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Abstract: Cold weather conditions pose significant challenges to the performance and durability of
concrete materials, construction processes, and structures. This paper aims to provide a comprehen-
sive overview of the material-related challenges in cold weather concrete construction, including slow
setting, reduced curing rate, and slower strength development, as well as frost damage, early freezing,
and freeze–thaw actions. Various innovative materials and technologies may be implemented to
address these challenges, such as optimizing the concrete mix proportions, chemical admixtures,
supplementary cementitious materials, and advanced construction techniques. The paper also ex-
amines the impact of weather-related challenges for personnel, equipment, and machinery in cold
environments and highlights the importance of effective planning, communication, and management
strategies. Results indicate that the successful implementation of appropriate strategies can mitigate
the challenges, reduce construction time, and enhance the performance, durability, and sustainability
of concrete structures in cold and freezing temperatures. The paper emphasizes the importance
of staying updated about the latest advancements and best practices in the field. Future trends
include the development of smart and functional concrete materials, advanced manufacturing and
construction techniques, integrated design, and optimization of tools, all with a strong focus on
sustainability and resilience.

Keywords: concrete; cold construction; engineering challenges; freezing; concrete setting; construction
materials

1. Introduction

Concrete is a the most commonly used construction material [1,2]. It plays an im-
portant role in the development and construction of sustainable infrastructure, buildings,
and various other structures. It is well known for its versatility, durability, and cost-
effectiveness [3–7]. However, concrete construction in cold weather conditions presents
numerous challenges that can significantly impact the performance, durability, and sus-
tainability of the structures [8–12]. As cold weather construction becomes more prevalent
due to expanding urbanization, expedited by rapid population growth [13,14] and the
increased requirements for infrastructure development in colder regions, understanding
the material-related challenges and identifying effective strategies and technologies to
address these challenges is essential. Cold weather concrete construction has been an
active area of research for several years, with numerous studies focusing on the challenges
related to setting [15], curing [16], strength development [17], and drying [18], as well as
frost damage [19], early freezing [20], and freeze–thaw cycles [21]. Despite these research
efforts, there is still a need for a better understanding of the material-related challenges
and technologies that can be employed to address them. This study contributes by filling
the knowledge gap in the literature and providing a holistic understanding of the chal-
lenges, strategies, and performance enhancement opportunities for concrete construction.
A comprehensive understanding of the challenges and strategies associated with concrete
materials, construction processes, and structures, can be used to support construction
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professionals in making informed decisions and implementing effective solutions that
improve the performance and sustainability of concrete structures in harsh environments.

The aim of this paper is to provide an in-depth analysis of the material-related chal-
lenges in cold weather concrete construction as well as explore innovative materials and
the technologies to implement them, as illustrated in Figure 1. The study encompasses
a comprehensive review of the existing literature, including research studies and case
examples related to cold weather concrete construction. This review focuses on under-
standing the material-related challenges associated with slow setting, reduced curing rate,
and slower strength development, as well as frost damage due to low temperatures, early
freezing, and freeze–thaw actions. Furthermore, the paper explores innovative strategies
and technologies that can be employed to address the various challenges, such as optimiz-
ing the concrete mix proportions [22], the use of chemical admixtures [23], supplementary
cementitious materials [24], and advanced construction techniques [25]. The study em-
phasizes the emerging materials and technologies in the field, including the development
of smart [26] and functional concrete materials [27], advanced manufacturing [28] and
construction techniques [29], integrated design [30], and optimization of tools [31], all with
a focus on sustainability and resilience. The study also highlights the potential impact of
weather-related challenges on personnel, equipment, and machinery during construction.
Furthermore, it emphasizes the importance of effective planning, communication, and
management strategies to ensure successful completion of construction projects in low
temperatures. As climate change continues to result in more unpredictable and extreme
weather, understanding the challenges associated with cold weather construction and
developing effective strategies and technologies to address them becomes increasingly
important. This research not only contributes to the existing body of knowledge on this
topic but also serves as a foundation for future research and development efforts in the
field of concrete construction. The findings of this study are not limited to the specific
challenges and strategies discussed but can also be extended to other construction materials
and processes that may be affected by low temperatures. By fostering a culture of continu-
ous learning and innovation, the construction industry can better adapt to the changing
climate [32] and ensure the resilience and sustainability of infrastructure and buildings
worldwide [33].
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2. Challenges in Cold Weather Concrete Construction
2.1. Setting and Curing

Setting and curing are two critical processes that ultimately determine the strength
growth, durability, and long-term performance of concrete materials. Low temperatures can
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have a large negative effect on the development of concrete properties, as these processes
can be significantly slowed down, leading to various material, structural, and management
issues. The challenges of longer setting times and slower curing are discussed in the
following sections, and counteracting engineering strategies are proposed in Section 2.1.3.

2.1.1. Setting

Setting refers to a specific time when concrete changes from a fluid, workable state
to a solid, rigid state [34]. It involves the initial chemical reactions between cement [35]
or other binders [36] and water, a process called hydration [37]. In cold conditions, the
rate of hydration decreases due to the lower temperature, causing the concrete to set more
slowly [38]. Slow setting can lead to problems affecting the construction procedure, the
material properties, the durability of the structure, and the long-term sustainability. A
longer setting time for concrete in cold and freezing temperatures can lead to various
challenges and consequences, including increased construction time and costs [39]. As
the concrete sets more slowly, the formwork and temporary supports must remain in
place for a longer period to ensure the concrete can support its own weight and any
applied loads [40]. This extended support time can cause delays in the construction
schedule [41], as it may prevent other activities from taking place in parallel. The cost of
formwork typically accounts for a major part of the total construction costs [42], and the
prolonged need for supporting formwork can lead to high additional costs. Longer setting
times may also necessitate more on-site personnel for a longer duration to monitor the
concrete [43], maintain temperature control measures [44], and perform finishing tasks [45].
This increased labor requirement can lead to higher labor costs for the project. As the
concrete sets more slowly in cold weather, it can be challenging to achieve a smooth, even
surface finish [46]. This may also require additional effort and resources to rectify. Slower
setting times may require the use of additional equipment, such as heated enclosures [11]
or insulated formwork [47], to maintain optimal temperature conditions and accelerate
the setting process. Any damage to the concrete due to the extended setting time may
necessitate repairs or even replacement, which can further increase the complexity and add
to the material and labor costs.

Construction projects often have strict deadlines, and any delays in the schedule can
result in different types of financial penalties for the builder [48]. The longer setting time and
its impact on the construction timeline may in the end lead to the activation of such penalties,
increasing the overall cost of the project. With the extended setting time, the concrete also
becomes more susceptible to damage from adverse weather conditions [49], such as rain,
snow, or freezing temperatures, which can negatively affect its properties and structural
performance. This may require additional measures to protect the concrete, adding to the
overall cost and potentially causing further delays. If the slower setting time results in
reduced strength or other undesirable properties in the concrete, it may be necessary to
modify the structural design or add extra reinforcement, which will increase costs and
extend the construction timeline. It is therefore important for the engineers to always
consider the setting time and choose a concrete that fulfills the structural requirements in
the ambient environment of the project.

2.1.2. Curing

Curing of concrete is the process of maintaining proper moisture and temperature
conditions within the concrete after it has been placed and finished [50]. This process allows
the concrete to develop its desired strength, durability, and long-term performance through
the continued hydration of cement or other types of alternative binders [51]. Hydration is
the chemical reaction between binders and water; it forms new compounds and crystalline
structures, binding the aggregate particles together and giving concrete its strength. Ade-
quate curing is essential to ensure that the hydration process continues for an extended
period, allowing the concrete to reach its full potential in terms of strength and durability.
By preventing the evaporation of water from the concrete, the curing process ensures that
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there is enough water available for the hydration of cement, as illustrated in Figure 2 [52].
This can be achieved using various methods, such as applying curing compounds [53],
covering the concrete with plastic sheets [54], or using wet coverings like burlap [55] or
cotton mats [56]. Curing also involves maintaining a suitable temperature range within
the concrete to facilitate the hydration process [57]. This is especially important in extreme
weather conditions, such as cold or hot temperatures, where external measures may be re-
quired to regulate the concrete’s temperature. These measures may include using insulated
blankets or enclosures [58], heated water [59], heating cables [60], or steam curing [61].
Curing helps reduce the potential for shrinkage and cracking in concrete by controlling
the rate at which it dries and contracts [62]. Proper curing can minimize the development
of microcracks, leading to improved durability and performance. Curing typically begins
immediately after the concrete has been placed and finished, and it continues for a certain
period, depending on the type of concrete, the intended use of the structure, and the
environmental conditions. The curing duration can range from a few days to several weeks,
with the most critical period being the first few days after placement [63]. By ensuring
proper curing, contractors can optimize the performance, durability, and service life of
concrete structures, making it a critical aspect of the overall construction process.

Eng 2023, 4, FOR PEER REVIEW 4 
 

 

through the continued hydration of cement or other types of alternative binders [51]. Hy-
dration is the chemical reaction between binders and water; it forms new compounds and 
crystalline structures, binding the aggregate particles together and giving concrete its 
strength. Adequate curing is essential to ensure that the hydration process continues for 
an extended period, allowing the concrete to reach its full potential in terms of strength 
and durability. By preventing the evaporation of water from the concrete, the curing pro-
cess ensures that there is enough water available for the hydration of cement, as illustrated 
in Figure 2 [52]. This can be achieved using various methods, such as applying curing 
compounds [53], covering the concrete with plastic sheets [54], or using wet coverings like 
burlap [55] or cotton mats [56]. Curing also involves maintaining a suitable temperature 
range within the concrete to facilitate the hydration process [57]. This is especially im-
portant in extreme weather conditions, such as cold or hot temperatures, where external 
measures may be required to regulate the concrete’s temperature. These measures may 
include using insulated blankets or enclosures [58], heated water [59], heating cables [60], 
or steam curing [61]. Curing helps reduce the potential for shrinkage and cracking in con-
crete by controlling the rate at which it dries and contracts [62]. Proper curing can mini-
mize the development of microcracks, leading to improved durability and performance. 
Curing typically begins immediately after the concrete has been placed and finished, and 
it continues for a certain period, depending on the type of concrete, the intended use of 
the structure, and the environmental conditions. The curing duration can range from a 
few days to several weeks, with the most critical period being the first few days after 
placement [63]. By ensuring proper curing, contractors can optimize the performance, du-
rability, and service life of concrete structures, making it a critical aspect of the overall 
construction process. 

 

 

 

(a) (b) (c) 

Figure 2. Hydration process of cement [52]: (a) Unhydrated cement particles (2000× magnification); 
(b) Partially hydrated cement particles (4000× magnification); (c) Hydrated cement particle (11,000× 
magnification). 

A reduced curing rate in cold weather can lead to various challenges and conse-
quences, including increased construction time, safety concerns, compromised durability, 
and increased costs [64]. Slower curing rates mean that it takes longer for the concrete to 
achieve its desired strength and be ready for subsequent construction stages, such as re-
moving formwork, loading, or applying finishes. This can delay the overall construction 
schedule and affect the project timeline. If the concrete has not fully cured, it may not be 
able to support its self-weight or the loads applied during construction. This can lead to 
structural instability and increase the risk of accidents or failures on the construction site. 
Inadequate curing can result in incomplete hydration, which can cause the concrete to be 
more porous and susceptible to freeze–thaw damage, chemical attack, and other forms of 
deterioration [65]. This can compromise the long-term durability of the structure and lead 
to a reduced service life. Slower curing rates can result in higher labor and equipment 
costs, as additional resources are needed to maintain optimal curing conditions and mon-
itor the concrete’s progress. Additionally, any damage or structural failures due to 

6 microns 1.1 microns 

Figure 2. Hydration process of cement [52]: (a) Unhydrated cement particles (2000× magnifica-
tion); (b) Partially hydrated cement particles (4000× magnification); (c) Hydrated cement particle
(11,000× magnification).

A reduced curing rate in cold weather can lead to various challenges and conse-
quences, including increased construction time, safety concerns, compromised durability,
and increased costs [64]. Slower curing rates mean that it takes longer for the concrete
to achieve its desired strength and be ready for subsequent construction stages, such as
removing formwork, loading, or applying finishes. This can delay the overall construction
schedule and affect the project timeline. If the concrete has not fully cured, it may not be
able to support its self-weight or the loads applied during construction. This can lead to
structural instability and increase the risk of accidents or failures on the construction site.
Inadequate curing can result in incomplete hydration, which can cause the concrete to be
more porous and susceptible to freeze–thaw damage, chemical attack, and other forms of
deterioration [65]. This can compromise the long-term durability of the structure and lead
to a reduced service life. Slower curing rates can result in higher labor and equipment costs,
as additional resources are needed to maintain optimal curing conditions and monitor the
concrete’s progress. Additionally, any damage or structural failures due to insufficient
curing may require repairs or even replacement, which can further increase material and
labor costs. To prevent curing-related issues, it is crucial to implement appropriate cold-
weather concreting practices, such as maintaining optimal temperature conditions, using
admixtures to accelerate the curing rate [66], and closely monitoring the concrete’s curing
progress. By taking these measures, contractors can minimize the impact of reduced curing
rates on construction time, safety, durability, and costs, while ensuring the quality and
performance of concrete structures in cold and freezing temperatures.



Eng 2023, 4 1554

2.1.3. Strategies to Prevent Setting and Curing Challenges

To prevent issues related to longer setting and slower curing of concrete in cold
weather, various measures can be implemented to ensure the quality, performance, and
durability. Chemical admixtures, such as accelerators, can be added to the concrete mix
to accelerate the hydration process and reduce the setting time. These admixtures can
help the concrete to achieve the desired strength faster, minimizing the impact of cold
weather [67]. Maintaining the concrete temperature within an appropriate range is crucial
to ensure proper setting and curing. This can be achieved through various methods, such
as pre-heating [59], insulation, and heated enclosures [58]. Heating the water and/or
aggregates before mixing can help maintain a suitable temperature for the concrete mix,
ensuring a timely setting. Insulated formwork or blankets can be used to maintain the
concrete’s temperature during setting and curing, protecting it from cold weather and
reducing heat loss and rapid cooling. Temporary, heated enclosures can be built around
the construction site to maintain a controlled environment with adequate temperature and
humidity levels.

Employing appropriate curing techniques in cold weather is essential to maintain the
moisture and temperature conditions necessary for the hydration process [50]. Insulated
curing blankets can be placed over the concrete surface to minimize heat loss and maintain
the desired curing temperature. Circulating heated water [59] through pipes embedded in
the concrete can provide consistent and controlled heat to maintain the curing temperature.
Steam can be introduced into an enclosed space to maintain the temperature and humidity
required for curing. Modifying the concrete mix design to include more cement or incorpo-
rating supplementary cementitious materials (SCMs), such as fly ash or slag [51], can help
increase the rate of strength development and counteract the effects of cold temperatures
on setting time. Regularly or continuously monitoring the temperature and strength devel-
opment of the concrete is crucial during cold weather construction. Field testing, such as
the use of maturity meters or penetration resistance tests [68], can help ensure the concrete
achieves the desired performance characteristics. Effective planning and scheduling of
construction activities can help minimize the impact of cold weather on setting and curing
times. Scheduling concrete placement during warmer periods of the day or coordinating
with weather forecasts can help optimize the construction process. By implementing these
preventing or proactive measures, contractors can mitigate the challenges associated with
longer setting times in cold weather, ensuring the quality, durability, and performance of
concrete structures.

2.2. Strength Development

Cold weather conditions can significantly affect the strength development of con-
crete [69], which is a critical aspect of its overall performance and durability. The setting,
curing, and strength development processes of concrete are all temperature-dependent,
and lower air temperatures can slow down these processes [70,71], leading to challenges in
construction and potential long-term issues in the final structure. The rate of hydration, and
consequently the rate of strength development, is heavily influenced by the concrete tem-
perature [72]. As temperature decreases, the rate of hydration reduces, resulting in a slower
strength gain. The rate of hydration is roughly reduced by half in 10 ◦C temperatures com-
pared to 20 ◦C. Consequently, concrete placed and cured in cold conditions will exhibit a
slower rate of strength development compared to concrete placed in warmer temperatures.

2.2.1. Factors Affecting the Strength Development in Cold Weather

The hydration process is highly dependent on temperature [69]. Low air temperatures
can reduce the concrete temperature and hydration rate [70], ultimately affecting the mate-
rial properties. The reduced hydration rate directly impacts the strength development, as it
takes more time for the concrete to achieve its full potential strength in cold climates [73].
By understanding the factors affecting the material properties, contractors can take ap-
propriate measures to prevent problems associated with slower strength development.
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Cold weather prolongs the setting, which delays the strength development process. An
extended setting time increases the vulnerability of concrete to external factors, such as
harsh weather or mechanical damage, before it reaches an adequate level of strength. The
curing process plays an important role in the strength development of concrete by maintain-
ing appropriate moisture and temperature conditions [50]. The curing process takes more
time in low temperatures, which can result in incomplete hydration and slower strength
gain. If the curing process is not carefully managed in cold conditions, the concrete may be
exposed to freezing temperatures, which can lead to freeze–thaw damage and significantly
compromise the structure’s durability and performance.

The use of Supplementary Cementitious Materials, SCMs, such as fly ash or slag, is
becoming more and more common in concrete mix designs. These materials can be used
for several reasons, such as enhancing the concrete’s properties or reducing its environ-
mental impact [74]. SCMs can also impact the hydration process and, consequently, the
strength development. In cold weather, the pozzolanic reactions between SCMs and cement
hydration products can be slower [75], further contributing to the reduced strength gain.
Chemical admixtures, such as accelerators and water reducers, are often used to modify the
properties of the concrete mix [76]. In cold weather, the effectiveness of some admixtures
may be reduced due to the lower temperatures. During mixing and transportation, the
concrete’s temperature can decrease [77], particularly in cold weather, and the effects can be
significant when long distances separate concrete factories and construction sites, which is
not uncommon in regions with cold climate. Delays in placing the concrete due to logistical
challenges can exacerbate this issue, as the concrete may experience further temperature
drops and reduced workability.

2.2.2. Consequences of Slow Strength Development

Understanding the potential consequences of slower strength development is essential
to managing the challenges associated with cold weather concreting effectively. By imple-
menting appropriate measures to mitigate these consequences, contractors can ensure the
successful completion of their projects and maintain high quality, durability, and perfor-
mance of the constructed concrete structures. Slow strength development can ultimately
result in long construction times, as it takes more time for the concrete to achieve the
required strength [77] for subsequent construction activities. This can lead to delays in the
overall construction schedule, potentially causing a domino effect on the project timeline
and increasing costs related to labor and equipment. A slow concrete is more susceptible
to damage during construction, such as premature loading, weather exposure, or other
construction activities [78]. Early-age damage can result in defects that compromise the
structural integrity, require costly repairs, or even necessitate a complete replacement of the
affected concrete elements [79]. If the concrete does not achieve its required strength within
the expected timeframe, it may not be able to support the intended loads or perform as de-
signed [80]. This can lead to potential safety concerns, a reduced service life, and increased
likelihood of structural failures. This may, for example, be a major concern for deciding a
safe time for form stripping, which typically requires a minimum strength of 5 MPa for
vertical structural members and 70% of the final strength for horizontal members [81].

Slower strength development can lead to increased permeability and microcracking
within the concrete [82], making it more susceptible to various forms of deterioration, such
as freeze–thaw damage [83], alkali–silica reactions [84], and chloride-induced corrosion
of reinforcing steel [85]. These forms of deterioration can compromise the long-term
durability of the structure and result in increased maintenance and repair costs over the
structure’s life. A reduced hydration rate can complicate the quality control process during
construction. As the concrete takes longer to achieve its target strength, it becomes more
difficult to accurately assess its performance characteristics and ensure it meets the project’s
specifications. In some cases, this can lead to aesthetic issues [86], such as an uneven or
poor-quality finish on the concrete surface. The longer the construction process takes, the
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more resources are typically consumed, such as energy, water, and raw materials [87]. This
can ultimately contribute to a larger environmental footprint for the construction project.

2.2.3. Measures to Mitigate Slow Strength Development

Understanding the impact of harsh weather on concrete strength development is essen-
tial for successful construction projects in such conditions. By implementing appropriate
measures to mitigate the challenges associated with slow strength gain, contractors can
ensure the quality, durability, and performance of concrete structures, even in cold and
freezing temperatures. Proper planning, mix design adjustments [88], temperature con-
trol [89], and curing methods [50] can all contribute to a more efficient construction process
and a more resilient final structure, ultimately leading to long-lasting and high-performing
concrete structures.

Chemical admixtures [90], such as accelerators, can be added to the concrete mix to
increase the rate of cement hydration and reduce the setting time, helping the concrete to
achieve its desired strength more quickly. Modifying the concrete mix design to include
more cement or incorporating supplementary cementitious materials [51], such as fly ash
or slag, can help increase the rate of strength development and counteract the effects of low
temperatures on the hydration process [57]. Some methods for temperature control include
preheated materials [59], insulation, or heated enclosures [58]. Heating the water and/or
aggregates before mixing can help maintain a suitable temperature for the concrete mix.
Insulated formwork or blankets can be used to maintain the concrete’s temperature during
setting and curing, protecting it from cold weather and reducing heat loss. Temporary
enclosures can be built around the construction site to maintain a controlled environment
with adequate temperature and humidity levels.

Employing appropriate curing techniques in cold weather is essential to maintain
the moisture and temperature conditions necessary for the hydration process [62]. Some
common cold weather curing methods include insulated curing blankets, heated water
curing, and steam curing, as discussed in Section 2.1.3. Insulated curing blankets can
be placed over the concrete surface to minimize the heat loss and maintain the desired
curing temperature. Heated water curing implies circulating heated water through pipes
embedded in the concrete, which can provide consistent and controlled heat to maintain
the curing temperature. Steam curing can be introduced into an enclosed space to maintain
the temperature and humidity required for curing.

Regularly or continuously monitoring the temperature and strength development of
the concrete is crucial during cold weather construction [72]. By following the temperature
history of the concrete, good estimations of the strength can be calculated using maturity
equations [91]; see Equation (1). The equation shows that the maturity (M) depends on the
temperature (T) and the time (t). The reference temperature (T0) is typically 20 ◦C.

M(t, T) = ∑(T − T0)∆t, (1)

Field testing, including the use of maturity meters or penetration resistance tests, can
also help to ensure that the concrete achieves the desired performance characteristics [92].
Effective planning of construction activities can help minimize the impact of cold weather
on strength development.

2.3. Freezing of Concrete

Freezing temperatures pose significant challenges to the performance and durability
of concrete structures. When concrete is subjected to cold conditions, it can experience
different types of frost damage, which can lead to a reduction in the concrete’s strength,
integrity, and service life. Early freezing and freeze–thaw actions can enhance and accel-
erate the negative effects of concrete freezing. The following sections will discuss these
phenomena and their impacts on concrete and will detail some preventative measures that
can be employed to mitigate the issues of concrete freezing. A wider analysis of preventive
measures is presented in Sections 3 and 4.
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2.3.1. Frost Damage

Frost-related deterioration and damage is a significant concern for concrete structures
in cold climates, as it can lead to a decrease in strength, durability, and overall perfor-
mance [93]. Frost damage occurs when water present in the concrete’s porous structure
freezes and expands [94]. This expansion generates internal pressures that can exceed the
tensile strength of the concrete, resulting in various forms of deterioration [95]. The primary
factors that contribute to frost damage in concrete include aspects such as the water–cement
ratio [96], air entrainment [97], permeability [98] and exposure to de-icing chemicals [99].
The water–cement ratio plays a critical role in determining the porosity and permeability of
the concrete [100]. A higher water–cement ratio leads to increased porosity, which allows
more water to infiltrate the concrete, raising the risk of frost damage. Air entrainment is
the deliberate incorporation of microscopic air voids within the concrete mix. These voids
provide space for the expansion of freezing water, helping to alleviate the internal pressures
caused by ice formation. Insufficient air entrainment can increase the susceptibility of
concrete to frost damage [101]. The permeability of concrete refers to its ability to allow
water to penetrate its structure. Concrete with higher permeability is more prone to frost
damage, as it permits a greater amount of water to enter and become trapped within the
material [102]. The use of de-icing chemicals, such as salts, can exacerbate frost damage by
increasing the saturation of water within the concrete and facilitating freeze–thaw cycles.

The primary consequences of frost damage in concrete include cracking, scaling,
spalling, and a reduced overall durability [103]. The internal pressures generated by the
expansion of freezing water can cause cracks to form and propagate in the concrete. These
cracks can weaken the structure and provide pathways for further water ingress, leading
to additional frost damage and other forms of deterioration. Scaling [104] is the flaking or
peeling of the concrete surface; it occurs when the surface layer is subjected to frost damage.
Scaling can result in an unsightly appearance and increased surface roughness, which can
be particularly problematic in architectural concrete applications. Spalling [105] refers to the
breaking away of large fragments of concrete, typically caused by the expansion of freezing
water within the material. Spalling can compromise the structural integrity and aesthetics
of the concrete. Frost can lead to a reduction in the durability of concrete structures, as the
associated cracking, scaling, and spalling can expose the reinforcing steel to corrosion and
facilitate other forms of deterioration, as seen in Figure 3. Understanding the causes and
consequences of these damage processes is essential for designing, constructing, and main-
taining resilient and long-lasting concrete structures [106]. By implementing appropriate
mix designs, curing practices, and preventative measures, engineers and contractors can
effectively manage the challenges associated with frost damage and ensure the successful
completion of their projects. Regular inspection and maintenance of concrete structures
exposed to freezing temperatures are also crucial in mitigating the risks of frost damage
and extending the service life of the structures. Ultimately, a comprehensive understand-
ing of frost damage and the application of appropriate mitigation strategies can help to
maintain the structural integrity, performance, and aesthetics of concrete structures in cold
weather conditions.
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2.3.2. Early Freezing

Early freezing is a significant concern for concrete structures in cold climates, as
it can lead to a reduction in strength, durability, and overall performance [108]. Early
freezing occurs when the concrete is exposed to freezing temperatures before it has achieved
sufficient strength, typically during the initial setting and curing stages [109]. Several
concrete guidelines and research articles have defined threshold limits for the concrete
compressive strength of 5–10 MPa [110] in terms of the necessity to avoid early freezing.
When the ambient temperature falls below the freezing point, the water within the concrete
mix can freeze, interrupting the cement hydration process and affecting the concrete’s
strength development [111]. Insufficient protection of the concrete during the setting and
curing stages, such as the use of inadequate insulating materials or heated enclosures, can
expose the concrete to freezing temperatures and result in early freezing. A concrete mix
design that does not consider the specific requirements for cold weather concreting, such
as the use of admixtures designed to accelerate setting and hardening, can increase the risk
of early freezing [112].

The implications of early freezing on concrete can be detrimental, with several poten-
tial consequences. When the cement hydration process is hindered due to early freezing,
the concrete may not achieve its full potential strength [111]. This can result in a weaker
structure that is unable to support the intended loads or perform as designed. The forma-
tion of ice lenses within the concrete during early freezing can lead to increased porosity
and permeability [113]. This makes the concrete more susceptible to further freeze–thaw
damage as well as other forms of deterioration [83]. Figures 4–6 show how early freezing
can affect the material properties of concrete [114]. The figures show that the time when
the concrete is first exposed to the freezing temperatures (frost onset time) is an important
parameter, and that freezing within the first day has the biggest negative impact on the
strength. The notation “Ref” in Figures 5 and 6 represents the unfrozen reference specimen.
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Figure 4. Effect of early freezing with different frost onset times on concrete strength properties. The
frost duration was 8 h, with a temperature of −5 ◦C. Reproduced with data from [114]. (a) Com-
pressive strength of early frost affected concrete with onset times between 0.5 and 72 h, compared to
unfrozen concrete (Ref). (b) Tensile strength of early frost affected concrete with onset times between
0.5 and 72 h, compared to unfrozen concrete (Ref).
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Figure 5. Effect of early freezing with different frost onset times and temperatures on concrete
strength properties. The frost duration was 8 h, and the temperatures were between −1 and −9 ◦C.
Reproduced with data from [114]. (a) Compressive strength of early frost affected concrete with onset
times between 0.5 and 8 h, compared to unfrozen concrete (Ref). (b) Tensile strength of early frost
affected concrete with onset times between 0.5 and 8 h, compared to unfrozen concrete (Ref).
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Figure 6. Effect of early freezing with different frost onset times and durations on concrete strength
properties. The frost duration was 8 h and the temperatures were between −1 and −9 ◦C. Reproduced
with data from [114]. (a) Compressive strength of early frost affected concrete with onset times
between 0.5 and 8 h, compared to unfrozen concrete (Ref). (b) Porosity of concrete affected by early
freezing with onset times between 0.5 and 72 h, compared to unfrozen concrete (Ref).

The combination of reduced strength, increased permeability, and surface dam-
age [115] caused by early freezing can compromise the long-term durability of the concrete
structure, potentially leading to a shorter service life and increased maintenance and repair
costs [116]. Early freezing poses a significant challenge to the performance and durability
of concrete structures in cold climates [117]. Ongoing research and development in con-
crete technology, such as the introduction of new admixtures, materials, and construction
techniques, can help improve the industry’s ability to manage early freezing and other
related challenges [118]. This will ultimately contribute to the construction of more durable,
resilient, and sustainable concrete structures, even in harsh and freezing environments.

2.3.3. Freezing and Thawing

Repeated freezing and thawing cycles can have significant adverse effects on the per-
formance and durability of concrete structures in cold climates [119]. Freezing and thawing
cycles occur when the concrete is exposed to fluctuating temperatures that repeatedly cause
the water within its porous structure to freeze and thaw. The primary factors contributing
to freezing and thawing in concrete include temperature fluctuations, water absorption,
and inadequate air entrainment [120]. Frequent changes in temperature above and below
the freezing point can lead to multiple freeze–thaw cycles, increasing the risk of damage to
the concrete. The presence of water in the concrete is necessary for freeze–thaw damage to
occur [121]. Concrete with high porosity and permeability is more likely to absorb water
and be susceptible to freeze–thaw cycles [122]. Insufficient air entrainment in the concrete
mix can lead to a lack of air voids, which serve as a relief mechanism for the pressures
generated by freezing water [123].

The expansion of freezing water within the concrete can cause internal pressures that
exceed the tensile strength of the material, leading to various forms of deterioration such as
cracking, scaling, and spalling, as seen in Figure 7 [124]. The damage caused by freeze–thaw
cycles can lead to a reduction in the compressive and tensile strength of the concrete, as
well as reduced E-modulus, as shown in Figure 8, compromising its structural integrity
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and ability to support the intended loads. The cumulative effects of freezing and thawing
can result in a decrease in the concrete’s durability, leading to a shorter service life and
increased maintenance and repair costs [125]. Freeze–thaw cycles can also cause a loss of
bond between the concrete and reinforcing steel, which may compromise the integrity and
performance of the structure [126].
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2.3.4. Preventive Measures

Implementing appropriate preventive measures and strategies can help mitigate the
risks of frost damage, ensuring the durability, performance, and longevity of the concrete
structures [93]. Regular inspection and maintenance of concrete structures are essential
in identifying potential issues related to frost damage, early freezing, and freeze–thaw
cycles [127]. Timely intervention can address these problems before they escalate and
compromise the structure’s integrity [128]. Maintenance activities, such as repairing cracks,
sealing joints, and applying protective coatings, can help maintain the durability and perfor-
mance of the concrete structure. Educating engineers, contractors, and other stakeholders
about the potential risks and consequences of frost-related problems is critical in ensuring
the successful implementation of preventive measures and strategies. Preventing frost
damage in concrete requires a comprehensive approach, including mix design optimization,
cold weather concreting practices, protection and insulation, drainage and waterproofing,
and regular inspection and maintenance [129]. By implementing these preventive measures
and strategies, engineers and contractors can effectively manage the challenges associated
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with cold weather concreting and ensure the successful completion of their projects. A
detailed discussion on different preventive approaches is given in Section 3.

2.4. Weather-Related Challenges in Construction

Cold weather construction presents unique challenges to personnel, equipment, and
site management, including low temperatures, snow, and wind [130]. These challenges
can lead to increased costs, reduced productivity [131], and potential safety risks. By
understanding and addressing these challenges, construction professionals can minimize
their impact on project schedules, budgets, and outcomes.

2.4.1. Challenges for Personnel

Low temperatures can result in cold stress, frostbite, and hypothermia, posing signifi-
cant risks to worker health and safety [132]. Cold weather can affect workers’ dexterity,
coordination, and overall productivity [130]. Providing appropriate personal protective
equipment (PPE), such as insulated clothing, gloves, and headgear, can help protect work-
ers from cold-related illnesses and injuries. Snow and wind can reduce visibility on the
construction site, making it difficult for workers to communicate and coordinate their
efforts effectively [133]. Ensuring proper communication tools and establishing clear com-
munication protocols can help mitigate this challenge. Proper training in cold weather
construction practices is crucial in ensuring worker safety and productivity. Workers should
be educated on the risks associated with cold weather construction and be provided with
the necessary tools and resources to manage these risks effectively. A list of potential health
challenges in cold weather is presented in Table 1.

2.4.2. Challenges for Equipment and Machinery

Low temperatures can affect the performance and efficiency of construction equipment
and machinery. Engines may be more challenging to start, lubricants may become less
effective, and hydraulic systems may become less responsive [134]. Regular maintenance
and the use of cold-weather-specific lubricants and fluids can help minimize these per-
formance issues. Cold temperatures can significantly reduce battery life for construction
equipment and tools, affecting their performance and efficiency [135]. Ensuring proper bat-
tery storage and charging practices as well as using cold-weather-specific batteries can help
mitigate this issue. Cold weather can also affect the properties of construction materials,
making them more brittle and susceptible to damage [136]. Proper handling and storage
techniques, such as protecting materials from moisture and temperature fluctuations, can
help maintain their integrity and performance. Regular maintenance and inspection of
construction equipment and machinery are crucial in cold weather conditions to prevent
breakdowns and ensure efficient operation. Proper winterization applications, including
engine block heaters, antifreeze, and cold-weather lubricants, can help protect equipment
and machinery from the effects of low temperatures [137].

2.4.3. Challenges for Site Management

Accumulated snow and ice can pose significant safety risks and impede construction
operations. Implementing a comprehensive snow and ice removal plan, including the use
of snowplows, snow blowers, and de-icing agents, can help ensure a safe and efficient
construction site [138]. Windy conditions on the construction site can create safety hazards,
reduce worker productivity, and cause damage to structures and materials. Erecting wind
barriers, such as windbreaks or temporary enclosures, can help protect the construction
site and its occupants from the effects of strong winds [139]. Snow and ice can make
access to and transportation within the construction site more difficult, leading to delays
and increased costs. Ensuring proper site access and transportation planning, including
snow removal and the use of appropriate vehicles, can help minimize these challenges.
Cold weather conditions can result in construction delays and increased costs. Developing
a comprehensive scheduling and contingency plan that accounts for potential weather-
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related challenges can help ensure the project remains on track and within budget. Cold
weather construction can have an impact on the surrounding environment, including
the potential for erosion, sedimentation, and harm to wildlife habitats. Implementing
appropriate environmental protection measures, such as sediment control and erosion
prevention, can help minimize the environmental impact of construction activities in cold
weather conditions [140]. A list of management strategies to ensure worker safety and
prevent production interference is presented in Table 2.

Table 1. Physical health challenges for personnel on cold weather conditions [130].

Physical Health Challenge Cause Symptoms

Numbness in exposed
body parts Exposed extremities in cold Increased nerve pain

Increase in number
of injuries

Continuous exertion in
cold weather Tiredness

Hobbling effect and
uneasiness Tight thermal clothing Reduced ability to move

Physical fatigue Performing for longer
duration in cold weather Tiredness

Hypothermia Excessive loss of heat Weak pulse, lack of
consciousness

Vasoconstriction
of blood vessels Prolonged exposure to cold Increase in blood pressure

Frostbite Freezing of tissues Long-term numbness
in affected region

Necrosis Lack of blood supply
to tissue Malfunctioning of cells

Upper and lower
respiratory issues Inhaling cold, dry air Shortness of breath

Musculoskeletal disorders such as
wrist, neck, back
and overall body pain
and inflammation

Increased muscular load Carpal tunnel syndrome

Increase in number of
accidents caused by
slips and falls

Icy and slippery surfaces
in workplace

Major and minor
injuries in body parts

Trench foot Performing activities
in cold water Blisters, blotchy skin

Increase in onset of
fatigue due to personal
protective clothing

Increase in metabolic
energy

Tiredness, weakness
in muscles

Reduced dexterity Impaired response from
hand receptors

Inability to handle tools
and equipment

2.4.4. Additional Weather-Related Challenges

Freezing and thawing cycles can cause frost heave, leading to soil instability and poten-
tial damage to foundations and other structural elements. Ensuring proper site preparation,
including soil stabilization techniques and the use of frost-protected shallow foundations,
can help mitigate the risk of frost heave and soil instability [141]. Cold weather can also
lead to increased condensation and moisture accumulation within buildings and struc-
tures, potentially resulting in mold growth and structural damage [142]. Implementing
proper moisture control measures, such as vapor barriers and adequate ventilation, can
help prevent condensation-related issues. Low temperatures often lead to increased energy
consumption for heating, equipment operation, and other site activities. Implementing
energy-efficient practices, such as using energy-efficient equipment and optimizing con-
struction processes, can help reduce energy consumption and associated costs [143]. Cold
weather construction may also involve additional permitting and regulatory requirements
related to environmental protection, safety, and other factors [144]. Ensuring compliance
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with all relevant regulations and obtaining the necessary permits can help prevent potential
delays, fines, and other complications.

Table 2. Strategies for mitigating challenges of working in cold weather [130].

Type of Control Strategies for Cold Weather Conditions

Engineering control

Encourage the use of smart clothing inserted with
infrared, humidity, and temperature sensors
Wear a Peltier-embedded cooling jacket
Heat exchange masks
Protective coverings and insulation
Anti-slip shoes
Provide workers with infrared heaters
Provide warming facilities/local shelters
with heating mechanisms

Administrative control
Cold protection plan and cold management
Place warning signs on slippery surfaces

Personal protective equipment (PPE) control Ensure personal protective clothing (PPC)
fits properly

3. Materials, Technologies, and Strategies for Cold Weather

Cold weather conditions can, as discussed in previous sections, have a significant
impact on concrete construction and the performance of concrete structures, with challenges
such as reduced setting time, slower strength development, and increased vulnerability to
frost damage. However, technological advances and innovative construction strategies can
help mitigate the challenges and improve the performance of concrete structures in cold
weather [145]. By employing advanced concrete mix designs [146], appropriate concreting
techniques [147], protective measures and insulation [107], accelerating admixtures and
chemical additives [148], advanced monitoring and quality control systems [149], and
prefabrication and modular construction [150], construction professionals can overcome
the challenges associated with cold weather construction. Water is one of the biggest
risks related to concrete construction in hazardous environments experiencing low and
freezing temperatures; ensuring proper drainage and waterproofing is therefore extremely
important to avoid water-related issues and risks, as discussed in Table 3.

Table 3. Drainage and waterproofing as damage-preventive strategies for concrete construction in
cold weather.

Drainage and Waterproofing

Drainage

Ensuring proper drainage around the concrete
structure can help prevent the accumulation of water
and reduce the risk of freeze–thaw cycles [151].
Effective drainage systems, such as well-designed
slopes, drains, and gutters, can help minimize water
ingress and mitigate the risk of frost damage and
early freezing [152].

Waterproofing and protective coatings

Applying waterproofing membranes [153] or
protective coatings [154] to the concrete surface can
help prevent water absorption and reduce the risk of
frost damage, early freezing, and freeze–thaw cycles.
These treatments can improve the concrete’s
resistance to moisture ingress [155] and thereby
enhance its overall durability.

The following sections will discuss various technologies and construction strategies
that can enhance the performance of concrete construction and concrete structures in cold
weather conditions.
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3.1. Advanced Concrete Mix Designs

Innovative concrete mix designs offer diverse opportunities to improve the perfor-
mance of concrete in cold weather by addressing challenges such as slow setting, reduced
strength development, and frost susceptibility [156]. Material measures that can be taken to
mitigate frost-related problems are, for example, adjustments of the water–cement ratio, in-
creasing the air content, and addition of supplementary cementitious materials, as discussed
in Table 4. Some other important or recent advancements in concrete mix design include
the development of new concrete materials such as ultra-high-performance concrete [157],
self-consolidating concrete [158], fiber-reinforced concrete [159], and nanotechnologically
enhanced concrete [160].

Table 4. Approaches for mix-design adjustments as damage-preventive strategies for concrete
construction in cold weather.

Adjusting the Mix Design

Water–cement
ratio

Controlling the water–cement ratio is crucial to
producing a dense and durable concrete mix with low
permeability, reducing the risk of frost damage and
freeze–thaw cycles [161]. A lower water–cement ratio
reduces the porosity of the concrete, making it more
resistant to water ingress and freezing [162].

Air entrainment

Incorporating air-entraining admixtures into the
concrete mix creates small, evenly distributed air voids
within the concrete [163]. These air voids provide space
for the expansion of freezing water, reducing internal
pressure and preventing frost damage, early freezing,
and freeze–thaw deterioration [164].

Supplementary
Cementitious
Materials (SCMs)

The use of SCMs, such as fly ash, slag, or silica fume, can
improve the concrete’s resistance to freezing and
thawing cycles by increasing the water–binder ratio
[165]. SCMs can thereby reduce the permeability of
concrete and enhance its durability, making it less
susceptible to frost damage and early freezing [166].

High-performance concrete (HPC) is a type of concrete with enhanced strength, dura-
bility, and resistance to environmental factors, including cold weather conditions [167]. The
use of HPC or ultra-high-performance concrete (UHPC) can improve the performance of
concrete structures by reducing permeability, increasing resistance to freeze–thaw cycles,
and enhancing overall durability [157]. It may also offer enhanced cold weather oppor-
tunities such as faster setting and strength development, shorter times requirements for
supportive formwork, and ultimately higher construction rates due to its rapid develop-
ment of material and mechanical properties [168]. Self-consolidating concrete (SCC) is a
type of concrete that flows and consolidates under its own weight, eliminating the need for
mechanical consolidation [169]. SCC can be advantageous in cold weather construction, as
it can be placed more quickly and with less labor, reducing the risk of early freezing and
the need for additional heating and protection measures [170]. Additionally, it improves
the working environment for construction workers as it eliminates the need for harsh work
tasks such as vibration and enables the construction of complicated shapes and geometries
that would not be possible to construct by using traditional vibrated concrete [171].

Fiber-reinforced concrete (FRC) is a type of concrete that incorporates fibers, such as
steel or synthetic fibers, into the concrete mix [172]. The incorporation of fibers in concrete
can improve the material’s tensile strength, ductility, and resistance to cracking, making
it more resilient in cold weather conditions [173]. The increased cracking resistance is
especially important in harsh environments where cracks must be avoided, for example,
power plants, tunnels, marine structures, and dams [174]. Fiber-reinforced concrete can also
help reduce the risk of frost damage and freeze–thaw deterioration due to the reduced crack
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risk. Nanotechnologically enhanced concrete (NEC) refers to the use of nanotechnology
and nanoparticles in the mix design of concrete [175]. This innovative material can help
improve the performance of concrete in cold weather by enhancing its strength, durability,
and resistance to environmental factors [176]. Nanoparticles, such as nano-silica or nano-
titanium dioxide, can help reduce porosity, increase strength development, and improve
resistance to freeze–thaw cycles [177].

3.2. Cold Weather Concreting Techniques

Innovative concreting techniques can help ensure the successful placement, setting,
and curing of concrete in cold weather conditions. Some of these techniques include the
use of precooled or preheated materials, accelerating admixtures, or real-time temperature
monitoring for accurate strength estimations, as discussed in Table 5. Proper thermal
management during concrete placement and curing is always crucial in low temperatures.
Innovative methods for managing concrete temperature, such as the use of electric heating
cables [18,60], hydronic heating systems [178], or insulated formwork [179], can help
maintain the required temperature for optimal curing and strength development.

Table 5. Innovative concreting practices as damage-preventive strategies for concrete construction in
cold weather.

Cold Weather Concreting Practices

Preheated
ingredients

Preheating the concrete ingredients, such as aggregates
and water, can help maintain the concrete’s temperature
during placement and reduce the risk of early freezing
[180]. This practice ensures the proper setting and curing
of the concrete in cold weather conditions [181]. The
preheating technique can be useful in extreme cold
conditions or when using mass concrete.

Accelerating
admixtures

Chemical additives and accelerating admixtures can help
improve the performance of concrete in cold weather by
reducing setting time and shrinkage [182], promoting
faster strength development, and enhancing the durability
[183,184]. Non-chloride accelerators, such as calcium
nitrate or calcium formate, can help speed up the setting
and strength development of concrete in cold weather
without the risk of corrosion associated with
chloride-based accelerators [185].

Temperature
monitoring
and control

Monitoring and controlling the concrete temperature
during placement and curing is critical in preventing early
freezing and frost damage. Maintaining the concrete
temperature within certain limits, typically between 5 and
35 ◦C, is recommended for proper curing and strength
development [186]. Advanced temperature monitoring
systems, such as wireless sensors or thermocouples, can
provide real-time information on concrete temperature
during placement and curing, helping the concrete to
maintain the necessary temperature for optimal curing
and strength development [187].

3.3. Protective Measures and Insulation

Innovative protective measures and insulation techniques can be used to protect
concrete from the effects of low ambient temperatures and ensure proper curing and
strength development, as explained in Table 6. Advances in insulation materials have
led to the development of lightweight, reusable insulating boards, blankets, or covers
that can provide better thermal performance and durability than traditional insulation
methods [188]. These blankets can help the concrete maintain the required temperature
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and moisture levels for proper curing and strength development and can prevent early
freezing [189].

Table 6. Insulation and protection techniques as damage-preventive strategies for concrete construc-
tion in cold weather.

Protection and Insulation

Insulating blankets
or covers

Providing adequate insulation for the concrete during
setting and curing can help maintain the necessary
temperature and moisture levels for optimal curing [189].
Insulating blankets or covers can protect the concrete from
freezing temperatures, preventing early freezing and
thereby preventing frost damage [188].

Heated enclosures

In very low, freezing temperatures, enclosures can be used
to provide a controlled environment for concrete placement
and curing [190]. The enclosures are typically equipped
with heating systems, such as propane or electric heaters
[191]. These enclosures can thereby maintain the
temperature and humidity required for proper curing,
minimizing the risk of frost-related problems.

Insulated concrete forms

Insulated formwork systems, such as insulated concrete
forms (ICFs) or insulated sandwich panels, can provide a
protective thermal barrier for concrete during placement
and curing [192]. These systems can help maintain the
necessary temperature for proper curing and strength
development while also improving the energy efficiency of
the finished structure.

3.4. Advanced Monitoring and Quality Control

Innovative monitoring and quality control systems can help ensure the successful com-
pletion of concrete construction projects in cold weather by providing real-time information
on critical factors, such as temperature, humidity, and strength development [193]. Ad-
vanced wireless sensor systems can provide real-time data on concrete temperature [194],
humidity [195], and strength development [196], helping to ensure that the concrete main-
tains the necessary conditions for optimal curing and performance. These systems can also
help identify potential issues early, allowing for timely corrective action [197]. Digital image
correlation (DIC) techniques involve the use of high-resolution cameras and advanced
image processing algorithms to measure the deformation and strain of concrete structures
during curing and service life [198]. This information can be used to assess the performance
of concrete in cold weather and identify potential issues related to cracking, shrinkage, or
other forms of damage [199].

3.5. Prefabrication and Modular Construction

Prefabrication and modular construction techniques can help improve the efficiency
and performance of concrete construction in cold weather by reducing the time and labor
required for on-site placement and curing [200]. Some of the advantages of prefabrica-
tion and modular construction include the possibility of a controlled environment, faster
construction, and improved quality control [201]. Prefabricated concrete elements can be
produced in a controlled environment, ensuring optimal curing conditions, and reducing
the risk of early freezing, frost damage, or other cold-weather-related issues. Prefabricated
and modular elements can be assembled on site more quickly than traditional cast-in-place
construction, reducing the time and labor required for concrete placement and curing in
low temperatures [202]. The use of prefabrication and modular construction techniques
can help improve quality control by allowing for more precise and consistent production of
concrete elements.
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4. Emerging Materials, Technologies, and Strategies

As the construction industry continues to evolve in response to changing environ-
mental conditions, new technologies, and increasing demand for energy-efficient and
resilient infrastructure, the future of concrete materials, construction, and structures in cold
weather environments is also expected to undergo significant changes. This section will
discuss some of the key future trends and opportunities in the field of concrete materials,
construction, and structures in cold weather, with a focus on enhancing their durability,
performance, and sustainability.

4.1. Smart Concrete Materials and Their Production

The development and implementation of smart and functional concrete materials
are expected to play a significant role in the future of cold weather construction. These
advanced materials can provide enhanced performance, durability, and resilience in cold
weather conditions, as well as offering new functionalities and capabilities [203]. Some
potential smart and functional concrete materials include self-healing concrete [204] and
phase change materials [205]. The sustainability can also be promoted in the production
phase by adapting carbon capture, utilization, and storage technologies [206]. These
technologies are discussed in Table 7.

Table 7. Smart concrete materials and production for improved sustainability.

Smart Concrete Materials and Production Technologies

Self-healing
concrete

Self-healing concrete is an innovative type of building
material that can autonomously repair cracks and damage,
thereby improving the durability and longevity of concrete
structures [207]. This technology typically relies on the use of
bacteria or microcapsules containing healing agents, which
are activated when cracks form, releasing the healing agent
and promoting the formation of new concrete material [208].

Phase change
materials

Phase change materials (PCMs) involve the incorporation of
phase transitioning materials into concrete mixes, which can
help improve the thermal performance of concrete structures
in cold weather [209]. PCMs can store and release thermal
energy as they undergo phase transitions, effectively acting as
thermal batteries that help regulate the temperature of
concrete structures and reduce the risk of frost damage or
freeze–thaw deterioration [64].

Carbon capture,
utilization, and
storage
technologies

Carbon capture, utilization, and storage (CCUS) technologies
offer the potential to reduce the environmental impact of
concrete production and use by capturing carbon dioxide
emissions and incorporating them into concrete materials
[210]. These technologies can help create more sustainable
concrete materials and construction practices [211].

4.2. Advanced Manufacturing and Construction Technologies

The adoption of advanced manufacturing and construction techniques, such as addi-
tive manufacturing (3D printing) and robotics, is expected to transform the way concrete
materials and structures are produced and constructed [212]. These techniques can im-
prove the overall efficiency, reduce waste, and enhance the quality and performance of the
structures. Some current trends and future opportunities in this area include 3D-printed
concrete [213], robotic construction [214], and prefabrication [215], discussed in Table 8.
These technologies offer possibilities for improved sustainability for all types of concrete
construction, including work in harsh environments.
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Table 8. Advanced manufacturing and construction technologies for sustainable concrete.

Advanced Manufacturing and Construction Technologies for Concrete

3D printing

3D printing technology offers the potential to revolutionize the
production of concrete elements and structures [216]. By enabling
precise and automated fabrication of complex or custom-designed
components, 3D printing provides opportunities to reduce labor
costs, minimize material waste, and improve the overall quality
and performance of concrete structures [217].

Robotic
construction

The use of robotic systems in the construction industry can help
improve efficiency, reduce labor costs, and enhance quality and
performance [218]. Robotic systems can be used for a range of
construction tasks, such as concrete placement [219],
reinforcement installation [220], and formwork assembly [221],
helping to streamline construction processes and ensure
consistent quality and performance.

Modular and
prefabricated
construction

Modular and prefabricated construction techniques involve the
off-site production and assembly of concrete components [222].
These production techniques can help improve the efficiency and
performance of concrete construction in low temperature
environments [223]. By applying modular or prefabrication
technologies, the construction industry can reduce on-site labor
requirements, minimize weather-related delays, and ensure
consistent quality and performance [224].

4.3. Integrated Design and Optimization Technologies

The development and adoption of integrated design and optimization technologies,
such as building information modeling (BIM) and artificial intelligence (AI), are expected
to play a significant role in the future of concrete construction and structures [225]. These
tools can help streamline design and construction processes [226], improve collaboration
and communication between project stakeholders [227], and enhance the performance
and durability of concrete structures, both in normal weather conditions and in cold
environments [228]. Some integrated design and optimization technologies and their
applications are shown in Table 9.

Table 9. Integrated design and optimization technologies for improved sustainability.

Integrated Design and Optimization Technologies

Building
information
modeling

Building information modeling (BIM) is a digital representation of the
physical and functional characteristics of a building or infrastructure,
enabling the integration of design, construction, and management
processes [229]. BIM can help improve the efficiency, performance, and
sustainability of concrete construction in cold weather by facilitating
better coordination and communication among project stakeholders [227],
optimizing material selection and construction techniques [229], and
predicting potential issues related to frost damage, freeze–thaw cycles, or
other cold weather-related challenges [230].

Artificial
intelligence
and machine
learning

Artificial intelligence (AI) and machine learning technologies offer
significant potential for improving the efficiency, performance, and
durability of concrete construction and structures [231]. These
technologies can help to optimize concrete mix designs [232], predict the
performance of concrete materials and structures under various
environmental conditions [233], and develop more efficient construction
processes and techniques [234].

Digital twins

The digital twin technology involves the creation of a virtual replica of a
physical asset or system [235], allowing for real-time monitoring, analysis,
and optimization of its performance [236]. Digital twins can be used to
model and predict the behavior of concrete structures in cold weather
environments, enabling the use and development of more resilient and
efficient construction techniques and materials [237].
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4.4. Sustainability and Resilience in Cold Weather Concrete Construction

As climate change and environmental concerns continue to drive the need for more
sustainable and resilient infrastructure [238], the future of cold weather concrete construc-
tion is expected to focus increasingly on enhancing the sustainability and resilience of
concrete materials, structures, and construction practices. The development and adoption
of green concrete materials [239], such as those incorporating alternative binders like fly
ash, slag, or geopolymers, can help reduce the environmental impact of concrete con-
struction [240] while also improving the performance and durability of structures in cold
weather environments [241]. These materials can offer enhanced material properties such
as better resistance to freeze–thaw cycles [242], reduced permeability [243], and improved
thermal performance [244].

Carbon capture, utilization, and storage technologies offer the potential to signifi-
cantly reduce the carbon footprint of concrete production and use by capturing, storing,
and utilizing carbon dioxide emissions [245]. These technologies can help create more
sustainable and resilient concrete materials and structures while also addressing the global
challenge of climate change [246]. As climate change leads to more extreme and variable
weather conditions [247], the need for climate-adaptive design and construction practices
is becoming increasingly important. In the context of cold weather concrete construction,
this may involve designing and constructing structures that can withstand more frequent
and severe freeze–thaw cycles [248], incorporating advanced materials and technologies
to enhance resilience, and implementing construction practices that minimize the envi-
ronmental impact. The future of concrete construction in cold weather environments is
expected to be shaped by several key trends and opportunities, including the development
of smart and functional concrete materials [249], the adoption of advanced manufacturing
and construction techniques [250], the use of integrated design and optimization tools [251],
and an increased focus on sustainability and resilience [252]. By staying informed about
these trends and seeking to implement innovative solutions and best practices, construction
professionals can continue to improve the overall performance, durability, and long-term
sustainability of concrete structures in cold weather, ultimately benefiting the construction
industry and society.

5. Conclusions

Various challenges, strategies, and performance enhancement techniques related to
cold weather concrete construction were discussed in this paper. Cold weather conditions
can significantly impact the setting, curing, and strength development of concrete, as well
as increase the risk of frost damage, early freezing, and freeze–thaw deterioration. These
challenges can lead to increased construction time, higher costs, and potential safety and
durability concerns for concrete structures in cold weather environments. Several innova-
tive materials and technologies can be employed to improve the performance and durability
of concrete in cold and freezing temperatures. These strategies include adjusting and op-
timizing the concrete mix proportions, using chemical admixtures and supplementary
cementitious materials, modifying the construction practices, and employing innovative
materials and construction techniques. Weather-related problems and challenges in con-
struction include the impact of low temperatures, snow, and wind, which affects personnel,
equipment, and machinery. The implementation of effective planning, communication, and
management strategies can help mitigate the weather-related challenges and ensure the
successful completion of construction projects in cold weather environments. The future
of cold weather concrete construction is expected to be shaped by several key trends and
opportunities, including the development of smart and functional materials, the adoption
of advanced manufacturing and construction techniques, the use of integrated design and
optimization tools, and an increased focus on sustainability and resilience. These trends
and opportunities offer a potential to further enhance the performance, durability, and
sustainability of concrete structures in cold weather conditions.
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The successful construction of durable, high-performing, and sustainable concrete
structures in harsh environments requires a comprehensive understanding of the material-
related challenges and the appropriate strategies and technologies to address them. By
staying informed about the latest advancements and best practices in the field, construction
professionals can continue to develop and implement more effective solutions to the unique
challenges posed by cold weather concrete construction, ultimately benefiting both the
construction industry and the end-users of these structures.
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