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Abstract: A quantitative evaluation of the musical timbre and its variations is important for the
analysis of audio recordings and computer-aided music composition. Using the FFT acoustic de-
scriptors and their representation in an abstract timbral space, variations in a sample of monophonic
sounds of chordophones (violin, cello) and aerophones (trumpet, transverse flute, and clarinet)
sounds are analyzed. It is concluded that the FFT acoustic descriptors allow us to distinguish the
timbral variations in the musical dynamics, including crescendo and vibrato. Furthermore, using
the Random Forest algorithm, it is shown that the FFT-Acoustic provides a statistically significant
classification to distinguish musical instruments, families of instruments, and dynamics. We observed
an improvement in the FFT-Acoustic descriptors when classifying pitch compared to some timbral
features of Librosa.
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1. Introduction

Various techniques are used in musical composition to add expressiveness to the
performance; the most common being those generated by subtle variations in dynamics
and pitch. In musical instruments, the intensity variations in the impulse (tension in
the strings or air pressure) and/or variations in the frequency of the pulsation produce
secondary waves of sounds that propagate through the musical instrument: in the boxes and
resonance tubes of chordophones and aerophones, respectively. When sound propagates
in the resonant cavities of musical instruments, reflection, diffraction, and interference
phenomena take place, which generally produce secondary sound waves, which overlap
the fundamental frequency of the natural vibration mode (characteristic of each musical
sound). Therefore, there will be slight timbre variations between two musical instruments
of the same type that were manufactured differently (between two violins or between two
flutes, etc.). Such timbre variations are due to changes in the envelope of the wave that
forms the musical sound.

The most common variation in dynamics in music is the crescendo or gradual increase
in the intensity of the sound, that is, a transitional dynamic nuance [1,2]. From an acoustic
point of view, a crescendo occurs in aerophones when the musician gradually increases the
amount of air blown into the instrument, thereby increasing the amplitude of the sound
waves that are produced. The intensity of the sound produced depends on the amount of air
entering the instrument and the pressure exerted by the musician’s lips and tongue. As the
musician increases the intensity of the musical note, they can change the pressure exerted
by the lips and tongue to maintain the desired tonal quality. Similarly, in chordophones,
the crescendo is produced when the musician gradually increases the pressure exerted
on the strings of the instrument, which increases the amplitude of the sound waves that
are produced. The intensity of the produced sound will depend on the pressure exerted
on the strings and the position and speed of the musician’s hand on the fingerboard and
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frets. When a musician uses the crescendo technique on bowed string instruments, the
musician gradually increases the pressure exerted by the bow on the strings, increasing
the amplitude of the sound waves produced. The crescendo technique can also affect the
tonal quality of the produced sound. As the player increases the intensity of the note, the
musician can slightly change the position of their hand on the fingerboard to maintain the
desired tonal quality.

In addition, in acoustic terms, vibrato [1,3] occurs when the player oscillates the
frequency of the played note by a small amount compared to its fundamental frequency.
The frequency of the musical note produced in aerophones depends on the length of the
tube and the tension of the musician’s lips. When the musician uses the vibrato technique,
she or he modulates the tension of the lips and the speed of the blowing air, which alters
the frequency of the note. Vibrato on aerophones produces a series of additional formants
and harmonics that overlap the fundamental note. These secondary transverse waves
can be stronger or weaker depending on the speed and amplitude of the vibrato, and can
contribute to the tonal quality and harmonic richness of the sound. In chordophones, the
sound frequency depends on the length, tension, and mass of the strings, as well as the
way they are played. When the musician uses the vibrato technique, they slightly move
their finger up and down the string in the fingerboards, which alters the effective length of
the string and, therefore, the frequency of the note. Consequently, a series of additional
formants and harmonics are produced that are superimposed on the fundamental note
as a result of the interaction of the string pulse with the resonant box. These harmonics
can be stronger or weaker depending on the speed and amplitude of the vibrato and can
contribute to the tonal quality and harmonic richness of the produced sound. In addition,
vibrato can also affect the intensity and duration of the note, since the movement of the
finger on the string can influence how much energy is transmitted to the string and how it
is released.

On the other hand, the main timbral characteristics of the digital audio records must
be somehow inscribed within the FFT through the succession of the pairs of amplitude
and frequencies that comprise the sinusoidal components and that enable the recording
and subsequent reproduction of musical sound. The collection of amplitude and frequency
pairs in the FFT represents the intensities and tonal components of the audio recordings.
Consequently, the timbre characteristics of digitized musical audio, which allow for discrim-
ination between musical sounds, octaves, instruments, and dynamics, must be contained
in some way in the FFT [4,5]. Several representations of timbre descriptors can be computa-
tionally derived from statistical spectrum analysis (FFT). As many of them are derivatives
or combinations of others and, in general, are correlated among themselves [6,7], we adopt
the dimensionless acoustic descriptors proposed in [4,8] to describe the timbral variations in
the playing techniques associated with the only existing magnitudes in the FFT: amplitudes
(crescendo) and frequencies (vibrato).

The objective of this paper is to use acoustic descriptors to compare timbre variations
in a sample of monophonic audio recordings, corresponding to the aerophones clarinet,
transverse flute, and trumpet, as well as the chordophones violin and violoncello. We will
describe the methodology in the next section. Then, the results and a brief discussion are
shown in Section 3, covering the comparison of this family of instruments (Section 3.1) by
musical dynamics (Section 3.2) according to timbre variations in amplitude or crescendo
(Section 3.3) and timbre variations in frequencies or vibrato (Section 3.4). The accuracy of
the FFT acoustic descriptors is then compared with other timbral coefficients of statistical
features through the Random Forest machine learning algorithm (Section 4), and the
conclusions are provided in the last section.

2. Databases and General Formalism

We used the Good-Sounds dataset [9], which contained monophonic recordings of
single notes with different timbral characteristics (in mezzo-forte musical dynamics: mf,
crescendo, and vibrato modes). Only the fourth-octave musical was used, C4, C#4, D4,
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D#4, E4, F4, F#4, G4, G#4, A4, A#4, and B4, in the musical scale of equal temperament,
the most typical in western music. The selection of musical instruments corresponded
to the aerophones clarinet, transverse flute, and trumpet, and the chordophones violin
and violoncello. The Tynisol database [5,10] in dynamic pianissimo (pp) and fortissimo
(ff ) was also used as a comparison reference for these musical instruments. The dynamic
messoforte (mf ) corresponds to a sound intensity in the order of 10−5 W m−2. The ff and
pp dynamics are equivalent to average intensities of the order of 100 times higher and
lower, respectively. Also, the Tynisol database is used in Section 4 for the Random Forest
algorithm of automatic classifications and is compared with other timbral features.

For each audio record, we obtained the FFT spectrum normalized by the ratio of the
greatest amplitude of each spectrum. Note that all the audio records are monophonic
and have the same duration (5 s), so the complete FFT was performed with a constant
window function (unit step). Noise in the spectrum was also reduced by considering
only amplitudes greater than 10% of the maximum amplitude. Then, each monophonic
audio record was digitized by FFT as a discrete, finite, and countable collection of pairs of
numbers that represent the relative amplitudes and frequencies, in Hertz, of the spectral
components and the fundamental frequency (f 0).

Digital audio records store a set of pairs of numbers that represent the frequencies
and amplitudes of the FFT of the corresponding monophonic sound. Then, all the relevant
timbre information must be contained in that register. Thus, the musical Timbre can
be defined operationally as the set of amplitudes and frequencies that accompany the
fundamental frequency in the FFT of the audio recordings.

To describe the timbre in each FFT spectrum, we used the fundamental frequency (f 0)
and its amplitude (a0), plus a set of six dimensionless magnitudes denominated timbral
coefficients [4,5,8]: “Affinity” A, “Sharpness” S, “Mean Affinity” MA, “Mean Contrast” MC,
“Harmonicity” H, and “Monotony” M. The A and S timbral coefficients provide a measure
of the frequency and relative amplitude of the fundamental signal with respect to the FFT
spectrum. The coefficient H is a measure of the quantity and quality of the harmonics
present in a spectral distribution. The coefficient M describes the average increase–decrease
in the spectrum envelope. The MA and MC coefficients provide a measure of the mean
frequency and mean amplitude of the spectral distribution, respectively (see Table 1).
Figure 1 shows the timbral coefficients as a function of musical sounds and frequencies for
the instruments selected from the Goodsound database, fourth octave, and mezzo-forte.

Table 1. Timbral coefficients associated with the FFT of monophonic musical sounds.

Coefficient Operational Definition Description

(A) Affinity A ≡ 1
f0

∑N
i=1 ai fi

∑N
i=1 ai

Relative measurement of the centroid
with respect to the fundamental

frequency

(S) Sharpness S ≡ a0

∑N
i=1 ai

Relative measure of the amplitude of the
fundamental frequency

(MA) Medium
affinity MA ≡

∑N
i=1

∣∣∣∣ f i−
∑N

i=1 ai fi
∑N

i=1 ai

∣∣∣∣
N f0

Average deviation of the partial
frequencies from the average frequency

(MC) Medium
Contrast MC ≡ ∑N

j=1|a0− aj|
N

Mean deviation of the partial amplitudes
from the amplitude of the fundamental

frequency

(H) Harmonicity H ≡
N
∑

i=1

(
f j
f0
−
[

f j
f0

]) Average value of the harmony of the
partial frequencies

(M) Monotony M ≡ f0
N

N
∑

j=1

(
aj+1 − aj
f j+1 − f j

) Deviation from regularity in the
distribution of amplitudes with respect to

frequencies
See [8] for detail.
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Figure 1. Representations in the frequency of the FFT–acoustic descriptors (timbral coefficients) for
the Goodsound dataset.

Then, each FFT spectrum can be represented by a mean 7-tuple (f 0, A, S, H, M, MA,
MC) in an abstract configurational space. These 7-tuples that characterize the amplitude-
frequency distribution present in each FFT spectrum provide a morphism between the
frequency space and the seven-dimensional vector space. This 7-space can be called timbral
space, since the musical timbre consists precisely of the set of spatial frequencies (formants
and harmonics) that accompany each musical sound produced by a certain musical instru-
ment, a certain dynamic, and the set of techniques of the performing musician. Note that
the 7-tuples are real numbers and admit the definition of a module or Euclidean norm along
with equivalence relations; therefore, they formally constitute a Moduli space, represented
by a geometrical place that parametrizes the family of related algebraic objects [11].

3. Euclidean Metric in Timbral Space

The timbral variations in the same musical sound due to the considered instrument
(Section 3.1), the musical dynamics (Section 3.2), and the musical performance techniques
used by the player, crescendo (Section 3.3) and vibrato (Section 3.4), are shown below
through the Euclidean distance between the characteristic vectors of each FFT of the audio
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record, classified by musical sound (among the 12 possible in the fourth octave of the
tempered scale).

All audio registers form a 7-tuple ( f0 , A, S, H, M, MA, MC) in abstract timbral space.
So, any two audio records (subscripts i and j) can be timbrically compared via Euclidean
distance as:

dij ≡
√(

f0i − f0j
)2

+∆Aij
2 +∆Sij

2 +∆Hij
2 +∆Mij

2 +∆MAij
2 +∆MCij

2 (1)

where ∆ represents the algebraic difference between timbral coefficients.
Although this distance is mainly governed by the difference in frequency values, it

should be noted that, for the purposes of comparing musical timbres, it is assumed that the
audios being compared have the same tone, that is, they correspond to the same musical
sounds. Therefore, in practice, the difference in the fundamental frequencies of the real
audios (first sum of the radical in Equation (1)) is small, of the order of tens. In general, it is
evident that the timbral similarity cannot be provided only by the distance; the orientación
with respect to the axes of the 7-dimensional space is also required. Its spatial location in the
abstract space of seven dimensions is important. However, for sufficiently small distance
values (i.e., fundamental frequencies very close) between the position of two audios in
Timbral space, timbral proximity criteria can be established.

3.1. Instruments

Figure 2 shows the standardized distances between monophonic audio recordings
of instruments grouped by musical sounds. We observe that the registers are separated
by notes, and the distance is a function of the tempered-scale sequence. The difference
between the tables is due to the specific values of the timbral coefficients, as shown in
Figure 1. Each musical sound corresponding to an instrument occupies a single point of
timbre space.

The distances between different instruments, grouped by musical sounds, are illus-
trated with various examples in Figure 3. Note that for the same musical notes, the distances
are smaller between instruments of the same type: flute and clarinet, both wooden aero-
phones (panel a). It is greater between aerophones and chordophones (panel b), between
the chordophone and the wooden aerophone (panel c) and between the metal aerophone
and the wooden aerophone (panel d).

On the other hand, the results show that some sounds seem close to each other,
although they were from different musical instruments with different classifications, for
example, the B4 sound. Figure 4 shows the FFTs for that sound. Notice the decrease in
pulses, as well as the number and position of the partial frequencies. It cannot be affirmed
that there is timbre similarity only because of the distance, since what defines the timbre
is the vector and not only its module, and although the distance is equivalent between
violin–trumpet and clarinet–trumpet, the sounds of these three instruments are in different
regions of the timbre space (different clusters). To have timbral similarity, the sounds
must be in the same cluster or region of the timbral space and must also be close to each
other [4]. This is equivalent to saying that they must be from audio recordings of the same
instrument or type of instrument, and also have a distance that is less than the distance
between adjacent musical sounds.
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3.2. Musical Dynamics

Given a musical sound and an instrument, the variations in the intensity of the per-
formance (musical dynamics) should produce timbrally similar sounds, and consequently,
their timbral representation should be close to the mezzo-forte sound. Indeed, that is what
is observed in Figure 5 for the sounds in the Goodsound database compared to the Tinysol
database records for different dynamics. Note that the minimum distances are always
equal musical sounds and are less than 15.6, which is the minimum separation between
two different musical notes of the tempered scale (between C4 and C#4), and therefore is
also less than any other pair of sounds (in the fourth octave).
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Figure 5. Euclidean distances between musical sounds from mezzo-forte Goodsounds and their
cluster dynamics using the Tynisol dataset with the proper subspace of each musical instrument:
(a) clarinet; (b) flute.

Timbral variations due to musical dynamics are shown by the increase in formants and
harmonics in the FFT as we increase the intensity. Thus, the envelope of the FFT spectrum
must be more extended, and the average value of the amplitudes changes. Hence, the
acoustic descriptor of medium contrast, timbral coefficient MC, must vary in all musical
sounds for the same instrument, as shown in Figure 6 for clarinet and flute.
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panel and flute, lower panel. Also, note the variation in M when performing the crescendo technique
(Section 3.3).

3.3. Crescendo

The crescendo is an instrumental performance technique that consists of the gradual
variation in the musical dynamics. Consequently, the timbre effect with respect to timbre
in the mezzo-forte audio recordings should be similar. For the flute and the clarinet, we
can see in Figure 6 how a decrease in the Mean Contrast (MC) occurs when we compare
the dynamics of the pianissimo and mezzo-forte, also observing that the behavior of the
crescendo effect decreases in the clarinet when we advance the frequencies. Figure 7 shows
the same effect for the other instruments in the sample, so we can conjecture that, in general,
the crescendo modifies the timbre coefficient of MC by incorporating more secondary
frequencies in all instruments.

The right panel of Figure 7 shows the values of the timbre coefficient M in the crescendo
technique with respect to mezzo-forte audio recordings for both aerophones and chordo-
phones. We notice that the timbral variation in the crescendo reduces the monotony value,
which is a timbre coefficient that quantifies the envelope in the FFT. A decrease in the
absolute value of monotony implies that the envelope softens, that is, that the average
value of the variations in amplitude with respect to the fundamental frequency decreases.
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Figure 7. Medium contrast (left panel) and monotony (right panel) timbral coefficients, in the
Goodsound database audios of violin (top), cello (center) and trumpet (bottom).

The audio recordings made with the crescendo technique must, similar to the dynamic
musical variations, be close to the corresponding sounds in mezzo-forte. To illustrate this
proximity, the Euclidean distances between each crescendo sound are shown in Figure 8.
Note again that all distances are less than 15.6 (separation between C4 and C#4 sounds).
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Figure 8. Euclidean distances between the musical sounds of the crescendo and mezzo-forte Good-
sound audio records: (a) clarinet; (b) violin.

The crescendo technique increases the average intensity of the sounds; this implies that
the formants and harmonics increase in intensity and, therefore, the value of the timbral
coefficient of Affinity (A), Mean Affinity (MA), and Harmonicity (H) increases with respect
to the values in mezzo-forte dynamics, as observed in the FFT of the audio recordings of
Figure 9 for the aerophones.
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Figure 9. FFTs G4 sound of clarinet (Left Column), flute (Central Column) and trumpet (Right
Column); normal register mezzo-forte (middle row), with crescendo technique (upper row) and
vibrato (lower row). The values of the timbral coefficients of the Mean Affinity (MA), Harmonicity
(H), and Affinity (A) are highlighted.

3.4. Vibrato

During vibrato, there is a slight variation in the fundamental frequency of the cor-
responding musical sound. Consequently, secondary frequencies that accompany the
fundamental must appear; then, the Affinity (A) and Mean Affinity (MA) coefficients
must change since they explicitly depend on the frequency values of the audio recording.
Figure 9 compares the Mean Affinity values with the Goodsound mezzo-forte records.
Although the change in the value of MA is uniform with respect to the musical sounds of
the fourth octave, it is not the same for all instruments. Vibrato increases the MA value on
the cello and decreases it on the clarinet and violin. Similarly, Figure 10 shows that vibrato
also modifies monotony, as expected, because an increase in partial frequencies leads to a
change in the envelope of the FFT spectrum.

The details of why some instruments increase the average of the partial frequencies
(MA) and others decrease them are related to the geometry of the chordophone resonance
box. The acoustics of chordophones are especially complicated because the wave generated
by the vibration of the strings propagates in the air as a transversal wave, but in the sound-
box, this pulsation originates transversal and longitudinal waves in the solid of the resonant
cavity in addition to the transversal sound waves inside the air chamber. Therefore, it is
beyond the objectives of this communication to elucidate this issue.

Also, since the variations in the frequency of the vibrato are less than the variation
between adjacent musical notes in the tempered scale, it would be expected that the vibrato
audio recordings would occur at relatively close distances to the Goodsounds mezzo-forte
recordings. Figure 11 shows a clarinet that behaves in the described manner, but in the case
of the violin, greater distances appear in some sounds. This could be due to an incorrect
musical performance of the vibrato or due to the effects of the violin sound box. Unlike the
cello, the violin is more diverse in its musical performance of vibrato, due to the addition
of the bow to the tension placed on the string by hand and due to the influence of the jaw
resting on the body of the violin, which can modify the vibration modes of the formants.
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Figure 11. Euclidean distances between the musical sounds of the vibrato and mezzo-forte Good-
sound audio recordings: (a) clarinet; (b) violin.

It is understandable that the oscillations in the main frequency in the vibrato increase
the coefficient H since the partial frequencies that are generated will not be harmonic
(greater H, less harmonicity), as can be seen in the lower panel of Figures 9 and 12. Figure 12
also shows that vibrato decreases the value of the Mean Affinity (MA) for chordophones.
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Figure 12. FFTs of G4 sound: cello (left column) and violin (right column); normal register mezzo-
forte (middle row), with crescendo technique (upper row) and vibrato (lower row). The values of
the timbral coefficients of Mean Affinity (MA), Harmonicity (H), and Affinity (A) are highlighted.

In the upper panel of Figure 12, it is observed that H does not always increase in
the chordophones. This may be due to the interaction with the resonance box of the
instrument, since the vibrations of some harmonics can cause destructive interference with
the generated formants due to the geometry of the musical instrument being considered.
However, the change due to musical dynamics is evidenced by the increase in Mean
Affinity, even for chordophones. The variation in the Affinity is not conclusive, since, in
this technique, as in vibrato, the musical performer can, according to their discretion and
personal taste, modify the fundamental frequency during the performance of the crescendo;
if they do this, the information will not be recorded in the Goodsound datasets.

Vibrato not only causes variations in frequency, but also oscillates the timbre of the
sound, that is, causes the greater or lesser prevalence of one component or another. This
oscillation in the sound quality caused by the vibrato violin is a characteristic feature of
this instrument. The acoustic explanation of this feature of the violin lies in the properties
of its sound box, which responds differently to very close frequency components. Finally,
all instruments allow for the performer to make their own vibrato, and this resource is a
very important part of characterizing the sound.

We have seen that the timbral coefficients allow for characterization of the timbral
variations; however, it is worth asking how these acoustically motivated descriptors com-
pare with other descriptors of the FFT based on statistical distributions. This is discussed
in the next section.
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4. Automatic Classification of Musical Timbres

The problems of classification can be resolved using supervised learning. These
classification algorithms have been used in music style recognition problems through
music feature extraction [12], musical instrument classification problems [13], and the use
of an intelligent system for piano timbre recognition [14], among other techniques. We
are going to compare the classification capacities of the timbral coefficients proposed by
González and Prati [8] with some timbral features extracted using Librosa: Chroma stft,
spectral contrast, spectral flatness, poly features, spectral centroid, spectral rolloff, and
spectral bandwidth [15].

For this, we use the TinySol database through the MIRDATA library [16], which
offers a standardization to work with audio attributes more efficiently. After defining
the meta-attributes, we explore timbral classification capabilities by considering certain
variations, such as instruments (violin, cello, transverse flute, clarinet, and trumpet), dy-
namics (pianissimo, mezzo-forte, and fortissimo), musical notes (considering the entire
range of each instrument) and instrument families (chordophones, wooden aerophones,
and metal aerophones).

We evaluated some classification algorithms, such as Random Forest (RF), Support
Vector Classifier (SVC), K-Nearest Neighbor (KNN), and logistic regression, and we ob-
served better statistical behavior in terms of classification for our subject of study with the
Random Forest algorithm; this behavior occurs in benchmark tests [17]. This is a conjoint
learning method that combines multiple decision trees to create a more robust and accurate
predictive model [18].

We used the data split provided in the MIRDATA library, which divides the data into
five folds. We applied a 5-fold cross-validation, where, in each iteration, one fold is used
for testing and the remaining folds are used for training. The process is repeated five times,
using a different test split each time. Using the Random Forest algorithm, we computed
the mean accuracy using the timbral coefficients and the LibRosa features. Table 2 presents
the results.

Table 2. Comparative results of the Random Forest classification algorithm (mean accuracy ±
Standard Deviation) for category recognition: musical instrument, musical dynamics, musical note,
and musical instrument families.

Instrument Dynamics Pitch Family

Timbral
Coefficients [8] 0.78 ± 0.02 0.63 ± 0.038 0.65 ± 0.046 0.92 ± 0.017

Timbral features
(Librosa) 0.89 ± 0.029 0.97 ± 0.011 0.22 ± 0.014 0.91 ± 0.018

Test T (p-value) 0.0000209 0.0000136 0.000115 0.0185

To statistically compare the results, we use a paired T-test for each possible class. The
last row of Table 1 shows the p-value of the test. Statistically significant differences were
observed for the timbral coefficients when compared with Librosa in the classification by
musical notes (pitch); this may be because the musical timbre, as an acoustic characteristic,
is a frequency-independent property of the musical timbre. On the other hand, if we
consider a significance interval of 99%, we can see that the timbral coefficients behave
well when classifying instruments and families of instruments, and are better for the
classification according to dynamics with respect to timbral features (Librosa).

5. Conclusions

Timbral variations in monophonic musical sounds can be characterized from an
FFT analysis of audio recordings. More particularly, due to the techniques of musical
performances of variations in amplitude (crescendo) and frequency (vibrato), these timbre
variations differ between instruments according to their acoustic characteristics.



Eng 2023, 4 2481

The acoustic FFT descriptors proposed by Gonzalez and Prati [4,8] provide a represen-
tation of the characteristic timbral space of each audio recording. Its position in the timbral
space [4] and the Euclidean distance between the registers allow for us to distinguish
the timbral variations due to the family of instruments, the musical dynamics, and the
variations in the execution technique. The latter can modify the envelope of the FFT and
consequently change the values of monotonicity (M) and harmonicity (H). The crescendo
modifies the Mean Contrast (MC) coefficient and the vibrato modifies the Affinity (A).

The Random Forest technique applied to evaluate the accuracy of the proposed classi-
fication shows statistically significant results for the FFT-Acoustic descriptors and timbral
features of Librosa when classifying instruments, dynamics, and families of instruments,
observing a better classification by pitch in the FFT-Acoustic descriptors when comparing
them with Librosa features. It is important to perceive that Librosa does not discriminate be-
tween the dynamic variations in crescendo and vibrato, while the FFT-Acoustic descriptors
do allow for them to be discriminated.
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