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Abstract: Thermal images are highly dependent on outside environmental conditions. This paper
proposes a method for improving the accuracy of the measured outside temperature on buildings
with different surrounding parameters, such as air humidity, external temperature, and distance
to the object. A model was proposed for improving thermal image quality based on KMeans and
the modified generative adversarial network (GAN) structure. It uses a set of images collected for
objects exposed to different outside conditions in terms of the required weather recommendations
for the measurements. This method improves the diagnosis of thermal deficiencies in buildings.
Its results point to the probability that areas of heat loss match multiple infrared measurements
with inconsistent contrast for the same object. The model shows that comparable accuracy and
higher matching were reached. This model enables effective and accurate infrared image analysis for
buildings where repeated survey output shows large discrepancies in measured surface temperatures
due to material properties.
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1. Introduction

Global warming has made it essential to reduce harmful gas emissions and enable
economic energy consumption. Methods to facilitate energy conservation are evolving
fields of study worldwide due to dwindling energy resources and climate change caused
by CO2 emissions. Conserving energy has become a top priority in many countries in order
to achieve prudent consumption, increase resource availability, and provide improved
thermal comfort. In some countries, the aim is to transform electrical energy as the main
resource to provide neutral generators for the environment, as discussed in [1,2]. Apart
from the emerging development of renewable energy production and projects involving
communication platforms between services to ensure sufficient energy availability when
needed, the construction sector remains a critical area for energy conservation. Energy
conservation in this sector involves several directions, including monitoring indoor en-
vironmental conditions, improving material properties, and detecting structural defects.
Carbon nanomaterials and their energy-saving capabilities and applications are presented
in [3]. The thermal energy storage techniques used for thermal energy conservation and
consumption are shown in [4].

Remarkable advances in sensor technologies enable continuous indoor monitoring.
The research in [5] proposes the thermal infrared fusion method for adapting thermo-
regulation performance that uses smart sensors and temporal indoor environmental pa-
rameters. The authors aligned thermal and visual images to localize the face and recorded
temperatures for the detected coordinates; they used a Gaussian mixture model to track
changes and then combined the acquired data with historical measurements to adjust
system operations. The authors in [6] studied desk illuminance sensors using a Power over
Ethernet lighting model. The desk sensor was checked for blocking, and the result was
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that the illuminance did not reach the minimum expected value, using the SVM model as
the classifier for blocked and unblocked sensors. The research presented in [7] describes
a smart controller design with multiple feedback devices, such as sensors and wearable
devices for temperature measurement. The rotation speed of the air conditioner’s motor
was adjusted to achieve human comfort and energy conservation.

Nondestructive testing is widely used to localize areas of high energy loss. The in-
frared technique (IRT) enables the detection of various defects in buildings, such as thermal
bridges, air flow, or moisture. However, the measurement results are dependent on the
environmental conditions. Numerous external factors, such as air humidity, external and
internal temperature, wind speed, light, etc., influence the results of infrared measure-
ments. The proposed methodology can be used to automate diagnostics when using
infrared cameras for monitoring and can be combined with emerging IoT technologies, as
discussed in [8].

Modern computer vision methods are powerful tools for image and video processing,
such as object detection, tracking, and image segmentation. The GAN deep learning-based
model is commonly used for image translation, synthesis, and semantic segmentation.
Several authors have used GAN to detect anomalies in thermal images. In [9], cracks
were investigated through nondestructive testing using an adapted GAN to improve im-
age segmentation. The authors used eddy current pulsed thermography (ECPT), which
incorporates a heating device for induction warming and records the heat distribution
measured with an infrared camera. In another study [10], the authors proposed a deblur
SRRGAN for thermal image reconstruction and the light-weighted Mask R-CNN for object
detection. The authors generated three-channel thermal images from the original one-
channel thermal images. In [11], thermal images were transformed into visual images by
developing cyclic attention-based GAN for thermal to visible domains. Thermal image
synthesis based on generative neural networks is presented in [12] using a multispectral
image-to-image transformation algorithm. In [13], the combination of visible and thermal
modalities was explored, and the authors proposed a domain fitting that does not require
RGB-to-image pairing. They achieved self-training by associating thermal domains of
interest with schemes for learning general representations in interesting domains. These
approaches primarily focus on thermal to visual image mapping and the detection of critical
points. Numerous GAN variants have been used to explore electrical energy consumption.
One of the more recent applications is TimeGAN, which generates new electrical loads
from the temporal series at the input. In [14], the authors described TimeGAN implemen-
tation and the method for matching original and synthesized series. Recently developed
frameworks for automated design solutions in construction offer significant advantages.
SD GAN is the approach proposed in [15], which was used for creating models with spatial
topology in accordance with energy efficiency requirements. The input parameters involve
space, light, environmental considerations, and parameters for cold air flow avoidance.

Tremendous developments in image processing techniques in recent years have facili-
tated the ability to provide automatic defect detections. Emerging deep learning techniques
enable automatic visual data processing. Under constantly changing environmental condi-
tions in terms of temperature, humidity, sunlight, etc., it may be challenging to calibrate
visual sensors that collect infrared measurements compared with established method-
ologies. In building energy assessments, it is challenging to make accurate and reliable
decisions on thermal estimates for specific structural areas affected by high energy losses.
The research conducted in [16] presents an improved methodology for energy loss detection
based on image segmentation and deep convolutional neural networks, which combines
the information from thermal and visual images. In [17], the flight path for an unmanned
aerial vehicle (UAV) for thermographic assessment was calculated based on the 3D model
to achieve reproducible data collection. For thermal loss detection in buildings, the authors
in [18] present 3D reconstruction models and visual-to-thermal mapping using the structure
from motion (SfM) techniques.
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In this research, repeated measurements were carried out for different buildings to
detect variations in measured object temperature under different external conditions. As
such, this methodology aims to improve the energy assessment for buildings by pro-
viding a comprehensive automated analysis of infrared images to make decisions about
their validity.

Typically, IR measurements can be repeated on the same structure to ensure proper
analysis and accurate detection of thermal loss. When thermal measurements are repeated,
they may represent different thermal states for similar external conditions. The aim of this
method is to manipulate IR images to predict the energy loss in buildings by selecting
reference infrared images that are considered to be accurate, possibly because they were
obtained in the early morning hours or at lower external temperatures and wind speeds.

2. Materials and Methods

The infrared assessments were carried out according to the recommended procedures.
The data collected included emissivity, object temperature, average reflected temperature,
humidity, and outdoor temperature. They were analyzed in terms of emission, reflection,
and atmospheric effects. The aim was to determine how these factors affected the validity
of infrared images.

The reflected energy and the influence of the atmosphere were not dominant, and
there were no noticeable differences in IR measurements. However, higher reflection led
to variations in the signal for the block structure and alpine structures. This finding is
interesting for the method presented, which is based on the GAN scheme. The KMeans
algorithm was used to differentiate high temperatures in infrared images. Various samples
of these images and the presented algorithm provided relative values for the results in the
input images. Detected regions with high losses in samples of the collected images were
compared, and if there was a match, these images were considered reliable.

Given the fact that materials with more complex thermal behavior were displayed in
multiple infrared images with modified surface temperatures (which prevents consistent
thermal analysis), the method presented using the modified GAN allowed the collected data
to be analyzed and predicted to determine which images represent the correct behavior.

2.1. Infrared Measures

The infrared measurements were carried out in Zürich and an area around the Swiss
mountains on buildings with brick, plastic, metal, and block facades and on older alpine
structures. Pictures of the same object were taken in the period from 28 February until 3
March on different days and at different times for outdoor temperatures ranging from−1 ◦C
to 11 ◦C. Before each measurement, the following procedure was followed: The emissivity
was adjusted when the same object was photographed on different days, the reflection
effect was measured, and as additional information, the humidity and the distance to
the object at the time of the measurement were noted in order to estimate the energy of
the atmosphere. The reflection was determined as described in [19], and the atmospheric
transmission coefficient was determined according to the methodology presented in [20].
From the obtained data for each building and each measurement, the proportion of the
emitted, radiated, atmospheric, and total radiated energy was calculated. The aim of
the study was to understand how these three different parameters affect thermal images,
by imaging the same objects on different days with different temperatures to show the
behavior of the buildings.

2.2. Adapted GAN Mechanism

CNN is commonly applied for tasks such as object detection and image segmentation.
With constantly changing environmental conditions in terms of temperature, humidity,
sunlight, etc., it is challenging to calibrate visual sensors that collect infrared measurements
compared with established methodologies. In addition to achieving efficiency in tasks such
as anomaly detection, the aim is also to obtain reliable results. The introduction of GAN has
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enabled more complex image processing, such as image synthesis and image translation.
For example, if the IRT samples collected for a building give contradicting information
about surface temperatures, applying image segmentation to the input images can lead to
inconsistent decisions about the thermal behavior of the object due to different results. Thus,
GAN can be applied to solve this challenge, since it is used to synthetize images, on the one
hand, and provide a discriminator that compares the images and makes decisions about
their similarity, on the other hand. The samples with variations in measured temperatures
were overlapped with one selected image with sufficient contrast that would be used
as the input image in the network with the aim to improve the accuracy in conclusions
about the regions with higher heat loss. The discriminator has the capability to compare
the characteristics of the synthesized image and the subsequent thermal image from the
collected set.

KMeans can be used to cluster images into segments. It is one of the computationally
fastest algorithms where centroids are initially defined for each cluster, and each pixel
is then associated with the nearest centroid [21]. The KMeans algorithm was used to
distinguish regions with higher temperature loss. In this way, all pixels that belong to
the clusters were colored with their representative centroid colors, allowing for rapid
differentiation of characteristic regions. By locating these areas on both input images, their
pixel coordinates were algorithmically saved in the array, and the discriminator processed
those arrays providing the prediction, only if the input images matched. The array that
corresponded to the subsequent image was evaluated as accurate in the discriminator
network, which enabled the estimation of the synthesized image.

The parts affected by heat loss are visible in bright colors, and KMeans clustering
enables information to be extracted about the surfaces with high temperatures, as shown
in Figure 1. The proposed method uses a system based on the GAN principle, where a
generator is adopted to combine two different images of the same object, and the discrimi-
nator predicts the validity of the new image by comparing the marked regions representing
higher heat loss in the generated image with high-temperature regions in an image from
the set. Some materials show large variations in the measured surface temperatures with
small variations in weather conditions, and therefore it is challenging to distinguish regions
with higher temperatures in an object. The GAN was modified with the aim of enhancing
the contrast ratio in the images and improving the localization of high-temperature areas.
The contrast in cluster data could be relatively low, making it difficult to detect heat loss.
For this reason, the subsequent images were combined with a selected infrared image with
optimal contrast and processed at the generator output using the chosen binarized values
that identified regions with heat loss on the previous image. The discriminator was trained
with descriptors related to the positional parameters of the heat loss region in the image
from the sequence.
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The regular generative adversarial network (GAN) contains two deep neural networks.
One network is the generator, which produces images based on predictions, and the
other network is the discriminator, which aims to distinguish between the original and
the generated images. The discriminator uses a feature extractor to distinguish domain-
invariant representations on the original and the generated image. In the common GAN,
the generator creates the image based on random noise and learns during training to
generate images that are similar to the original. This part was adapted by using the set of
images acquired from the infrared measurements for the specific object. The actual images
in this study were produced by synthesizing them with an image selected as a reference for
the best contrast. It was assumed that the images were roughly aligned. Figure 2 displays
the network structure that predicts the accuracy of heat loss detection.
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In order to achieve greater accuracy in diagnosing insulation quality due to variations
in the measurements obtained, the image with optimal contrast Iacc was combined with the
current image Icur from the sequence, and the resulting image was then compared with the
subsequent image in the set for the specific object. This logic can be expressed using the
following equation:

max
i∈[1,N]

Icur·Iacc − Iseq = ∆Imax, (1)

where N is the number of infrared images for the same building. Using this methodology,
the correction was introduced into the infrared image with noise by combining it with the
corresponding optimal image, and it was expected that there would be minimal deviations
in the measured signals. To achieve better accuracy, the images should be aligned. In
a previous study [22], a method was proposed for image registration in which parallel,
rotational, and scaling transformations were used to minimize the difference between the
shifted images. The optimization was performed using the gradient descent method with
the mean square error.

The first stage in the proposed method is to create a new infrared image from the set
by overlapping obtained infrared images with the reference infrared image. The new input
image is a rough estimate of two different infrared images from the set. Overlapping is
performed using the image matting given by [23]:

I = 0.5 ∗ I′ + 0.5 ∗ I ′′ , (2)

where α = 0.5 indicates the equal color contribution for both infrared images I′ and I ′′ .
The second stage is KMeans clustering, where the cluster number can be defined.
After combining the current image with the selected one, unsupervised KMeans

processing was used to enable comparison with the previous infrared image. The aim was
to compare specific clusters between successive images representing warmer areas.

By determining the brightness level and selecting specific colors from the palette
that correspond to high-temperature ranges, the Euclidean distances are algorithmically
calculated, and the high-temperature cluster is differentiated. In this modified network
structure, the discriminator predicts the probability that the generated image represents
accurate temperature states by examining the positional overlapping for the differentiated
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high-temperature segments. The discriminator introduces the entropy cost in order to
calculate label differences related to regions representing thermal loss. The collected images
were used to train the descriptors in the discriminator to compare new images.

In the final stage, the discriminator predicts the localization arguments for thermal
loss in the object and calculates whether the detected region matches the detected region
with thermal loss in the previous image. The input in the discriminator includes a two-
dimensional array corresponding to the pixel coordinates in the region affected by thermal
loss and, as a second input value, the prediction of the infrared image accuracy. The input
array with coordinates inside the region mask can be represented as X =

{(
xj, yj

)}n
j=1,

where n is the number of pixels within the registered area with higher temperatures. The
discriminator makes the prediction of whether the new image has the same state and
outputs the calculated probability in the range (0, 1).

The parameters in the discriminator are as follows: The first layer has 32 inputs with
the activation ‘relu’ and the kernel_initializer ‘he_uniform’, the second layer contains 16
input values with the activation ‘relu’ and the kernel_initializer ‘he_uniform’, and the third
layer is a dense layer with one input value and the activation ‘sigmoid’. The model was
compiled using the ‘binary cross-entropy’ and the ‘Adam’ optimizer.

3. Results
3.1. IRT Measurements

Detailed IRT measurements were carried out for buildings constructed with differ-
ent materials, including the adjustment of the emissivity coefficient, radiation, reflected
energy estimates, and atmospheric influence. These detailed measurements were carried
out with the aim of identifying variations in the measured temperature under different
weather conditions for buildings constructed with diverse materials. According to the
formula given in [24], the radiated energy can be calculated by taking into account detailed
measured parameters. Considering the detailed measurements, the percentage of radiated
energy was determined, as well as the reflection and the atmospheric effect. The real-time
IRT measurements show how thermal processes on buildings differ depending on envi-
ronmental conditions. It was found that buildings constructed with metal, plastic, and
brick generally have higher temperatures without visible fluctuations, and the contrast in
the measured signal and varying external conditions do not affect the fluctuations in the
measured signals.

The detailed parameter examinations in the IRT survey allow for the detection of
energy fluctuations and variations in the measured signals. The atmospheric influence
could be neglected as the transmission coefficient is close to 1 for small distances between
the measuring device and the object, even at relatively high humidity. Tables 1 and 2 show
the resulting radiated, reflected, and atmospheric energy. It is observed that the emitted
energy is the major part of the total radiated energy.

Table 1. Measured values for the radiated, reflected, and atmospheric energy for different buildings.

31 March 8 ◦C Humidity
76% Wind 26 km/h Metal Marble Plastic Brick Block

Emitted energy (W/m2) 385.4 387.5 382.7 356.1 340.7

Reflected energy (W/m2) 3.8 3.7 3.8 19 46.8

Atmospheric energy (W/m2) 4.4 4.4 4.4 4.4 4.4

Total radiated energy (W/m2) 388.95 390.9 386.3 375 387.25

Percentage emitted energy (%) 99 99 99 95 88
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Table 2. Measured values for the radiated, reflected, and atmospheric energy for metal, plastic, and
brick building envelopes.

1 April 8 ◦C Humidity 76% Wind 26 km/h Metal Plastic Brick

Emitted energy (W/m2) 371 363.9 336.1

Reflected energy (W/m2) 3.7 3.7 24.7

Atmospheric energy (W/m2) 4.3 4.3 4.3

Total Radiated energy (W/m2) 375.2 367.5 360.8

Percentage emitted energy (%) 99 99 93

3.2. Heat Loss Localization

The repeated measurements show that the different external conditions do not affect
the fluctuations in the measured signal for certain materials, such as brick and plastic, as
shown in Figures 3 and 4. The thermal scale is also shown, and the temperature range
is from −20 ◦C to 400 ◦C. The temperature values in the following figures represent the
measured temperatures at points that the star signifies.

Figure 5 shows three measurement states for an older alpine building and the image
obtained by overlapping the low-contrast image, which is assumed to be less accurate
than the referenced image. By applying the KMeans algorithm, the cluster of regions with
heat loss on the previous image was determined, and the corresponding array with the
value of 1 was identified based on pixel coordinates belonging to this region. Running
the new KMeans-processed image through the discriminator allowed us to determine the
probability that the heat loss cluster matches the cluster on the reference image. At the
output, the discriminator predicted that there was a 70% probability that the images would
match, indicating that the regions of heat loss were correctly identified.
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Figure 3. IRT measurements for a building with a brick envelope built in March 2023: (a) time
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Figure 5. (a–c) Three IRT measurements for an object; (d) overlapped image; (e) KMeans reference
images; (f) KMeans combined image.

The IRT measurements, taken under slightly different environmental conditions and at
different times of the day show that there can be discrepancies in the measured temperatures
in buildings depending on the building material. The result for the block building is shown
in Figure 6. These infrared images differ in contrast, and it was assumed that the lower
temperatures would give more accurate results. Under different environmental conditions,
the estimated emissivity coefficient varied from 0.78 to 0.88, which is a greater variation
than for other buildings. It is noticeable that different factors affect the IR image.
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Figure 6. IRT measurements taken on different days in winter for the same building: (a) the image
was taken on 5 March 2023 at 8:00 a.m., with the outside temperature of 2 ◦C; (b) 28 February 2023,
time 9:00 a.m., outside temperature −1 ◦C; (c) 6 March 2023, time 8:00 p.m., outside temperature
10 ◦C; (d) 28 March 2023, time 9:30 a.m., temperature 3 ◦C; (e) 3 March 2023, 8:30 a.m., outside
temperature 11 ◦C.

Due to the lower emissivity, the measured temperatures fluctuate and affect the differ-
ences in radiated energy. At very low temperatures, the measured surface temperatures
were obviously lower, thus resulting in a better contrast between the elements and making
it easier to distinguish them according to the heat flow. In this case, the higher the temper-
ature, the more radiated energy was detected. As the temperature increased, it became
more difficult to differentiate the elements according to their temperature, as similar values
were detected for the whole object, despite sufficient differences between the internal and
external temperatures. For the image taken in the evening, higher temperatures were
measured, and in order to determine the regions with heat loss for this object, the variances
in the measured signals were studied with the aim of enabling algorithmic diagnosis in
infrared image analysis in cases when there were large discrepancies in the measurements.

Figure 6a was chosen as the reference image, and it was combined with other images
and run through the discriminator with subsequent thermal imaging to make predictions
about localized heat loss. It was ascertained that, for the first image examined, the heat loss
regions were approximately 95% accurate. For the second image in the sequence, it was
observed that the predicted accuracy was 69%, while for the third image, the minimum
accuracy value was 69%. Figure 7 shows the observed results for this image sequence
per iteration.
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Figure 8 represents the measurement results for another object. The calculated scores
for this building were constant at 0.72.
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4. Discussion and Future Work Scope

The continuous monitoring and measurements for the different buildings were based
on recommended procedures for infrared measurements, and according to the results,
similar temperatures were measured for materials such as metal, plastic, and brick, despite
outside temperature variations of up to 9 ◦C. Quantitative analysis included relevant
environmental parameters, including distance from the measuring device to the object
and humidity for atmospheric effects, as well as emissivity calibration and reflectance
measurements, to provide information on how the temperature measurements obtained
represent the energy distribution from the object.

However, the analyzed objects had different behaviors in terms of heat transfer, and
with regard to the recommended weather conditions, different temperature states were
obtained, making the energy analysis more complex. Due to the lack of brightness re-
lationships in multiple images, it was difficult to predict the exact heat contrast. The
modified GAN structure improved image contrast and reduced signal noise. The image
representation is generalized from the variations in the input data. With this method, it
is possible to reduce the uncertainty in false detections by combining an image selected
as the most accurate in terms of contrast with the images from the image set. In this way,
the contrast was improved where regions were difficult to distinguish, and congruence
with the next real image was predicted. The result was a good match for the detected
high-temperature regions.

Several recent studies exist in the literature that measure quantitative data and apply
neural networks for thermal leak detection, and this study focused on the reliability of the
data collected. In the future, larger quantities of data should be collected and analyzed.
The limitations encountered in terms of material properties could be overcome with a more
comprehensive study in order to distinguish specific thermal behaviors in more detail.
The measured object temperatures were roughly estimated, which affects the accuracy of
the results.
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Newer IRT instruments allow for rapid data collection in the environment. Method-
ologies for reliable analysis of the collected data require processing algorithms that can
predict and detect anomalies. Future frameworks should address the uncertainty in signal
measurements caused by changes in position, daylight intensity, material properties, etc.
This could lead to significant improvements in energy-efficient construction and environ-
mental comfort. These goals can be achieved by applying AI mechanisms with smart visual
devices designed for thermal scanning in residential areas.

5. Conclusions

In this research, the thermal behavior of buildings constructed with different materials
was quantitatively measured and analyzed using thermograms. Materials such as brick
and metal were found to have consistently high surface temperatures. Materials with more
complex behavior such as higher energy reflection exhibited modified surface temperatures
that affect consistent thermal analysis.

The proposed method involves thermal image segmentation using KMeans and a
neural network that predicts the match between surfaces in the generated and original
samples. A model was built to process the infrared images of the same building that
were taken at different times and different external temperatures. As can be seen, the
noise in the infrared images was reduced, the identification of regions with thermal loss
was successful, and the contrast relationship was improved. The proposed adversarial
constellation exploits the domain fitting in the input thermal images. Regions with heat
loss in combined images matched with the regions undergoing heat loss in subsequent
samples at a high percentage.

When there are larger discrepancies in the measured surface temperatures, the pro-
posed method provides estimated values for sample classification. The adapted GAN
with KMeans provides more accurate texture segmentation by integrating the results of
multiple evaluations. This method allows for effective comparison in cases where multiple
infrared measurements show discontinuities and provides the resulting probability that the
detected regions of energy loss are consistent. Future experiments should optimize smart
communications between IRT instruments and data processing platforms and terminals.
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