choice function) to decide the optimal path is represented by the following matrix:

D =


d11 . . . .

. . . . .

. . . . .

. . . . .

. . . . dnn


Thus, the rule (choice function) is set by the co-domain of the probable vectors as

{(d11, ..., d1n), ..., (d91, ..., d9n)}. The permutation of the vectors of the co-domain for gener-
ating the range as a rule by the following vector spaces is illustrated in Tables 3–5.

Table 3. Vector Space-Based Navigational Decision.

Obstacle Position Distance
Classification

Choice of Axiom
of (II) Metric Decision Vector

D1. . ..DN A(D1),. . ..A(DN) Ci [A(D1), A(DN)]
LOD d11.. . .d1n A(d11),.. . .A(d1n) [A(d11),. . ., A(d1n)]
FOD d21.. . .d2n A(d21),.. . .A(d2n) [A(d21),. . ., A(d2n)]
ROD d31.. . .d3n A(d31),.. . .A(d3n) [A(d31),. . ., A(d3n)]
UOD d41.. . .d4n A(d41),.. . .A(d4n) [A(d41),. . ., A(d4n)]
DOD d51.. . .d5n A(d51),.. . .A(d5n) [A(d51),. . ., A(d5n)]

ULDOD d61.. . .d6n A(d61),.. . .A(d6n) [A(d61),. . ., A(d6n)]
URDOD d71.. . .d7n A(d71),.. . .A(d7n) [A(d71),. . ., A(d7n)]
DLDOD d81.. . .d8n A(d81),.. . .A(d8n) [A(d81),. . ., A(d8n)]
DRDOD d91.. . .d9n A(d91),.. . .A(d9n) [A(d91),. . ., A(d9n)]

where LOD, left obstacle distance; FOD, front obstacle distance; ROD, right obstacle distance, UOD, up obstacle
distance; DOD, down obstacle distance; ULDOD, up left obstacle distance; URDOD, up right obstacle distance;
DLDOD, down left obstacle distance; DRDOD, down right obstacle distance.

Hence, the turning or transformation or direction function of the mobile robot is given:

T = f {XD, XS; D, λ ∈ Λ} (18)

The conditional rule for controlling the MRN is given as follows in Tables 6 and 7.
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Table 4. Euclidean Metric Grading for Optimal Navigation.

Obstacle Position Distance Classification
(D1),. . .(DN)

Choice of Axiom
of (II)

[A(D1),. . . A(DN)]

Distance Decision
Matrix

Ci [A(D1), . . ., A(DN)]

LOD
VVN-VN-N-F-VF-VVF
VVN—Very Very Near
VN—Very Near
N—Near
F—Far
VF—Very Far
VVF—Very Very Far

[A(d11),. . ., A(d1n)]

A(d 11) . .
. . .
. . A(d 9n)


FOD [A(d21),. . ., A(d2n)]
ROD [A(d31),. . ., A(d3n)]
UOD [A(d41),. . ., A(d4n)]
DOD [A(d51),. . ., A(d5n)]
ULDOD [A(d61),. . ., A(d6n)]
URDOD [A(d71),. . ., A(d7n)]
DLDOD [A(d81),. . ., A(d8n)]
DRDOD [A(d91),. . ., A(d9n)]

Table 5. Speed Grading Rule for Fast Navigation.

Obstacle Position Speed Classification
(S1),....,(SN)

Choice of Axiom
of (II)

A(S1),....,A(SN)

Speed Decision
Matrix

Ci [A(S1),. . .,A(SN)]

LOD
VVF-VF-F-S-VS-VVS
VVF—Very Very Fast
VF—Very Fast
F—Fast
S—Slow
VS—Very Slow
VVS—Very Very Slow

A(S11)....A(S1n)

A(S 11) . .
. . .
. . A(S 9n)


FOD A(S21)....A(S2n)
ROD A(S31)....A(S3n)
UOD A(S41)....A(S4n)
DOD A(S51)....A(S5n)
ULDOD A(S61)....A(S6n)
URDOD A(S71)....A(S7n)
DLDOD A(S81)....A(S8n)
DRDOD A(S91)....A(S9n)

Table 6. Linear If-Then Rule.

If Then

LOD =
(LOD)i

HA ; FOD =
(FOD)i

HA ;ROD =
(ROD)i

HA ; HA =
(HA)i

(LD)(RD)
; UOD =

(UOD)i
HA ;

ULDOD =
(ULDOD)i

HA ; URDOD =
(URDOD)i

HA ; DOD =
(DOD)i

HA ;

DLDOD =
(DLDOD)i

HA ;DRDD =
(DRDOD)i

HA

HV
HVijkl

. VV
VVijkl

where HV, horizontal velocity; VV, vertical velocity.

Table 7. Non-Linear If-Then Rule.

If Then
(LOD)i

LOD . (FOD)i
FOD . (ROD)i

ROD . (HA)i
HA

(UOD)i
UOD . (ULDOD)i

ULDOD . (URDOD)i
URDOD . (DOD)i

DOD . (DLDOD)i
DLDOD HV

HVijkl
. VV
VVijklLOD

(LOD)i
. FOD
(FOD)i

. ROD
(ROD)i

. HA
(HA)i

. UOD
(UOD)i

. ULDOD
(ULDOD)i

. URDOD
(URDOD)i

. DOD
(DOD)i

. DLDOD
(DLDOD)i

Thus, the compact rule for the effective navigation of robots is defined as follows:

Wijkl = Disijkl

[(
XLOD
LODi

)(
XFOD
FODi

)(
XROD
RODi

)(
XHA
HAi

)(
XUOD
UODi

)(
XULDOD
ULDODi

)(
XURDOD
URDODi

)(
XDOD
DODi

)(
XDLDOD
DLDODi

)]
(19)

Similarly, the velocity function is presented:

(Vel)X LVijkl =
Wijkl

(velLV)XLVijkl

; (Vel)XRVijkl =
Wijkl

(velRV)XRVijkl

;

(Vel)X HVijkl =
Wijkl

(velVV)XHVijkl

and(Vel)XVVijkl =
Wijkl

(velVV)XVVijkl
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Hence, LV =

(
∑ (Vel) XLV

(Vel)XLV
∑ (Vel)XLV

)
; RV =

(
∑ (Vel) XRV

(Vel)XRV
∑ (Vel)XRV

)
; HV =

(
∑ (Vel) XHV

(Vel)XHV
∑ (Vel)XHV

)
; and

VV =

(
∑ (Vel) XVV

(Vel)XVV
∑ (Vel)XVV

)
.

The continuous representation of the above is given as follows:

LV =

∫
(Vel) XLV

(Vel)XLV
d(Vel)∫

(Vel)XLVd(Vel)
; RV =

∫
(Vel) XRV

(Vel)XRV
d(Vel)∫

(Vel)XRVd(Vel)
; HV =

∫
(Vel) XHV

(Vel)XHV
d(Vel)∫

(Vel)XHVd(Vel)
; and VV =

∫
(Vel) XVV

(Vel)XVV
d(Vel)∫

(Vel)XVVd(Vel)
.

The pseudocode for Functional Firefly Algorithm 1 is described as:

Algorithm 1 Fuctional Firefly (FFA).

#Function FunctionalFireflyAlgorithm():
Initialize robot navigation
Initialize the population of fireflies Xλ = {x1, . . . , xn}.
Initialize the objective function f (λ) ∈ Xλ; λ ∈ Λ.
Initialize light intensity of fireflies (I)
Initialize absorption coefficient (γ)
Initialize the distance between two fireflies (r)
Vary attractiveness

(
e−γr).

Classify fireflies into two groups based on intensity:
Xl

λ =
{

xl
1, . . . , xl

n

}
, l: less intensity.

Xh
λ =

{
xh

1 , . . . , xh
n

}
, h: high intensity.

t = 0
maxiterations = max(Xλ)
While t < maxXλ :

# Update lowintensity fireflies
For i in Xλ

l:

If Cl
f1(λ)→ Ch;

xl
1 → xh

1

(
xl

1 < xh
1

)
;

If Cl
f2(λ)→ Ch:

xl
2 → xh

2

(
xl

2 < xh
2

)
;

If Cl
f3(λ)→ Ch;

xl
3 → xh

3

(
xl

3 < xh
3

)
;

If Cl
f4(λ)→ Ch;

xl
4 → xh

4

(
xl

4 < xh
4

)
;

If Cl
f5(λ)→ Ch;

xl
35 → xh

5

(
xl

5 < xh
5

)
;

# Calculate the objective function
f (λ) = f1(λ) + f2(λ) + f3(λ) + f4(λ) + f5(λ)

# Update fireflies based on the objective function

R
f (λ)→ G.

t = t + 1
# Optimized f(λ)
Optimized function f(λ)
End robot navigation
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4. Simulation and Experimental Result Analysis
4.1. Mobile Robot Navigation Simulation Results

To demonstrate the effectiveness of our developed approach across diverse environ-
mental conditions, we conducted numerous trials in both static and dynamic environ-
ments featuring various obstacles. Simulation analysis was carried out using MATLAB
R2021a software, providing the flexibility to customize the environment with different
obstacle positions, robot placements, and goals. In static environments, obstacle positions
remained fixed, allowing adjustments only in the initial robot and goal positions. Con-
versely, dynamic environments featured variable obstacle and goal positions. Our program
was designed to accommodate a variable number of robots and goals. Figures 3 and 4
demonstrate the navigation of a single mobile robot in simulated environments with static
configurations, presented in both 3D and 2D formats. During navigation, the robot priori-
tizes path safety, avoiding obstacles by maintaining a safe distance. We also demonstrated
multi-robot navigation strategies in a complex environment with four robots (Figure 5a–d).
Each robot had a distinct starting position and a predefined common goal. The paths cre-
ated by individual robots were uniquely color-coded, illustrating our approach’s efficiency
in finding optimal collision-free paths even in dynamic environments. Figure 6 presents
an environment with two moving obstacles (green and pink) and a fixed goal. The robot
autonomously identifies approaching obstacles and adjusts its position to maintain a safe
distance. Figure 7 illustrates mobile robot navigation when the goal itself is in motion. Our
approach consistently generates optimal pathways in both cases, effectively addressing
uncertainties in dynamic environments. These results highlight the robustness of our
proposed approach.
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4.2. Mobile Robot Navigation Experimental Results

To evaluate the effectiveness of the developed approach in real-time scenarios, we
employed two distinct types of robots: an in-house developed robot (Figure 8) and the
Khepera-II robot (Figure 9). Detailed specifications for these robots can be found in the
Appendix A, specifically outlined in Table A1 for the in-house developed robot and Table A2
for the Khepera-II robot. As illustrated in Figures 10–12, we established a consistent
experimental setup to assess the approach’s performance for single- and multiple-robot
systems. This setup confirms that the approach can generate optimal paths comparable to
those achieved in simulation, as demonstrated in Figures 3–5.
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Figure 12. Mobile robot navigation in a real environment in the presence of multiple robots.

Both robots are three-wheeled, with the rear two wheels being active and the front one
passive. The rear wheels can move independently to achieve the desired navigation angle.
The path was traced on the platform using a pencil during the robot’s movement between
points. Extensive experimentation involving more than twenty trials for each environment
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was conducted with a maximum velocity of 0.06 m/s. The approach’s robustness was
further tested with various obstacle shapes and sizes. The results affirm the approach’s
suitability for real-time applications, showcasing minimal deviation when compared to
the simulation environment. The experimental results demonstrate the robot’s successful
obstacle avoidance and timely attainment of its goal.

4.3. Comparative Analysis of Experimental vs. Simulation

On comparison of real-time results with simulation results, it seems that the path
developed by the proposed FFA controller safely avoids static and dynamic obstacles.
The observed path length and navigational time tabulated in Tables 8–11 confirm the
appropriateness of the developed approach, as the percentage of deviation between real-
time results and simulation results is less than 4.5%. Hence, the goal of navigation was
achieved successfully in an unknown environment. The developed approach deals with
the single mobile robot system that effectively and efficiently handles the multiple robot
systems for crowded environments. The velocity profile for the left and right wheels
in meters per second is shown in Figure 13. For a detailed analysis of path length and
navigational time for single- and multiple-robot navigation systems, 20 trials and 5 trials
were undertaken, respectively.

Table 8. Path length comparison for a single mobile robot system.

Sl. No. Experimental Path
Length (cm)

Simulation Path
Length (cm) % of Error

Scenario-1 133.61 (Figure 8) 127.69 (Figure 3) 4.43
Scenario-2 261.97 (Figure 9) 250.95 (Figure 4) 4.20

Table 9. Navigational time comparison for a single mobile robot system.

Sl. No. Experimental Time
during MRN (s)

Simulation Time
during MRN (s) % of Deviation

Scenario-1 15 (Figure 8) 14.2 (Figure 3) 4.40
Scenario-2 27.6 (Figure 9) 26.4 (Figure 4) 4.34

Table 10. Path length comparison for multiple mobile robot systems.

Sl. No.
Experimental Time

during MRN
(s) (Figure 10)

Simulation Time
during MRN
(s) (Figure 5)

% of Deviation

Scenario-3

Robot 1 133.12 127.5 4.22
Robot 2 147.59 141.31 4.25
Robot 3 163.11 156.30 4.17
Robot 4 122.76 117.71 4.11

Table 11. Navigational time comparison for multiple mobile robot systems.

Sl. No.
Experimental Time

during MRN
(s) (Figure 10)

Simulation Time
during MRN
(s) (Figure 5)

% of Deviation

Scenario-3

Robot 1 13.60 13.02 4.26
Robot 2 15.01 14.36 4.33
Robot 3 16.48 15.88 4.24
Robot 4 13.31 12.76 4.13
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Scenario-1 15 (Figure 8) 14.2 (Figure 3) 4.40 
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Figure 13. Left wheel velocity versus right wheel velocity profile in m/s.

4.4. Proposed FFA Controller versus Another Intelligent Controller over the Same
Environmental Setup

To prove the effectiveness of the developed controller, it is necessary to check its
performance with other artificially intelligent controllers over the same environmental
condition; i.e., the number of obstacles, its position, and the robot position must be the
same. The performance parameters considered are the path length and navigational time.
For comparison, fuzzy logic (FL), particle swarm optimization (PSO), and genetic algorithm
(GA) were considered. The optimized path was selected for each controller after performing
more than 20 trials. While analyzing, all the positions of robots and obstacles in a static
environment are shown in Figures 14 and 15, whereas Figures 16 and 17 deal with the
navigation in a dynamic environment with a moving obstacle system and dynamic goal
system, respectively. The movement of obstacle and goal in a dynamic environment are
shown in Figures 18 and 19. The simultaneous comparison of path length and navigational
time is tabulated in Tables 12–15, and from the data, it is clear that the path produced by
using the proposed FFA controller in all terrain is short, and the required navigational time
was greatly decreased as compared to FL, PSO, and GA.

Table 12. Path length and navigational time comparison for a single-robot system (Figures 16 and 20).

Sl.
No.

Name of
Controllers

Simulation
Path

Length (cm)

Simulation
Time (s)

Real-Time
Path

Length (cm)

Real-Time
(s)

1 FL 291.06 30.93 307.23 32.65
2 PSO 278.12 29.55 297.528 31.62
3 GA 270.03 28.69 287.82 30.58
4 FFA 261.97 27.84 281.35 29.90

Table 13. Path length and navigational time comparison for multiple-robot system (Figures 17 and 21).

Sl.
No. Name of Controllers Simulation Path

Length (cm)
Simulation

Time (s)
Real-Time Path

Length (cm)
Real-Time

(s)

1 FL
Robot-1 245.78 26.12 252.2 26.802
Robot-2 213.44 22.68 226.38 24.05

2 PSO
Robot-1 239.08 25.40 247.08 26.25
Robot-2 210.50 22.37 216.67 23.02

3 GA
Robot-1 229.61 24.40 232.84 24.74
Robot-2 207.21 22.02 210.21 22.34

4 FFA
Robot-1 223.14 23.71 230.38 24.48
Robot-2 205.97 21.89 208.74 22.18
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Table 14. Path length and navigational time comparison in the presence of moving obstacles
(Figure 18).

Sl. No. Name of Controllers Simulation Path Length (cm) Simulation Time (s)

1 FL 244.55 26
2 PSO 237.69 25.62
3 GA 232.84 24.74
4 FFA 228.76 23.87

Table 15. Path length and navigational time comparison in moving goal situations (Figure 19).

Sl. No. Name of Controllers Simulation Path Length (cm) Simulation Time (s)

1 FL 161.70 17.18
2 PSO 153.61 16.32
3 GA 142.90 15.18
4 FFA 139.29 14.80
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4.5. Proposed FFA Controller versus Published Work

In this section, the work developed by the other researchers, i.e., Singh et al. [36],
Montiel et al. [37], Zheng et al. [38], and Orozco-Rosas et al. [39], is considered for compari-
son with the proposed FFA controller. The comparison was carried out in the simulation
environment only, and the performance was evaluated on the basis of path length. In [36],
the navigation of robots was presented using the neural network (NN) in a complex,
crowded environment where the obstacles had a rectangular shape (Figure 21a). The appli-
cation of artificial potential field (APF) for the navigation of robots in a static environment
was developed by [37] in the presence of three circular obstacles in a static environment
(Figure 21c). Similarly, the navigation based on the Elman neural network (ENN) train-
ing technique in the presence of three rectangular obstacles (Figure 21e) and the parallel
bacterial potential field algorithm (PBPFA) over a set of circular obstacles (Figure 21g)
were presented by [38] and [39], respectively. Figure 21 demonstrates that the proposed
FFA controller generates a smoother and shorter path than the respective AI controllers.
Table 16 and Figure 22 show that there is a huge gap between the path developed by the
proposed controller and other controllers, and the percentage of path length saved by using
a proposed controller reached a maximum of 35.38% and a minimum of 5.7%.

Table 16. FFA versus other AI controllers.

S. N. Start Point Goal Point Path Length (cm) by
Other AI Controllers

Path Length (cm) by
FFA Controller

% of Path Length
Saved by FFA

Scenario-4 (4,8) (90,89) 7.9 (Figure 21a) 6.6 (Figure 21b) 16.45
Scenario-5 (5,9) (7,1) 6.5 (Figure 21c) 4.2 (Figure 21d) 35.38
Scenario-6 (1.7,1.5) (16.9,16) 5.2 (Figure 21e) 4.9 (Figure 21f) 5.7
Scenario-7 (5,9) (5,1) 7.6 (Figure 21g) 5.7 (Figure 21h) 25
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5. Conclusions

The proposed functional firefly algorithm provides the smallest size (order) parameters
for optimizing the mobile robot navigation. The FFA is based on the reduction order
technique from n-interval to (n-m) interval by applying the choice function. The axiom of
choice function reduces the order of domain, co-domain, and range of FFA to minimize the
navigation. FFA is presented with a choice function for the navigation of a mobile robot in
a completely unknown environment in the presence of a static obstacle, a moving obstacle,
and a dynamic goal. The choice function identifies these limitations by the non-void
family of the fireflies as a set. The movement of the fireflies is classified by fuzzy, and the
probability function sets the optimization of the path. The developed controller achieved
the goals of navigation, i.e., obstacle avoidance and path optimization in static and dynamic
environments for single and multiple mobile robot systems. The obtained results show that
the robot provides a smoother trajectory with a shorter path in less navigational time. The
observed percentage of deviation between simulation and real-time results is less than 4.5%,
and it yielded the optimal path length with minimum navigational time when compared
to FL, PSO, and GA over similar environmental conditions. In comparison with the other
researcher’s work on NN, APF, ENN, and PBPFA, it saves a maximum path length of 36%
and a minimum of 5%. In the future, the developed approach will aim to apply real-time
navigation for on-road traffic conditions (real dynamic situations). The proposed controller
can be tested by hybridizing with newly developed intelligent algorithms for developing a
new path planner. It can be implemented in the development of an autonomous robot in
an uncertain environment. The proposed approach can also be implemented to navigate
aerial vehicles and underwater robots.
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Appendix A

Table A1. Specification of the in-house robot used in the experiment.

Elements Technical Specification

1 Processor ATmega2560 (Arduino Mega 2560, Arduino UNO, Olatus Systems,
Guwahati, India)

2 RAM 8 KB, EEROM-4 KB
3 Flash 256 KB (8 KB used for boot loader)
4 Motors 2-DC gear motors with incremental encoders

5 Distance sensors (a) Infrared sensors with up to 150 cm range
(b) Ultrasonic sensors with up to 400 cm range

6 Speed Max: 0.47 m/s, Min: 0.03 m/s
7 Power Power adapter or Rechargeable NiMH Battery (2000 mAh)
8 Communication USB connection to the computer
9 Size Length: 25 cm, Width: 19 cm, Height: 12 cm
10 Weight Approx. 1100 g
11 Payload Approx. 4000 g

12 Remote control Software via USB cable C/C++17 ® (on PC, MAC OS 12)
MATLAB R2021a ® (on PC, MAC OS 12, Linux)

Table A2. Specification of the Khepera-II robot used in the experiment.

Elements Technical Specification

1 Processor Motorola 68331 CPU, 25 MHz
2 RAM 512 KB
3 Flash 512 KB
4 Motors 2-DC brushed Servo motors with incremental encoders
5 Sensors 8 Infrared proximity and ambient light sensors with up to 100 mm range
6 Speed Max: 0.5 m/s, Min: 0.02 m/s
7 Power Power adapter or Rechargeable NiMH Batteries
8 Communication Standard Serial Port, up to 115 KB/S
9 Size Diameter: 70 mm, Height: 30 mm
10 Weight Approx. 80 g
11 Payload Approx. 250 g

12 Remote control software via tether
or radio

LabVIEW® (on PC, MAC OS 12) using RS232
MATLAB® (on PC, MAC OS 12, Linux) using RS232
Sys Quake® (on PC, MAC OS 12, Linux) using RS232
Freeware Any other software capable of RS232 communication
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