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Abstract: Process monitoring and forecasting are essential to ensure the efficiency of industrial
processes. Although it is possible to model processes using phenomenological approaches, these are
not always easy to apply and generalize due to the complexity of the processes and the high number
of unknown parameters. This work aims to present a hybrid modeling architecture that combines
a phenomenological model with machine learning models. The proposal is to enable the use of
simplified phenomenological models to explain the basic principles behind a phenomenon. Next,
the data-oriented model corrects deviations from the simplified model predictions. The research
hypothesis consists of showing the benefits of integrating prior knowledge of chemical engineering in
simplifying data-based models, enhancing their generalization and improving their interpretability.
The gasification process of lignin biomass with supercritical water was used as a case study for this
methodology and the variable to be observed was the production of hydrogen. The real experimental
data of this process were augmented using Gibbs energy minimization with the Peng–Robinson
equation of state, thus generating a more voluminous database that was considered as real process
data. The ideal gas model was used as a simplified model, producing significant deviations in
predictions (relative deviations greater than 20%). Deviations (∆H2 = Hreal

2 −Hpredict
2 ) were used as

the target variable for the machine learning model. Linear regression models (LASSO and simple
linear regression) were used to predict ∆H2 and this variable was added to the simplified forecast
model. This consisted of the hybrid prediction of the resulting hydrogen formation (Hpredict

2 ). Among
the verified models, the simple linear regression adjusted better to the values of ∆H2 (R2 = 0.985)
and MAE smaller than 0.1. Thus, the proposed hybrid architecture allowed for the prediction of the
formation of hydrogen during the gasification process of lignin biomass, despite the thermodynamic
limitations of the ideal gas model. Hybridization proved to be robust as a process monitoring tool,
providing the abstraction of non-idealities of industrial processes through simple, data-oriented
models, without losing predictive power. The objective of the work was fulfilled, presenting a new
possibility for the monitoring of real industrial processes.

Keywords: SCWG; hydrogen; machine learning; phenomenological model; hybrid model

1. Introduction

Modern engineering seeks the optimized use of raw materials and resources, and a
common way to achieve such goals is through rigorous process monitoring. Chemical
processes, in general, play a significant role in control and monitoring systems to ensure
the proper development, to avoid waste, and to maximize the efficiency of processes [1].

For processes with chemical reactions, control can be hampered in most cases because
of their nonlinear nature. The reason may be related to the complexity of the reaction
system, where numerous intermediate products can be formed throughout the reaction
process. Biomass gasification processes in supercritical water are examples of reaction
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systems where the reaction’s behavior prediction may be hampered due to the complexity
of the reaction system [2].

The biomass gasification process in supercritical water reaches good levels of hydrogen
formation [3,4]. However, it consists of a complex reaction system, which justifies the need
for good monitoring of the operational variables of this process [5].

The Process of Gasification of Biomass in Supercritical Water

The energy matrix of the current socioeconomic model is heavily dependent on fossil
sources, and conventional use has become extremely expressive since the first industrial
revolution. These are non-renewable energy sources, and their use generates significant
levels of polluting emissions [6]. In this context, the search for energy sources with lower
environmental impact has become one of the main objectives of modern engineering.

A good example of an alternative energy source is hydrogen, which gained attention
in the first decade of the 21st century [7]. Hydrogen has a low environmental impact
and a high energy density, in addition to having several applications [8]. Because of its
high energy density and wide field of applications, there is a constant effort to search for
processes to produce hydrogen to compensate for future energy needs and to improve the
efficiency of existing processes. Among the routes for obtaining hydrogen, those which
convert biomass have been gaining visibility due to their flexibility of application and the
availability of biomass sources.

The process of converting biomass into hydrogen using supercritical water as the
reaction medium is among the most promising routes. Water acts as a hydrogen donor for
the reaction medium, and thus it is possible to gasify biomass with high humidity, which
eliminates the need for pre-sucking processes, as is required in conventional processes.
This consists of an opportunity to recover the energy of many residues and organic by-
products [9].

Despite its relevance, gasification with supercritical water is a complex process, with
numerous possible intermediate reactions that may involve the formation of numerous
intermediate components in different phases. In addition, the high heterogeneity of biomass
hinders the construction of a generalized monitoring model that accurately describes all
the details of the mechanism [10,11].

Guan et al. [12] presented a kinetic model to describe the reaction mechanism of the
gasification process of microalgae biomass and a supercritical medium. Equations (1)–(12)
present the reaction mechanism proposed by them. Biomass consists of a set of macro-
molecules, which are quickly decomposed into smaller molecules in a supercritical medium.
After, they are converted into gaseous products.

Algae
k1→ Int.1 (1)

Algae
k2→ Int.2 (2)

Int.i + 0.57 H2O
ki1→ CO + 1.43 H2 (3)

Int.i + 1.57 H2O
ki2→ CO + 2.43 H2 (4)

Int.i
ki3→ CO (5)

Int.i
ki4→ CO2 (6)

Int.i
ki5→ CH4 (7)
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Int.i
ki6→ H2 (8)

Int.i
ki7→ C2Ha (9)

Int.i
ki8→ Char (10)

CO + H2O
k3→ CO2 + H2 (11)

CO + 3H2
k4→ CH4 + H2O (12)

Note the formation of intermediate components. The reaction mechanism presented
(Equations (1)–(12)) shows a certain inaccuracy with respect to the process steps, since there
is not full knowledge of the possible by-products generated during the reactions, which
may make the construction of monitoring tools very challenging.

A common approach in modeling literature in such cases of knowledge incompleteness
is to build empirical data-driven models. Industries are an abundant source of data, and
they must be used to leverage a company’s capacity for self-improvement [13].

Because of the growing complexity of industrial processes, the need for more sophisti-
cated modeling techniques has increased proportionally. Machine learning and artificial
intelligence techniques are among the top approaches of interest because of their predic-
tive power and wide area of applicability. Ge et al. [13] and Venkatasubramanian [14]
present complete reviews of how these techniques have been applied to help solve chemical
engineering problems.

Machine learning techniques have been widely applied by chemical process re-
searchers to monitor process parameters [15–17]. Marciej et al. [18] used the Extreme
Gradient Boosting (XGBoost) model for data regression in order to predict the carbon
straightening capacity in mixtures. Yang et al. [19] constructed a multi-feature fusion
convolutional neural network and Light Gradient Boosting Machine (LightGBM) to mon-
itor the safety of oil and gas pipelines. Zhang at al. [20] used Multilayer Perceptron and
Random Forest to model the spontaneous combustion tendencies of coal with respect to
crossing point temperature. Azarpour et al. [21] proposed a hybrid model combining a
first-principle model and artificial neural network, with the aim of predicting the kinetic
constant of deactivation of catalysts in a fixed bed. Lei Y. et al. [22] present a hybrid model
proposal using four machine learning models (Artificial Neural Networks, Random Forest,
XGBoost and LightGBM) for the prediction of hydrogen and methane in raw coke oven
gas, presenting coefficients of determination equal to 0.99952 and 0.99964 for the prediction
of hydrogen and methane concentrations, respectively, for the best model (LightGBM).
Shahbaz et al. [23] constructed an ANN for the prediction of the palm kernel bark steam
gasification process using CaO as adsorbent and coal ash as a catalyst. The authors used the
backpropagation algorithm to train seven neurons in the hidden layer. The gas composition
predicted by the ANN was compared with real data from the pilot scale process, showing
high agreement with R2 = 0.998 for almost all cases.

Despite several applications already reported in the literature on the application of
data models for the prediction of chemical processes, a disadvantage of data-oriented
models is the difficulty of generalizing correlations outside the original range of training
data. This is a special issue in process monitoring because they naturally evolve over time
due to changing operating conditions.

The current work proposes the creation of a modeling architecture that takes advantage
of both approaches: phenomenological and data-driven. Through their union, a hybrid
model is built. The work demonstrates an example of the application of this methodology
in the modeling of the gasification reaction system with supercritical water.
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2. Methodology
2.1. Phenomenological Modeling of the Process

For the prediction of the biomass gasification process, the thermodynamic approach of
minimization of Gibbs energy (minG) will be used. Any system reaches its thermodynamic
equilibrium if the total Gibbs free energy has the smallest possible value, so this objective
function is widely applied to verify processes in the equilibrium condition [24].

The Gibbs energy minimization approach has greater advantages because it is a direct
minimization method that predicts the formation of the system phases and describes the
equilibrium compositions adequately, as shown in the works of Rocha and Guirardello [25],
Voll et al. [26], and Hantoko et al. [27]. This method has the advantage of considering, in
addition to the conservation of masses and equality of fugacity, the minimum Gibbs energy
of the system, making it unnecessary to worry about predicting the possible phases that
the system may form [28].

For reactive systems with multiple components conditioned at constant pressures and
temperatures, the thermodynamic equilibrium condition can be formulated as a Gibbs
energy minimization problem, with the Gibbs energy described by Equation (13).

minG =
NC

∑
i=1

NF

∑
k=1

nk
i

[
µo

i + RTln

(
ˆ
f

k

i / f o
i

)]
(13)

The direct minimization of Equation (13), considering the restrictions of mass balance
and stoichiometry, results in a combined chemical and phase equilibrium point. For the
system to reach an adequate solution, it is necessary to add two constraints. The first
constraint is the non-negativity of the number of moles, Equation (14), of each of the
components in each of the phases [28].

nk
i ≥ 0 (14)

The second restriction is related to the balance of atoms due to the non-stoichiometric
formulation, which does not consider the possible reactions that occur throughout the
optimization process, but the best arrangement of atoms is represented by Equation (15).

NC

∑
i=1

NF

∑
i=1

ami(n
k
i

)
=

NC

∑
j=1

ami(n
0
i

)
(15)

When the conservation of matter equation is satisfied, the Gibbs free energy ex-
pression obtains its minimum value when a multicomponent system reaches chemical
equilibrium [29].

Bearing in mind that gasification processes in supercritical media occur under high
pressure and temperature conditions, it is estimated that components in the liquid phase
will not be formed; even so, both phases will be considered in the modeling process.
Equation (13) can be rewritten in terms of chemical potentials and molar amounts of solid,
liquid, and vapor phase components, as described in Equation (16).

minG =
NC

∑
i=1

(
ns

i µs
i + nv

i µv
i + nl

iµ
l
i

)
(16)

The standard chemical potential can be calculated from Equations (17) and (18). These
results are necessary for estimating the Gibbs energy, as shown in Equation (16).

∂

∂T

(
µk

i
RT

)
P

= −
−
H

g

i

RT2 (17)
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∂
−
H

g

i
∂T


P

= Cpg
i (18)

To facilitate the thermodynamic modeling of the process, the solid phase will be
considered ideal (Equation (19)), so it will not be necessary to estimate non-idealities. This
consideration seems to be reasonable, considering that throughout the gasification process
with supercritical water, high levels of water are inserted in the reaction system, hindering
the formation of components in the solid phase [3,4,28].

µs
i = µ0

i (19)

Contrary to the hypothesis adopted regarding the ideality of the solid phase, the
vapor phase cannot be considered ideal since the conditions of the process in question
make this consideration impossible. Equation (20) describes the chemical potential of the
components in the vapor phase written as a function of the standard chemical potential,
temperature, molar composition in the vapor phase, pressure, and coefficient of fugacity of
the components considered.

µv
i = µ0

i + RT(ln ∅̂v
i + lnyi + ln P) (20)

Equation (21) presents the chemical potential of the components in the liquid phase.
This is written as a function of the standard chemical potential, temperature, molar compo-
sition in the vapor phase, pressure, and fugacity coefficient of the considered components.

µl
i = µ0

i + RT
(

ln ∅̂l
i + lnxi + ln Psat

i

)
(21)

The chemical potential of the liquid phase components is calculated as a function of
the saturation pressure, and the Antoine equation (Equation (22)) will be used to calculate
this property.

lnPsat
i = ai −

bi
ci + T

(22)

The Peng–Robinson cubic equation of state (EoS) will be applied to estimate the non-
idealities of the liquid and vapor phases [30]. The next section presents in more detail the
estimation of fugacity coefficients using the Peng–Robinson EoS.

The molar partial enthalpy of each liquid or gaseous I component is calculated
as a function of their heat capacities, which are a function of temperature, as shown
in Equation (23).

Cpv
i = A0,i + A1,iT + A2,iT2 + A3,iT3 + A4,iT4 (23)

For solids, the heat capacity is calculated according to Equation (24).

Cps
i = Ai + BiT + CiT2 + DiT−2 (24)

The parameters for calculating the saturation pressures and formation properties of
the considered components are presented in Table 1. The parameters for calculating the
heat capacities of the solid and vapor phase components are presented in Tables 2 and 3,
respectively. The reference state of a species in the gas phase is given by the pure substance
at 1 bar and system temperature. Liquids and solids use the liquid itself or pure solid at
1 bar [31].
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Table 1. Critical properties, formation, and parameters of the Antoine equation, as reported by
Poling et al. [32].

Components Tc (K) Pc (bar) Vc
(m3/kmol) ω a b c

∆Hf
(cal/mol)

∆Gf
(cal/mol)

H2O 647.140 220.640 0.056 0.344 18.304 3816.440 −46.130 −5.78 × 104 −5.46 × 104

H2 32.980 12.930 0.064 −0.217 13.633 164.900 3.190 0 0
CH4 190.560 45.990 0.099 0.011 15.224 597.840 −7.160 −1.78 × 104 −1.21 × 104

CO2 304.150 73.740 0.094 0.225 22.590 3103.390 −0.160 −9.41 × 104 −9.43 × 104

CO 132.850 34.940 0.093 0.045 14.369 530.220 −13.150 −2.64 × 104 −3.28 × 104

O2 154.580 50.430 0.073 0.022 15.408 734.550 −6.450 0 0
N2 126.200 33.980 0.090 0.037 14.954 588.720 −6.600 0 0

CH4O 512.640 80.970 0.118 0.565 18.588 3626.550 −34.290 −4.80 × 104 −3.88 × 104

C2H6 305.320 48.720 0.146 0.099 15.664 1511.420 −17.160 −2.00 × 104 −7.61 × 103

C3H8 369.830 42.480 0.200 0.152 15.726 1872.460 −25.160 −2.50 × 104 −5.81 × 103

NH3 405.400 113.530 0.072 0.257 16.948 2132.500 −32.981 −1.10 × 104 −3.92 × 103

C2H4 282.340 50.410 0.131 0.087 15.534 1347.010 −18.150 1.25 × 104 1.64 × 104

Table 2. Coefficients for calculating the heat capacity of solid formation, as reported by Smith et al. [33].

Components A * B * C *

C 35.190 1.53 × 10−3 −1.72 × 105

CaO 121.286 8.80 × 10−4 −2.08 × 105

CaCO3 249.806 5.24 × 10−3 −6.20 × 105

Ca(OH)3 190.692 1.08 × 10−2 0
NaOH 0.240 3.24 × 10−2 3.87 × 105

* Values already multiplied by the gas constant (R = 1.987 cal/mol.K).

Table 3. Coefficients for calculating the heat capacity of the formation of components in the vapor
phase, as reported by Poling et al. [32].

Components A0 * A1 * A2 * A3 * A4 *

H2O 87.329 −8.32 × 10−3 2.79 × 10−5 −3.11 × 10−8 1.26 × 10−11

H2 57.285 7.31 × 10−3 −1.53 × 10−5 1.38 × 10−8 −4.23 × 10−12

CH4 90.766 −1.78 × 10−2 7.21 × 10−5 −6.77 × 10−8 2.17 × 10−11

CO2 64.756 2.69 × 10−3 2.98 × 10−5 −4.72 × 10−8 2.10 × 10−11

CO 77.731 7.78 × 10−3 2.35 × 10−5 −2.59 × 10−8 1.02 × 10−11

O2 72.128 −3.56 × 10−3 1.31 × 10−5 −1.19 × 10−8 3.56 × 10−12

N2 70.320 −5.19 × 10−4 1.39 × 10−7 3.12 × 10−9 −1.97 × 10−12

CH4O 93.667 −1.39 × 10−2 8.37 × 10−5 −8.83 × 10−8 3.05 × 10−11

C2H6 83.017 −8.80 × 10−3 1.12 × 10−4 −1.32 × 10−7 4.94 × 10−11

C3H8 76.440 1.02 × 10−2 1.19 × 10−4 −1.57 × 10−7 6.12 × 10−11

NH3 84.209 −8.38 × 10−3 4.06 × 10−5 −4.22 × 10−8 1.51 × 10−11

C2H4 83.880 −1.75 × 10−2 1.15 × 10−4 −1.34 × 10−7 4.99 × 10−11

* Values already multiplied by the gas constant (R = 1.987 cal/mol.K).

Estimation of Fugacity Coefficients Using the Cubic Peng–Robinson Equation

For the prediction of the biomass gasification process from the phenomenological
point of view, the thermodynamic approach to minimization of Gibbs energy (minG) will be
used. Any system reaches its thermodynamic equilibrium if the total Gibbs free energy has
the smallest possible value, so this objective function is widely applied to verify processes
in the equilibrium condition [24]. This methodology has great advantages as it is a direct
minimization method that predicts the formation of the system phases and satisfactorily
describes the equilibrium compositions in reaction systems.

The equations of state can be presented as cubic equations, in the form of the com-
pressibility factor Z, generally described by Equation (25).

f(Z) = Z3 − (1 + B− uB)Z2 +
(

A + wB2 − uB− uB2
)

Z−AB−wB2 −wB3 (25)
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where A and B are dimensionless dependent on temperature, pressure, and phase composi-
tion, as shown in Equations (26) and (27). Parameters u and w are 2 and −1, respectively,
tabled from Peng–Robinson state approval.

A =
amP

(RT)2 (26)

B =
bmP
RT

(27)

where am and bm are mixture properties and determined from Equations (28) and (29),
respectively.

am =
NC

∑
i=1

NF

∑
j=1

yiyj
√

aiaj
(
1− kij

)
(28)

bm =
NC

∑
i=1

yibi (29)

The kij is a binary interaction parameter and ai e aj are parameters that depend on a
predetermined constant for each equation of state, the critical properties (Pc and Tc), gas
constant (R), and acentric factor (ωi) of each component i and j. In this way, ai and aj are
represented by Equation (30).

ai = 0.45724
R2Tc,i

2

Pc,i
αi (30)

The parameter αi is given by Equation (31).

αi =

[
1 +

(
0.37464 + 1.54226ωi − 0.26992ω2

i

)(
1−

√
T

Tc,i

)]2

(31)

The bi parameter also depends on the critical properties, gas constant, and acentric
factor of each component i, as shown in Equation (32).

bi = 0.07780
RTc,i

Pc,i
(32)

With these data, it is possible to calculate the roots of the cubic equation. The fact that
there is only a single real root of the compressibility factor (Z) reveals that the mixture exists
in a single phase, liquid or vapor. If you have the three real roots, the largest of them will
represent the vapor phase and the smallest the liquid phase. The root of the intermediate
value has no physical meaning as it violates the mechanical stability criterion [34]. Knowing
the root of Equation (25) for both phases, Equation (33) will be used to estimate the fugacity
coefficients for the vapor and liquid phases.

ln ∅̂i =
Bi
B
(Z− 1)− ln(Z− B) +

A
2
√

2B

(
Bi
B
− 2

∑j yi
√aiaj

am

)
ln

 z +
(

1 +
√

2
)

B)

z +
(

1−
√

2
)

B

 (33)

2.2. Mathematical Formulation and Solution of the Equilibrium Problem

Equation (25) is known as the cubic equation of state. This equation provides an
approximation of the actual behavior of the liquid and vapor region for a series of fluids [31].
The resolution of this equation produces one or three real roots, which can be later used to
calculate the fugacity coefficients, in the approach known as phi-phi that will be used in
this work.
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Authors Kamath, Biegler, and Grossmann [34] determined in their work that the
first derivative of the cubic equation of state concerning Z must be positive to avoid
selection of the root mean value. Furthermore, the second derivative ensures that the liquid
and vapor phase roots are determined. The largest root will determine the vapor phase,
whereas the second derivative must be greater than or equal to zero, and the smallest root,
which determines the liquid phase, must be less than or equal to zero. Equations (34)–(37)
represent these constraints for the Peng–Robinson equation.

f′
(
Zg
)
= 3Zg

2 − 2(1− B)Zg + A− 2B− 3B2 ≥ 0 (34)

f′(Zl) = 3Zl
2 − 2(1− B)Zl + A− 2B− 3B2 ≥ 0 (35)

f′′
(
Zg
)
= 6Zg + 2B− 2 ≥ −Mσg (36)

f′′ (Zl) = 6Zl + 2B− 2 ≤ Mσl (37)

To avoid selecting a root without physical significance, with the disappearance of one
of the phases of the system, with only one phase, gaseous or liquid, Kamath, Biegler, and
Grossmann [34] added slack variables (σv e σl), which are used to allow the program to
calculate derivatives when they are equal to zero, as in Equations (33) and (34), obtaining
Equations (38) and (39), with modifications for the gaseous and liquid phases, respectively.
M is a positive and large value. In this work, M was considered 10, as well as in the work
of Dowling et al. [35].

f′′
(
Zg
)
= 6Zg + 2B− 2 ≥ −Mσg (38)

f′′ (Zl) = 6Zl + 2B− 2 ≤ −Mσl (39)

Initially, 12 components will be considered (H2, H2O, CH4, CO2, CO, O2, N2, CH4O,
C2H6, C3H8, NH3, C2H4) as representative of the main compounds that it is possible to
form during the biomass gasification process in supercritical water. The selection of these
components was based on results reported in the literature, which indicate that these are
the components formed in considerable compositions during the gasification processes of
biomass from different biomass sources [3–5,28,36–41].

The formulated NLP problems will be solved with the aid of the GAMS software and
the CONOPT 4 solver, considering that this solver has some advantages about the type of
approach that will be used. It is suitable for models with very non-linear constraints, is
designed for large models, and can be applied to models that do not have differentiable
functions [42]. This approach has demonstrated great accuracy and efficiency and has been
used with great results by our research group over the last few years for a wide range of
systems under conditions of chemical equilibrium and combined phases [3,4,6,25,26].

Figure 1 presents the proposed algorithm for obtaining the equilibrium compositions
throughout the reaction using the Gibbs energy minimization methodology associated with
the Peng–Robinson cubic equation of state.

2.3. Hybrid Architecture Proposed for the Hybrid Modeling of the Problem

Figure 2 describes the proposed hybrid modeling architecture associating simulated
data or data obtained through rigorous modeling with data obtained from a simplified
phenomenological model (ideal cases or simplifying hypotheses).
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Figure 2. Hybrid modeling architecture for predicting the variable of interest in the biomass gasifica-
tion process with supercritical water.

The hybrid architecture from Figure 2 is based on the concept of boosting as it consists
of a set of weak estimators and sequentially organized models that perform a little better
than random predictions. Each new estimator is trained to correct the errors made by the
previous estimator [43]. The main gain of the proposed approach is to reduce the overall
prediction bias.

The first step of the proposed architecture of this work consists in making predictions
of the production of hydrogen in the equilibrium condition, considering the system as
ideal—i.e., using the Clapeyron equation (Equation (40)). Note that ideal behavior is not
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consistent with what is studied, considering that the critical water pressure is greater than
220 bar [6,8,36].

PV = nRT (40)

The simplified model uses basic inputs to calculate the variable of interest; in this
case, the production of hydrogen in the equilibrium condition. Using real process data or
data simulated by a more rigorous phenomenological equation, the error of the predictions
will be calculated using Equation (41). The second part of the proposed architecture
corresponds to the use of a data model that will receive several input values—which may
be the same used in an ideal first-principle model—and use them to predict the errors
calculated previously.

A set of experimental data reported by Basu [39] will be used for the gasification
process of lignin biomass in supercritical water at 30 MPa. Experimental data will be used
to validate the methodology described in Section 2.1, using the Gibbs energy minimization
methodology associated with the cubic Peng–Robinson equation to calculate non-idealities.
Figure 3 presents a comparison of the experimental data reported by Basu [39] with results
calculated using the methodology described in Section 2.1.
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Figure 3. Comparison of experimental results reported by Basu (2009) [39] concerning results
calculated using the Gibbs energy minimization methodology with the Peng–Robinson equation and
the ideal model.

As seen in Figure 3, the thermodynamic modeling applying the minimization of the
Gibbs energy associated with the cubic Peng–Robinson equation presents an excellent
fit concerning the ideal data, with a mean relative deviation of less than 1.0%. It is also
verified that the results obtained considering the ideal model follow the tendency of the
molar fraction of hydrogen as a function of temperature; however, the adjustment is not
so precise, with an average relative deviation of 22.032%. Hence, from this point on, the
results obtained by minimizing the Gibbs energy with the Peng–Robinson equation will be
considered as real data.

∆H2 = Hreal
2 − Hideal

2 (41)

Considering that the Gibbs energy minimization methodology with the aid of the
Peng–Robinson cubic adjusted well the experimental data of Basu [39], additional data were
generated using different conditions of pressure, temperature, and biomass compositions
in the feed. Figure 4 represents the described data set expansion procedure.
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Figure 4. The methodology used to expand the data set.

Having the ideal prediction deviation results, the following steps will all be aimed at
applying the machine learning model for KPI prediction.

The database that will be applied to the machine learning model contains the variables
shown in Figure 5.
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The methodology used to expand the data set, as shown in Figure 4, is widely ap-
plied to simulations of complex reaction systems. Works reported by Mitoura et al. [6],
Gomes et al. [8], and Freitas [28] applied the Gibbs energy minimization methodology to
simulate gasification processes of different biomass sources and methane thermal cracking,
presenting excellent results.

2.3.1. Data Modeling

Considering that one of the objectives of this work is to show the advantages of
less complex data approaches, two modeling algorithms were chosen as the first options
to model the errors of the ideal model concerning the real data. Two linear regression
approaches were selected because they have good generalizability and are easy to inter-
pret [44]. Linear regression models will be used through the LinearRegression class and
LASSO regression from the Lasso class, both from the scikit-learn library. Equation (42)
presents the generalized form of a linear model.

y = B0 +
n

∑
i=1

Bixi (42)

where y is the objective variable to be modeled, Bi are the angular coefficients referring to
attribute i, B0 is the intercept, and x is a predictor variable.

Attribute Selection, Data Standardization, Model Selection, and Validation

An important procedure in machine learning modeling consists in selecting the at-
tributes that contribute the most to the prediction of a target variable. The main reasons
include the existence of multicollinearity effects, which cause redundant information to
be inputted in the model. In this work, a simplified approach of feature selection was
employed, using only linear correlation as the measure of importance of each feature.
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Through the SelectKBest class of Python’s scikit-learn library, a linear regression is fit-
ted for each attribute/target pair, and the F statistic is calculated by measuring the goodness
of the linear fit. The model selects the attributes that have the highest F statistics [45].

Considering that the attributes have very different scales, another crucial step is to
scale the data, which helps to avoid model biases towards features with the widest ranges
of variation.

The MinMaxScaler class from the scikit-learn library will be used, which normalizes
all features in a single scale (0–1), while keeping their variance. Equation (43) presents the
scaling of the data based on their maximum and minimum values.

xstd =
x− xmin

xmax − xmin
(43)

For the selection of hyperparameters, the RandomizedSearchCV class from the Python
scikit-learn package was used, together with the cross-validation strategy using the KFold
class from the scikit-learn package. The algorithm was defined to generate 1000 combina-
tions of hyperparameter values. The model selection metric was the mean absolute error
(MAE) (Equation (44)), and the coefficient of determination R2 (Equation (45)) was also
used as a model selection criterion.

MAE =
1
n

n

∑
j=1

∣∣ .
yi − ŷi

∣∣ (44)

R2(
.
y, ŷ) = 1− ∑n

i=1
( .
yi − ŷi

)2

∑n
i=1

( .
yi −

−
yi

)2 (45)

Figure 6 presents the machine learning model pipeline with the descriptions presented.
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The following sections present the results of applying the data-based model for pre-
dicting the error between real data and those calculated by the ideal model (Equation (41)).
With the estimated error, the corrected hydrogen production will be calculated based on
the values predicted by the ideal model, following Equation (46).

Hpredict
2 = Hideal

2 + ∆H2 (46)

3. Results and Discussions
3.1. Presentation of the Database

As mentioned previously, the experimental data from Basu [39] were used to validate
the proposed methodology, and after validation, the data set was augmented. Figure 7
shows, as an example, the formation of hydrogen as a function of temperature, fixing
1 mole of biomass with 5 moles of water in the feed for pressures of 300 and 500 bar.

Analyzing Figure 7, the ideal model follows the trend of the real process, even with
perceptible deviations. The mean absolute error values are equal to 0.281 and 0.322 for
pressures of 300 and 500 bar, respectively. The statistical metrics presented are considerable
since the objective of this text is to reduce the bias of a simple first-principle model with the
aid of a machine learning model.
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Figure 7. Comparison between real and simulated data considering the reaction system as ideal,
fixing 1 mole of biomass with 5 moles of water in the feed for pressures of 300 and 500 bar.

To verify the linear correlations between the variables, Figure 8 presents the correlation
matrix of the data set. This was an important step because of the types of machine learning
models employed (Linear Regression and LASSO).
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Figure 8. Data set correlation matrix.

The temperature has a high positive correlation with the target variable (represented
here as “Hydrogen_real”), indicating that the increase in temperature favors the formation
of hydrogen throughout the process. This result is expected since it agrees with the kinetic
model of Whitag et al. [46], where it is described that in gasification systems in supercritical
water, the temperature increase favors the water–gas displacement reactions that form large
amounts of hydrogen.

In addition to the effect of temperature, note that the pressure and the biomass feed dis-
favor the formation of hydrogen. This result is predicted by the model of Whitag et al. [46],
where it is described that the increase in pressure disfavors the formation of products of
interest throughout the process. This is justified by the fact that the increase in pressure
disfavors the water–gas displacement reactions and the methanation reaction is favored,
according to Le Chatelier’s principle; thus, hydrogen is greatly consumed, forming methane
and carbon dioxide.
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The models presented by Whitag et al. [46] and Yan et al. [40] describe that the increase
in the composition of biomass in the feed harms the formation of hydrogen, while the
amount of methane increases. This behavior is justified by the fact that the increase in
biomass concentration disfavors the water–gas reactions, which produce greater amounts
of hydrogen, which, in turn, favors the methanation reaction, forming methane. The
formation of carbon monoxide in low amounts helps to confirm the hypothesis.

Since the increase in biomass composition minimizes the formation of hydrogen, it
is expected that the increase in the amount of water in the feed favors the formation of
hydrogen, a result that is verified in Figure 8. Water additions to the reaction process favor
the reactions of water–gas, increasing the formation of hydrogen, as previously mentioned.

All the above conclusions follow what was predicted by the models presented by
Guan et al. [12], Yan et al. [40], Castello and Fiori [47], Goodwin and Rorrer [48], and
Tang and Kitagawa [38] for the behavior of biomass gasification processes in supercritical
water. In addition to the listed models, recent work reported by Chen et al. [49] and
Gomes et al. [8] studying gasification processes of biomass sources using supercritical water
as a reaction medium presented results in agreement with those presented in this text.

With the data describing the actual hydrogen production and calculated by the ideal
model as a function of the other variables (temperature, pressure, and composition of
biomass/water in the feed), the ideal model’s deviations presented in Equation (41) were
calculated and their correlation matrix was built, as Figure 9 shows. The produced quantity
of ideal hydrogen (Hydrogen_ideal) has a high correlation with the temperature, thus the
temperature and the molar quantity of ideal hydrogen are collinear. Multicollinearity is a
problem in the model’s fitting because it can impact the estimation of the parameters [50].
Given the multicollinearity problem, the Hydrogen_ideal variable was removed from the
data set.
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3.2. Process Monitoring with the Hybrid Model

Simple linear regression was applied, taking as its objective the actual production of
hydrogen throughout the process (Hydrogen_real). The simple linear regression took the
variables of temperature, pressure, and composition of the biomass/water feed stream as
predictor variables. Figure 10 presents the result of the simple linear regression application.
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Figure 10. Simple linear regression of hydrogen production during the biomass gasification process
with supercritical water.

The result indicates that the simple linear regression does not fit the problem in
question adequately, considering that it is a non-linear phenomenon.

The next step will be to apply the hybrid modeling methodology, summing the devia-
tion prediction and the value predicted by the ideal model (Hydrogen_ideal). Figure 11
presents the results obtained after the hybridization process.
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Figure 11. Hybrid modeling of biomass gasification process with supercritical water to predict
hydrogen production.

The results presented in Figure 11 indicate excellent adjustments with the real data.
The hybrid model associating the ideal model with the simple linear regression showed
better statistics with a coefficient of determination equal to 0.985 and a mean absolute error
equal to 0.07. Table 4 presents a summary of the statistical metrics of the verified models.

Table 4. Summary of the statistical metrics of the verified models.

MAE R2

Linear Regression 0.225 0.834
Hybrid Model—LASSO 0.080 0.984

Hybrid Model—Linear Regression 0.077 0.985
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Figure 12 presents a comparison between real data, simulated data considering the
reaction system as ideal, and the results obtained from the hybrid modeling, with the
simple linear regression model fixing 1 mole of biomass with 5 moles of water in the feed
for pressures of 300 and 500 bar.
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and results obtained from the hybrid modeling, with the simple linear regression model fixing 1 mole
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As can be seen in Figure 12, the application of the hybrid modeling proposal consid-
erably improves the ideally simulated data. The ideal model has limitations that make it
impossible to predict well the behavior of the system at high pressures, which is verified
in Figure 12, as a greater distance between real and calculated data is perceived when the
pressure increases from 300 to 500 bar. For both verified pressures, the proposed hybrid
model presents excellent results, with coefficients of determination equal to 0.968 and 0.984
for pressures of 300 and 500 bar, respectively.

3.3. Conclusions about the Approach and Gains from the Point of View of Process Engineering

The problem used as an example throughout this text deals with a complex reaction
with strong non-ideality due to its high temperature and pressure needs, which disfavors
the application of simple models such as the ideal gas model. As seen in Figure 7, the ideal
model does not present good adjustments concerning the data set used and the deviations
tend to be greater with increasing pressure. However, the application of the hybrid model
associating the simple linear regression model with the ideal gas model presented good
adjustments for the formation of hydrogen under the minimum (300 bar) and maximum
(500 bar) pressure conditions verified in this study, thus demonstrating the robustness of
this methodology.

Considering that monitoring the formation of hydrogen considering the system as an
ideal can be written in a few lines of code, the application of the proposed hybrid modeling
described throughout this text has the potential to be applied as an online monitoring tool.

Another advantage consists in the abstraction of non-idealities knowledge. It is not
rare that process engineering systems have complex relations, and phenomena that are
hard to model, using only a rigorous first-principle-based approach, without incurring
the elevated cost of parameter estimation. The hybridization methodology allows the
abstraction of these difficulties in the modeling process without losing predictive power.

This work fulfilled the objective of presenting the hybrid modeling architecture as a
tool for application in the prediction of industrial processes where a phenomenological
model is known that describes the process of interest. The main gain resides in the fact that
a data-oriented model can help to correct the deviations caused by the non-ideality of the
real phenomena, allowing the use of simplified equations.
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4. Conclusions

This work proposed and developed a hybridization methodology of engineering
models together with data-based models as an alternative to building tools for monitoring
and forecasting industrial phenomena. Depending on process complexity, a rigorous
approach may be too expensive due to the difficulty in finding adequate parameters that
generalize the behavior observed in the plant, or due to the uncertainty associated with the
estimates of these parameters.

The case study used as a basis for the development of the methodology was the
biomass gasification process using supercritical water as the reaction medium. The proposal
is to use linear models, which are simpler and more interpretable, in order to correct the
errors committed by an idealized phenomenological model.

Using experimental data, a complex model based on the minimization of Gibbs energy
using the cubic Peng–Robinson equation was applied, which presented an excellent fit with
the real data, with a lower mean relative deviation of 1.0%. The adjusted phenomenological
model was used to augment the database by calculating the equilibrium compositions
for different conditions of temperature, pressure, and biomass/water composition in the
process feed.

Hydrogen production was adopted as the objective variable, and the next step was
the attempt to adjust this variable with a simplified model. The consideration was that
the reaction system would behave as ideal; thus, the ideal model was used to adjust the
verified process. It presented low adjustment with the real data, presenting values for the
mean absolute error equal to 0.281 and 0.322.

Since the ideal model did not fit the actual hydrogen production data well, the appli-
cation of the hybrid modeling proposal was attempted, using a linear machine learning
model to guide the simplified model considered in the prediction of the variable of interest.
From this point on, the variable of interest became the error between the calculated results
of the ideal values and actual values for hydrogen production.

Two linear regression models were tested for predicting the deviations of the ideal
model: simple linear regression and LASSO linear regression. The simple linear regression
model showed a better fit when associated with the ideal model for calculating hydrogen
production. The predicted deviation values estimated by the data model were added to the
results presented for the prediction of ideal hydrogen, and the result of this sum presented
good adjustments with the real data. For pressures of 300 and 500 bar, the proposed hybrid
model presents excellent results, with determination coefficients equal to 0.968 and 0.984,
respectively, thus optimizing the ideal simplified approach.

For comparison purposes, a simple linear regression was applied directly to the vari-
able of interest, the formation of hydrogen. The model presented results for the coefficient
of determination equal to 0.834 and an absolute mean deviation equal to 0.225, making the
visualization of prediction gains clearer with the application of the hybrid model.

The possibility of using simplified models such as the Clapeyron equation, which
are easier to interpret and implement, is a considerable gain, as complex phenomeno-
logical models usually demand significant experimental work to determine parameters
and have limited generalization, as their reliability is only guaranteed within the limits of
experimental conditions.

It was possible to demonstrate how data-based approaches and artificial intelligence
can help to improve and give more efficiency to the field of process engineering, allowing
the construction of better tools for process monitoring and predictive approaches.

The major challenge found in the process industry is having sufficient quality data to
train machine learning approaches. In this work, this obstacle was surpassed through data
augmentation through a rigorous equation-of-state (Peng–Robinson) model. However, the
lack of a satisfactory amount of data is not a rare situation in the process industry.

In addition, the quality of the data available presents an additional challenge. In-
dustrial data often contain the effects of multiple phenomena, noise, and measurement



Eng 2023, 4 1512

uncertainty. This may turn the modeling more difficult because it increases the knowledge
incompleteness of the studied processes.

Finally, all the objectives of the work are considered fulfilled, even knowing that there
is still much to be done and researched to implement the proposed tools and observe the
expected gains.

Future Work

The field of industrial digitization is a field of increasing exploration and research,
with many opportunities for chemical and process engineers to take a more data-driven
view and strengthen the evidence base of arguments.

Possible future work related to this work includes the application of the methodology
in real streaming process data and its adaptation to self-learning applications. This could
leverage the value generation from industrial data analytics.

This work opens opportunities to explore hybrid methodologies for the use and
construction of digital tools for the industry. Opportunities are focused on exploring how
the model behaves against real data on the conversion of biomass into hydrogen during
the process of supercritical biomass gasification.

Author Contributions: J.M.d.S.J., project proposal; Í.A.M.Z., methodology development; J.M.d.S.J.
and Í.A.M.Z., research and validation; J.M.d.S.J. and Í.A.M.Z., development of results; J.M.d.S.J. and
Í.A.M.Z., constant evaluation of results; A.P.M., supervision and guidance throughout the develop-
ment of the article. All authors have read and agreed to the published version of the manuscript.

Funding: This research did not receive external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this work were obtained from simulations based on
the thermodynamic approach as described. Similar results can be obtained in any process simulator
and the treatment from a machine learning point of view can be easily replicated. We encourage
everyone to use the architecture described in any possible problem where you have knowledge of
data from any process (real or rigorously simulated) and data obtained from simplified modeling.
The purpose of the text is not the verified system but the hybrid approach that allows associating
machine learning models with phenomenological models for monitoring processes.

Acknowledgments: The authors would like to thank the entire faculty of the State University of
Campinas for their contribution to the personal and professional development of countless lives and
all the professors who support the development of society. In addition, the authors thank Radix
Engineering and Software for providing the necessary time and tools demanded by the development
of this methodology.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclatures

G Total Gibbs energy
l Liquid phase
s Solid phase
v Vapor phase
NC Number of components
NF Number of phases
nk

i Number of moles of component i in phase k; i = [1, 2, 3, . . . , NC]; k = [v, l, s]
R Universal gas constant
T Temperature
P Pressure
µi

k Chemical potential of component i in phase k; i = [1, 2, 3, . . . , NC]; k = [v, l, s]

f̂
k
i Fugacity of component i in phase k
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fo
i Fugacity of pure species i in a standard reference state

ami Number of atoms of element i in component m
no

i Number of moles in standard state
Hk

i Enthalpy of component i in phase k
H0

i Enthalpy of component i in the standard state
H0 Total enthalpy
Cpk

i Heat capacity of component i in phase k; i = [1, 2, 3, . . . , NC]; k = [v, l, s]
µ0

i Chemical potential of component i in a standard reference state

∅̂k
i Coefficient of fugacity of component i in phase k; i = [1, 2, 3, . . . , NC]; k = [v, l]

yi Mole fraction of component i in the vapor phase
xi Molar fraction of component i in the liquid phase
Psat

i Component saturation pressure i
ai, bi, ci Constants for calculating component saturation pressure i
An,i Constants for calculating the heat capacity of the component i in the vapor phase.

i = [1, 2, 3, . . . , NC]; k = [1, 2, 3 and 4]
Ai, Bi, Ci, Di Constants for calculating the heat capacity of component i in the solid phase
Zi Compressibility factor
A, B, u, w Parameters of the cubic equation of state
am Attraction parameter for mixtures
bm Repulsion parameter for mixtures
kij Binary interaction parameter
Tc,i Critical component temperature i
Pc,i Critical component pressure i
wi Acentric factor
M Constant for Kamath, Biegler, and Grossmann constraints
σk Slack variables for Kamath, Biegler, and Grossmann constraints
n Number of moles
H2

k Moles of hydrogen; k = [real, ideal, prredict]
.
y Actual value of the target variable
ŷ Estimated value of the target variable
−
y Average value of the target variable
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