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Abstract: As a valuable mineral resource, uranium is extensively utilized in nuclear power generation,
radiation therapy, isotope labeling, and tracing. In order to achieve energy structure diversification,
reduce dependence on traditional fossil fuels, and promote the sustainable development of energy
production and consumption, research on the metallogenic mechanisms and related development
technologies of uranium resources has been one of the focuses of China’s energy development.
Sandstone-type uranium deposits make up approximately 43% of all deposits in China, making them
the most prevalent form of uranium deposit there. Sandstone-type uranium deposits and hydrocarbon
resources frequently coexist in the same basin in China. Therefore, this study summarizes the spatial
and chronological distribution, as well as the geological characteristics, of typical sandstone-type
uranium deposits in China’s hydrocarbon-bearing basins. From the perspectives of fluid action,
geological structure, and sedimentary environment, the metallogenic mechanisms of sandstone-type
uranium deposits in hydrocarbon-bearing basins are explored. According to the research, the rapid
reduction effect of oil and gas in the same basin is a major factor in the generation of relatively
large uranium deposits. Additionally, ions such as CO3

2− and HCO3
− in hydrothermal fluids of

hydrocarbon-bearing basins, which typically originate from dispersed oil and gas, are more conducive
to uranium enrichment and sedimentation. This study provides guidance for efficient sandstone-type
uranium deposit exploration and production in hydrocarbon-bearing basins and helps to achieve
significant improvements in uranium resource exploitation efficiency.

Keywords: hydrocarbon-bearing basins; sandstone-type uranium deposits; metallogenic mechanisms;
hydrothermal fluids

1. Introduction

Uranium is a rare mineral resource that is extensively distributed throughout the
Earth’s crust [1,2], but it typically exists at low concentrations, with an average abundance
of about 2.7 ppm (parts per million) [3]. In addition, only a relatively small number of eco-
nomically viable uranium deposits exist, and they are unevenly distributed [4,5]. Currently,
global uranium production is about 54,224 tons [6] and is primarily from countries such
as Kazakhstan (43%), Canada (15%), Namibia (11%), and Australia (8%) [7]. Uranium is
an important unconventional energy resource primarily used for nuclear power genera-
tion [8–10]. Through uranium fission reactions in a nuclear reactor, enormous energy can be
generated for electricity production. Nuclear power generation has the advantages of high
efficiency and cleanliness [11,12], so it is particularly suitable for areas with high electricity
demand, helping to reduce dependence on traditional fossil fuels, and thus reducing carbon
emissions [13,14]. In addition, uranium also has other nuclear technology applications,
such as radiation therapy [15,16] and isotope labeling and tracing [17,18]. The Organization
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for Economic Co-operation and Development (OECD) has provided information that the
growing demand for clean energy transition in the future is anticipated to affect nuclear
energy capacity, with the East Asia region expected to experience the largest increase in
uranium demand [19,20]. To promote the growth of nuclear energy capacity and drive
the increase in demand for uranium, it is crucial to acknowledge the benefits of nuclear
energy in providing a secure, reliable, and predictable energy supply. Additionally, offering
incentives to promote the diversification of low-carbon technologies can help to achieve
these goals.

For countries with large populations and rapid economic development, such as China,
ensuring energy security is crucial for sustainable development. In order to lower green-
house gas emissions and combat climate change, the Chinese government has imple-
mented a series of policies [21] to support the development of uranium resources, fully
exploiting and utilizing domestic uranium resources to achieve energy diversification,
reduce reliance on traditional fossil fuels, and promote sustainable energy production
and consumption [22]. China previously aimed to adhere to a strategy referred to as the
‘three-third rule’ for its uranium supply, which involved one-third coming from domestic
mining, one-third from direct international trades, and one-third from Chinese compa-
nies mining abroad. However, China’s current approach has shifted towards a portfolio
approach, where uranium is sourced from various locations based on feasibility and eco-
nomic viability. The objective is to maximize uranium supply security by utilizing different
sources, including those outlined in the ‘three-third rule’ [23]. Therefore, in recent years,
China’s uranium mining has also increased, with annual production reaching 1885 tons in
2018, contributing to roughly 4% of global uranium production and ranking among the top
ten producers worldwide [24].

Sandstone-type uranium deposits, which are distinguished by their economical in-situ
leaching, vast scale, and minimal environmental impact during mining, have become a
key area of focus in China’s ongoing exploration of uranium resources [25]. Consequently,
research into the genesis, exploration, and mining of these deposits has gained significant
traction in recent years. The presence of sandstone-type uranium deposits alongside oil and
gas resources frequently occurs in China’s basins [26–29], indicating a close relationship
and coexistence between these resources. This can be attributed to the fact that sandstone,
particularly high-porosity and permeability sandstone, functions as a storage space for
oil and gas, as well as channels and storage sites for the transportation and enrichment of
fluids carrying uranium [30–32]. In addition, the geological structures and sedimentary
environments required by hydrocarbon generation and uranium mineralization share
certain similarities [33]. The coexistence of hydrocarbon resources and sandstone-type
uranium deposits within the same basin offers China a significant advantage in the efficient
and economical exploitation of its energy resources. Developed oil and gas basins have
relatively complete infrastructure and geological history data that can be directly utilized
for uranium exploration and evaluation, leading to comprehensive resource utilization and
a substantial improvement in economic efficiency.

However, it should be noted that the metallogenic mechanisms of sandstone-type
uranium deposits within hydrocarbon-bearing basins may prove complex because of the
presence of varying fluid compositions, geological structures, and sedimentary environ-
ments. These factors can have an impact on the enrichment and distribution of uranium.
Given the unique features of basins containing both hydrocarbons and sandstone-type
uranium deposits, it is imperative to conduct a comprehensive analysis of uranium min-
eralization in such basins. Therefore, this study presents a comprehensive overview of
the geological properties, geographic distribution, and chronological variation of typical
sandstone-type uranium deposits found in China’s hydrocarbon-bearing basins. By inte-
grating analyses of fluid action, geological structure, sedimentary environment, and other
relevant factors, this study elucidates the metallogenic mechanisms underlying sandstone-
type uranium deposits within China’s hydrocarbon-bearing basins. Findings from this
study can enable more precise assessments of uranium reserves, as well as shed light on
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the distribution patterns and factors underlying the formation of uranium deposits. The
insights gained can inform the exploration and development strategies for sandstone-type
uranium deposits, optimizing mining methods and beneficiation processes, and leading to
improved efficiency and recovery rates.

2. Characteristics of Sandstone-Type Uranium Deposits in Hydrocarbon-Bearing
Basins in China

Figure 1 illustrates the typical forms and distribution percentages of China’s uranium
resources, along with their respective locations. The four primary categories of uranium
deposits [34] in China are depicted in the figure as follows: sandstone-type, accounting
for 43.0% and widely distributed; granite-type, accounting for 22.9% and concentrated in
southern China; volcanic-type, accounting for 17.6% and concentrated in eastern China;
and C-Si-pelitic type, accounting for 8.7% and concentrated in central and southern China.
These four primary categories together contribute to approximately 92.2% of the total
confirmed uranium resources in the country [35]. Other types, including alkaline rock type,
coal rock type, shale type, and phosphorite type, represent about 7.8% of the total [35].
The geological history of China reveals uranium mineralization events spanning the Pa-
leoarchean, Early Paleozoic, Late Paleozoic, Triassic, Jurassic, Cretaceous, and Cenozoic
eras, as depicted in Figure 2. The Cretaceous and Cenozoic eras were the main period of
uranium mineralization [36]. The distribution of these mineralization ages was primarily
influenced by China’s tectonic environment [37,38], geological structural evolution [38],
and the geochemical properties of uranium elements [39]. The formation of various moun-
tain structures, fault zones, volcanic belts, and sedimentary basins in China, under the
influence of tectonic movements, magmatic activity, and sedimentation, has provided
suitable environments and conditions for uranium mineralization.
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Figure 2. Statistical graph of ore-forming ages of four typical uranium resources in China [35].

Sandstone-type deposits, which make up the majority of China’s confirmed uranium
reserves, exhibit certain characteristics in terms of their overall spatial and temporal dis-
tribution. Firstly, they are characterized as “small but numerous”. Although individual
deposits are small, they are numerous, and have various mineralization geological ages,
mineralization periods, and distribution areas [35]. Secondly, they are considered “lean
but usable”. Despite China’s uranium resources being mainly of medium to low grades,
the ore types are generally good, and the hydrometallurgical processing performance is
favorable, making them technically and economically viable [35]. Lastly, they are “widely
scattered but relatively concentrated”. Although individual deposits have small scales,
they are primarily concentrated in several mining areas and mineralized concentration
areas [35].

2.1. Spatial Distribution Characteristics of Sandstone-Type Uranium Deposits in
Hydrocarbon-Bearing Basins

Sandstone-type uranium deposits within hydrocarbon-bearing basins are primarily
concentrated in China’s large- and medium-sized basins, particularly in the northern
region. Among them, six basins, including the Ordos Basin, Yili Basin, Turpan-Hami
Basin, Erlian Basin, Songliao Basin, and Badain Jaran-Bayingebi Basin, are projected to hold
75% of China’s entire sandstone-type uranium deposit resources [35]. All these basins are
characterized by oil and gas production, with sandstone-type reservoirs being predominant,
as well as some shale, mudstone, carbonate hydrocarbon reservoirs, and coalbed methane
reservoirs. Table 1 presents the location distribution of the major hydrocarbon-bearing
basins in China that are abundant in sandstone-type uranium deposits, along with the
burial depth of the hydrocarbon reservoirs and sandstone-type uranium deposits.

Table 1. Distribution of major hydrocarbon-bearing basins and burial depth of their internal hydro-
carbon reservoirs and sandstone-type uranium deposits [7,37,41–64].

Hydrocarbon-Bearing
Basin Basin Location

Burial Depth of
Hydrocarbon

Reservoirs (m)

Burial Depth of
Sandstone-Type

Uranium Deposits (m)

Resources
(tU)

Ordos Basin
In northern China, covering parts
of Shaanxi, Inner Mongolia, and

Ningxia provinces
2000–4000 300–1500 80,100
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Table 1. Cont.

Hydrocarbon-Bearing
Basin Basin Location

Burial Depth of
Hydrocarbon

Reservoirs (m)

Burial Depth of
Sandstone-Type

Uranium Deposits (m)

Resources
(tU)

Yili Basin In northern section of Xinjiang
Uygur Autonomous Region 1000–4000 200–800 42,700

Turpan-Hami Basin In northwest section of Xinjiang
Uyghur Autonomous Region 3000–6000 100–800 10,100

Erlian Basin In Inner Mongolia 1500–3500 500–1000 52,100

Songliao Basin
In northeastern China, spanning

across parts of Liaoning, Jilin, and
Heilongjiang provinces

2000–4000 500–1000 16,500

Badain Jaran-
Bayingebi Basin

In northwestern China, spanning
the provinces of Gansu, Ningxia,

and Inner Mongolia
2000–5000 500–1000 7500

Junggar Basin
In northwestern China, covering

parts of Xinjiang and
Inner Mongolia

2500–15,000 150–1300 N/A

Tarim Basin In Xinjiang Uygur
Autonomous Region 3000–8000 500–3000 N/A

Kumishi Basin In Xinjiang Uygur
Autonomous Region 2000–5000 1000–2000 N/A

Qaidam Basin In northwestern part of
Qinghai province 3000–5000 <3000 N/A

Hengyang Basin In Hunan province 1500–3000 <1000 N/A

Sichuan Basin
In southwestern China, covering
parts of Sichuan, Chongqing, and

Guizhou provinces
2000–7000 500–1000 5100

2.2. Temporal Distribution Characteristics of Sandstone-Type Uranium Deposits in
Hydrocarbon-Bearing Basins

In China’s hydrocarbon-bearing basins, uranium mineralization in sandstone-type
deposits spans an extensive temporal range, from the early Mesozoic to the late Cenozoic
periods [65]. Figure 2 indicates that the peak periods of uranium mineralization were
during the Cretaceous and Cenozoic periods. Table 2 provides information on the formation
periods of major hydrocarbon-bearing basins in China, as well as their internal hydrocarbon-
bearing reservoirs and sandstone-type uranium deposits. According to Table 2, uranium
mineralization primarily occurred in the western basins during the Neogene period, while
in the central and eastern basins, it mainly occurred during the Cretaceous period [35].

Table 2. Formation periods of major hydrocarbon-bearing basins, as well as their internal
hydrocarbon-bearing reservoirs and sandstone-type uranium deposits [34,42,48,59,66–87].

Hydrocarbon-Bearing Basin Formation Period of Basin Main Formation Period of
Hydrocarbon-Bearing Layers

Main Mineralization Period of
Sandstone-Type Uranium

Deposits

Ordos Basin Paleozoic to Cenozoic Silurian to Triassic Jurassic to early Cretaceous

Yili Basin Late Paleozoic to early Mesozoic Devonian to Triassic Triassic to Jurassic

Turpan-Hami Basin Late Paleozoic to Cenozoic Permian to early Triassic Cretaceous
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Table 2. Cont.

Hydrocarbon-Bearing Basin Formation Period of Basin Main Formation Period of
Hydrocarbon-Bearing Layers

Main Mineralization Period of
Sandstone-Type Uranium

Deposits

Erlian Basin Mesozoic to Cenozoic Cretaceous to Paleogene Late Jurassic to early Cretaceous

Songliao Basin Paleozoic to early Mesozoic Carboniferous to Jurassic Carboniferous to Permian

Badain Jaran-Bayingebi Basin Cenozoic Neogene Early to middle Quaternary

Junggar Basin Late Paleozoic to
Mesozoic-Cenozoic Cretaceous to Neogene Cretaceous

Tarim Basin Early Paleozoic to early Cenozoic Jurassic and Cretaceous Jurassic to Paleogene

Kumishi Basin Cenozoic Neogene Neogene

Qaidam Basin Mesozoic to Cenozoic Neogene Neogene to Quaternary

Hengyang Basin Paleozoic Devonian to Permian Neogene

Sichuan Basin Mesozoic to Cenozoic Cretaceous to Paleogene Neogene

2.3. Geological Characteristics of Sandstone-Type Uranium Deposits in Hydrocarbon-
Bearing Basins

Table 3 summarizes the geological structural characteristics, as well as the sedimentary
conditions, of hydrocarbon-bearing basins in China that are rich in sandstone-type uranium
resources. Most of these basins have a high prevalence of fault structures, which is a signifi-
cant factor in their formation and evolution. Some of these basins were formed through
marine sedimentation, while others were formed through continental sedimentation that
mainly involved lacustrine and fluvial sedimentation. Consequently, the hydrodynamic
environment was extremely important during the development process of these basins.

Table 3. Geological structural characteristics and sedimentary conditions of major hydrocarbon-
bearing basins [88–108].

Hydrocarbon-Bearing Basin Geological Structure Sedimentary Rock Sedimentary Environment

Ordos Basin

Fault zone and multiple fault
structures as primary

structural units;
Uplifts, and depressions as
secondary structural units.

Sandstone, mudstone, coal seam
Continental sedimentation,

including coal-bearing strata,
ancient lake facies, river facies.

Yili Basin

Fault structures as primary
structural units;

Reverse faults, slopes, fractures,
folds, and uplifts as secondary

structural units.

Sandstone and mudstone
Marine sedimentation, including
shallow marine facies, continental

shelf facies, and marine facies.

Turpan-Hami Basin

Fault zone as primary
structural unit;

Reverse faults, blind thrust faults,
folds, and uplifts as secondary

structural units

Sandstone and mudstone
Continental sedimentation,

including coal-bearing strata,
river facies, and lake facies.

Erlian Basin Stable structure with only slight
structural deformations. Sandstone, shale, coal seam

Continental sedimentation,
including river facies, lake facies,

and wind erosion.

Songliao Basin

Fault-rift zone as primary
structural unit;

Fault blocks, uplifts, depressions,
and ancient buried hills as
secondary structural units.

Sandstone and mudstone
Marine sedimentation, including
shallow marine facies, continental

shelf facies, and marine facies.
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Table 3. Cont.

Hydrocarbon-Bearing Basin Geological Structure Sedimentary Rock Sedimentary Environment

Badain Jaran-Bayingebi Basin

Fault zone as primary
structural unit;

Reverse faults, blind thrust faults,
slopes, and uplifts as secondary

structural units

Sandstone and mudstone
Continental sedimentation,
including river facies and

lake facies.

Junggar Basin

Fault zone as primary
structural unit;

Reverse faults, uplifts and
depressions as secondary

structural units.

Sandstone, mudstone, and
carbonate rock

Continental sedimentation,
including river facies, lake facies,

and wind erosion.

Tarim Basin

Fault zone as primary
structural unit;

Reverse faults, blind thrust faults,
slopes, and uplifts as secondary

structural units.

Sandstone and mudstone
Marine sedimentation, including
shallow marine facies, continental

shelf facies, and marine facies.

Kumishi Basin

Fault zone as primary
structural unit;

Reverse faults, slopes, and uplifts
as secondary structural units.

Sandstone and shale
Continental sedimentation,

including river facies, lake facies,
and wind erosion.

Qaidam Basin

Fault zone as primary
structural unit;

Reverse faults, uplifts and
depressions as secondary

structural units.

Sandstone, mudstone, carbonate
rock, and shale.

Marine sedimentation, including
shallow marine facies, continental

shelf facies, and marine facies.

Hengyang Basin

Fault zone as primary
structural unit;

Reverse faults, normal faults, and
strike-slip faults as secondary

structural units.

Sandstone and mudstone
Continental sedimentation,
including river facies and

lake facies.

Sichuan Basin

Fault zone as primary
structural unit;

thrust faults, strike-slip faults,
normal faults, and uplifts as
secondary structural units.

Sandstone, mudstone, shale, and
coal seam.

Marine to contin-
ental sedimentation.

3. Metallogenic Mechanisms of Sandstone-Type Uranium Deposits in
Hydrocarbon-Bearing Basins in China

Sandstone-type uranium deposits are commonly a result of a specific stage in crustal
evolution. The main sources of uranium minerals that are present in China’s sandstone-
type uranium deposits are sedimentary layers within the basin and nearby geological
structures that contain significant concentrations of uranium minerals. The redox behavior
of uranium (U6+→U4+) is a fundamental principle followed by uranium mineralization.
Uranium minerals are transported and enriched in the form of U6+ and ultimately de-
posited in the sandstone deposits in the form of U4+ compounds. Current research among
Chinese scholars suggests a consensus regarding the infiltration of fluids in the vicinity of
the basin’s periphery, which leads to the formation of roll or plate uranium orebodies [109].
Some researchers have proposed that reducing fluids in deep basins are as important
during the formation process of these deposits in light of recent advancements in prospect-
ing and research [25]. Moreover, it is suggested that the basin’s tectonic movement can
cause uranium-bearing fluid to vertically migrate, facilitating uranium deposits to form.
Figure 3 illustrates the metallogenic mechanisms involved in the formation process of
sandstone-type uranium deposits within basins containing hydrocarbon resources. This
study analyzes the mineralization process of sandstone-type uranium within hydrocarbon-
bearing basins from the perspective of fluid action to better understand the metallogenic
mechanisms involved in sandstone-type uranium deposit formation in such basins. The
potential rational theory is clarified in that hydrocarbon-bearing basins are conducive to
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sandstone-type uranium mineralization by combining their structural characteristics and
sedimentary environment.
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3.1. Fluid Action

The crucial role of fluids in uranium mineralization has been widely recognized in
current research. Sandstone-type uranium deposits are formed with the significant involve-
ment of surface water and groundwater. It has been discovered that uranium ore, oil, and
gas, as well as low-temperature hydrothermal minerals, can be found in hydrocarbon-
bearing basins with extensive sandstone-type uranium resources. This suggests the involve-
ment of low-temperature hydrothermal fluids during uranium mineralization [111,112].
Therefore, this study offers a metallogenic analysis of sandstone-type uranium deposits
within hydrocarbon-bearing basins, examining the effects of three fluid types: surface water
and groundwater, oil and gas, and hydrothermal fluids.

3.1.1. Action of Surface Water and Groundwater

In uranium-rich hydrocarbon-bearing basins, sandstone-type uranium mineralization
primarily occurs through the action of surface water and groundwater, which play a crucial
role in providing the hydrodynamic force necessary for uranium mineralization. Under
oxidizing conditions, surface water dissolves uranium minerals that are present within
the rocks of the surrounding orogenic zone, while groundwater dissolves a significant
quantity of uranium-bearing rock debris that is brought into the basin by weathering and
denudation. These uranium minerals dissolved by surface water and groundwater can
migrate with water flow to the tectonic slope zone, which is favorable for mineralization
and enrichment. Under the influence of the siphon effect [113,114] and pulsation cycle
mechanism [25], uranium-bearing fluids can promote uranium deposition in sandstone
through the form of minerals or adsorptive precipitation. This occurs due to a slow-
ing down of water flow, a decrease in oxygen content in water, and the occurrence of
reduction reactions.
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3.1.2. Action of Oil and Gas

Uranium deposits and hydrocarbon fields within the same basin are closely inter-
twined. The spatial location of uranium deposits and the origin of hydrocarbon fields
are strongly related. In these hydrocarbon-bearing basins, when sandstones are rich in
organic materials, such as fossil plant remains, these organic materials can undergo pyrol-
ysis reactions under the influence of pressure and temperature over an extended length
of time, leading to the formation of hydrocarbons. Additionally, these organic materials
can also react with uranium-bearing oxidized groundwater as a reducing agent to form
uranium deposits. This is because fossil plant remains are abundant in organic matter,
including soluble organic matter, fixed organic matter, and structural organic matter, with
the majority of it being humus. The organic matter can react with uranium-bearing oxi-
dized groundwater either directly through reduction with bacterial as a catalyst [115], or
indirectly through the production of biogenic hydrogen sulfide [116], a reducing agent that
causes uranium to precipitate for the deposit formation. Therefore, sandstones that are rich
in organic materials within hydrocarbon-bearing basins often become important sites for
hydrocarbon generation and uranium deposit mineralization.

However, regarding production stratigraphy and mineralization location, sandstone-
type uranium deposits are substantially distinct from hydrocarbon resources. Studies have
shown that oil and gas reservoirs are typically located at lower or deeper sections of the
sandstone-type uranium-bearing layer within the same basin [117]. In contrast, sandstone-
type uranium is primarily mineralized at the top of hydrocarbon reservoirs, especially
around the edges of hydrocarbon cap rocks [115]. This up-and-down superposition location
association between sandstone-type uranium deposits and hydrocarbon is a key factor in
the modification effect of hydrocarbons on uranium deposits.

The spatial distribution of uranium deposits above hydrocarbon reservoirs is deter-
mined by their source rock locations and formation processes. As shown in Figure 3,
hydrocarbons are mainly derived from organic-rich source rocks, usually located under-
ground or within sedimentary basins, while uranium is derived from uranium-rich minerals
in surrounding rocks or debris. Hydrocarbon formation results from the accumulation
and maturation of organic matter, while sandstone-type uranium deposition involves the
uranium dissolution by surface water or groundwater under oxidizing conditions, the
movement of uranium-bearing fluid, and the uranium precipitation under reducing con-
ditions. In basins containing both hydrocarbon resources and sandstone-type uranium
deposits, hydrocarbons are usually transported through fractures or unconformities to the
overlying or shallow sandstone-type uranium-bearing layers and laterally migrate along
the intra-stratigraphic sand body toward the decompression zone [117]. When hydrocar-
bons encounter oxygenated uranium-bearing fluids or uranium ore bodies, post-generation
modification occurs [117] for uranium deposition. Therefore, sandstone-type uranium
deposits are usually located above hydrocarbon reservoirs. Chemical analysis of rock
samples from drill holes [118] and fluid inclusion tests [119,120] have revealed the presence
of hydrocarbon gases, including hydrogen sulfide, carbon dioxide, and methane. These
results suggest that hydrocarbon gases, with the function of rapid and local reduction,
which leak from oil and gas reservoirs can be utilized as an essential favorable factor to
promote larger deposits to form [115]. In addition, sandstone-type uranium deposits are
more prone to form within areas with poor sealing at the margins of hydrocarbon reservoirs,
as these conditions are more conducive to hydrocarbon infiltration.

Hydrocarbons possess various forms of reducing effects on uranium mineralization
depending on their different formation timeframes [117]. Figure 4 presents the initial
formation periods of these hydrocarbon-bearing basins, together with those of hydrocarbon
reservoirs and uranium deposits contained therein. Within a given basin, the hydrocarbon
generation and the sandstone-type uranium deposition may vary, with the possibility of
occurring before, concurrently with, and after the latter. When oil and gas are generated ear-
lier than uranium mineralization, they infiltrate the sandstone-type uranium-bearing layer
to create a large-scale reducing environment. This increases the reducing capacity within
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the mineralized layer, favoring the precipitation and enrichment of uranium. When oil and
gas are generated almost simultaneously with uranium mineralization, their infiltration not
only increases the reducing capacity but also obstructs the upward migration of oxygenated
and uranium-bearing fluids. This leads to the development of a uranium mineralization
equilibrium interface, which is a favorable condition for enriched uranium deposits with
large scales to form. When oil and gas are generated later than uranium mineralization,
their infiltration and reducing modification occur outside the already-formed uranium
deposit. This reduces the possible oxidation zone surrounding the deposit and protects
the formed uranium mineral body. Additionally, carbonate minerals can form both inside
and outside the mining area when hydrocarbons reduce uranium-bearing fluids. Therefore,
the presence of carbonate minerals can serve as a valuable indicator or clue for exploring
sandstone-type uranium resources.
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Figure 4. Initial formation periods of hydrocarbon-bearing basins and their internal hydrocarbon
reservoirs and sandstone-type uranium deposits.

3.1.3. Action of Hydrothermal Fluids

Hydrothermal fluids form when groundwater at great depths undergoes dissolution
of minerals and ions under high temperature and pressure conditions [121]. These fluids
are primarily composed of water, dissolved minerals, and ions, which commonly include
sodium, potassium, and iron ions.

Hydrothermal fluids found in hydrocarbon-bearing basins not only contain common
ions but also CO3

2− and HCO3
− ions, which are typically sourced from dispersed oil

and gas. In a slightly acidic environment, these ions in the hydrothermal fluids can
more effectively dissolve U6+. Soluble compounds such as uranyl carbonate complex ions
([UO2(CO3)3]4−) [122,123] easily form and dissolve in oxygen-containing groundwater,
which contributes to the enrichment of uranium ores. These complex anions then react with
reducers, such as organic carbon from dispersed oil and gas. As a result, U4+ can precipitate
under reducing circumstances, which, in turn, further promotes uranium mineralization.
Hence, these distinctive compositions of hydrothermal fluids within hydrocarbon-bearing
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basins play a pivotal role in the enrichment of uranium during its transportation, thus
facilitating the development of larger-scale uranium deposits.

3.2. Geological Structure Effect

Tectonic events in geology refer to the deformation and movement of the Earth’s plates,
which can cause crustal movements and the formation and evolution of basins. These
processes can result in phenomena such as basin uplift, subsidence, and deformation, which
significantly affect hydrocarbon generation, transportation, and accumulation, as well as
uranium deposition. Table 3 indicates that fault structures are predominant throughout the
majority of China’s hydrocarbon-bearing basins characterized by abundant sandstone-type
uranium resources. This demonstrates that fault movements have a pivotal involvement
during the formation process of uranium deposits. Secondary structural units commonly
found within these basins are primarily composed of depressions and uplifts.

Faults, as the primary geological structural units, are of vital importance during the
developmental and evolutionary processes of hydrocarbon-bearing basins, facilitating both
vertical and horizontal migration and the movement of materials. They are able to control
the distribution status of sand bodies within these basins and serve as a fundamental area
during sandstone-type uranium accumulation [26]. Along with the primary structures,
secondary structural units such as depressions and uplifts have the capability to further
enhance the abundance of sandstone-type uranium deposits. This is because these units
dominate the structural slope zones within the basins, which are the most favorable areas
for the accumulation of sand, thereby contributing to the subsequent uranium accumu-
lation for enrichment [124]. Geological processes such as folding and dissolution create
favorable storage spaces within the sand bodies, characterized by pores, fractures, and
solution cavities, which make it easier for uranium minerals to accumulate. Moreover, basin
subsidence causes a significant inflow of groundwater, which promotes the dissolution of
uranium in uranium-bearing rocks by groundwater, leading to uranium element enrich-
ment. On the other hand, basin uplift creates a reducing environment for uranium-bearing
groundwater, resulting in the conversion of U6+ to U4+ and precipitation in the form of
a compound. Overall, tectonic events and the formation of secondary structures lead to
regional differences in movement within the basins, resulting in the large-scale migration
and seepage of groundwater and hydrocarbon-related fluids. These processes enhance the
effects of groundwater migration and hydrocarbon reduction on uranium mineralization,
further promoting the enrichment and mineralization of uranium minerals.

In China, the formation of certain uranium-rich hydrocarbon-bearing basins, such as
Tarim Basin, Ordos Basin, and Sichuan Basin, is also influenced by magmatic activities [125].
The uranium-rich geological bodies within the magmatic zones surrounding these basins
also significantly contribute to uranium mineralization at vast scales. These geological
bodies are primarily composed of uranium-rich granites [126], which provide substantial
material for uranium deposition in the uranium-bearing rock series of basins. When these
granites intrude into sandstone or other uranium-bearing rocks, the uranium element
in the granite is released through chemical reactions [127,128], and then reacts with the
surrounding sandstone or other rocks to form uranium minerals. These minerals are further
transported and enriched, ultimately forming uranium deposits. Therefore, these uranium-
rich granites are crucial uranium sources and are essential catalysts during sandstone-type
uranium deposition [129].

3.3. Sedimentary Environment Effect

Figure 4 illustrates that the formation of these hydrocarbon-bearing basins (or their
host rocks) generally occurred earlier than their internal uranium mineralization. For non-
hydrocarbon-bearing basins, there is no established correlation between basin formation
and uranium mineralization. This is due to the fact that the formation time of a basin
is determined by its geological background and structure. Typically, crustal movements
and tectonic activities such as fault movements, uplift, and subsidence can induce basin
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formation. However, hydrocarbon-bearing basins usually have abundant sediment sources
and suitable sedimentary environments, in addition to experiencing crustal movements and
tectonic activities, which provide sufficient reserve space for the generation and enrichment
of hydrocarbons. This abundance of sediment sources and suitable sedimentary environ-
ments also create favorable circumstances for uranium deposition. Thus, these factors
contribute to the suitability of China’s major hydrocarbon-bearing basins for sandstone-type
uranium deposition.

Table 1 illustrates that the dominant sedimentary rock types in China’s hydrocarbon-
bearing basins are sandstone and mudstone. Sandstone serves as the primary medium
for the transportation of uranium mineralizing fluids, including uranium-bearing fluids,
oil and gas, and hydrothermal fluids. Additionally, it facilitates the accumulation and
storage of uranium minerals. The quality of sandstone is governed by its internal hetero-
geneity and properties, as well as material composition. Sandstones with higher porosity
and permeability are better suited for the transport and enrichment of uranium miner-
alizing fluids. Moreover, the presence of quartz within sandstones promotes a stronger
adsorption capacity, thus making quartz-rich sandstones more conducive to the process
of uranium mineralization. Mudstone is also a significant accompanying rock [130], and
its clay minerals promote uranium deposition through adsorption. Additionally, some
hydrocarbon-bearing basins contain carbonate rock, shale, and coal sedimentary rock types.
The components of calcite and dolomite in carbonate rocks also employ adsorption [131] to
facilitate uranium mineralization, whereas shale and coal seams primarily rely on the reduc-
tion effect of their associated organic matter and sulfides to promote uranium enrichment
and mineralization.

Furthermore, sandstone-type uranium deposition within hydrocarbon-bearing basins
involves hydrodynamics during marine or continental sedimentation. These basins are
predominantly situated in system domains with facies characterized by river-dominated
deltas and lake margins that are near the source material erosion. The near-source material
erosion system [95,132] domains contain plentiful rock debris, organic matter, and other
sedimentary materials, which facilitate the formation of thick sedimentary layers and
provide ample raw materials, space, and favorable conditions for reduction and adsorption
that promote the enrichment and generation of hydrocarbons and uranium. Furthermore,
during the sedimentation process, hydrodynamic activities also facilitate the transportation
and enrichment of hydrocarbons and uranium to a certain extent.

3.4. Effects of Other Factors

In addition to the primary factors discussed above that influence sandstone-type
uranium deposition within hydrocarbon-bearing basins, there are other unique factors that
can affect their formation, including paleo-environmental conditions, extreme climates,
and biological activity. During the Early to Middle Proterozoic period, the sudden rise
in atmospheric oxygen content [133] caused a large amount of previously accumulated
uranium in a reduced state to oxidize, dissolve, and migrate, resulting in enrichment
and mineralization. In extremely arid climates, strong evaporation can cause uranium to
precipitate from sediment pore waters in ancient river valleys, forming uranium deposits [3].
Alternatively, fine sandstones can efficiently adsorb U6+ from lake aqueous media to form
uranium deposits in environments with strong oxidizing conditions [3]. Low-level animals
and plants that are rich in organic matter and propagate in shallow coastal seas can
also become uranium deposit hosts and carriers, leading to uranium enrichment [134].
Therefore, these specific mineralization factors must also be considered when analyzing
the potential for sandstone-type uranium deposition within hydrocarbon-bearing basins.
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4. Conclusions

This study presents a comprehensive analysis and summary of the metallogenic
mechanisms and influencing factors associated with sandstone-type uranium deposits
within China’s hydrocarbon-bearing basins based on their distinct features.

Sandstone-type uranium deposits, which make up the largest proportion of confirmed
uranium reserves in China, are mainly distributed in the hydrocarbon-bearing basins in
the northern part of the country. The metallogenic mechanisms underlying sandstone-type
uranium deposits within these hydrocarbon-bearing basins are mainly influenced by fluid
activity, geological structure, and sedimentary environment.

Fluids are of significance during sandstone-type uranium deposition within hydrocarbon-
bearing basins. Along with the fundamental mechanism of uranium mineralization through
oxidation and reduction by surface water and groundwater, hydrocarbon-bearing basins
provide favorable conditions for uranium reduction sedimentation through the availability
of organic matter, hydrocarbon gases, and hydrogen sulfide gases. Furthermore, the
hydrothermal fluids in these basins can facilitate uranium enrichment and mineralization
due to their ability to dissolve CO3

2− and HCO3
− ions, which are commonly sourced from

dispersed oil and gas.
These hydrocarbon-bearing basins commonly have faults as the primary geological

structures, and depressions and uplifts as the dominant secondary structures. These geo-
logical features provide excellent environments for uranium to accumulate for enrichment.
Because of their high porosity and permeability, the sandstones in these basins can facilitate
the enrichment and migration of uranium-bearing fluids. The mudstones in these basins
promote the sedimentation of uranium ions in fluids through the adsorption capacity of
their clay minerals. The formation of these basins involves marine or continental sedi-
mentary processes with the involvement of hydrodynamics, providing sufficient materials,
spaces, and favorable reduction and adsorption conditions to enable the enrichment and
generation of hydrocarbons and uranium minerals.

The outcomes hold substantial significance in accurately evaluating potential uranium
resources, as well as in identifying the distribution patterns and controlling factors of
uranium mineral resources. These findings can be employed to guide the exploration and
development of sandstone-type uranium resources, thereby enhancing the efficiency of
uranium resource utilization.
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