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Abstract: Vectorcardiography (VCG) is a valuable diagnostic tool that complements the standard
12-lead ECG by offering additional spatiotemporal information to clinicians. However, due to
the need for additional measurement hardware and too many electrodes in a clinical scenario if
performed along with a standard 12-lead, there is a need to find methods to derive the VCG from
the ECG. We have evaluated the use of Long Short-term Memory (LSTM) neural networks to learn
the transformation from 12-lead ECG to VCG that is applicable across subjects and for each subject.
We refer to these networks as generalized and personalized, respectively. We calculated the Root
Mean Square Error (RMSE), R2, and Pearson correlation coefficient to compare waveforms of derived
and actual VCG. We also extracted and compared diagnostic parameters from VCG, namely the
QRS-loop magnitude, T-loop magnitude, and QRS-T spatial angle, from actual and derived VCGs
using the Pearson correlation coefficient and Bland Altman limits of agreement. The personalized
models performed better than generalized models in waveform comparisons and in the error of
extracted diagnostic parameters from VCG waveforms. The use of personalized transformations for
the derivation of VCG from standard 12-lead has the potential to improve and augment the diagnostic
yield and accuracy of a standard 12-lead interpretation.

Keywords: ECG; vectorcardiography; LSTM networks; personalized medicine; Bayesian optimization

1. Background

Clinical ECG consists of 12 leads (S12)—namely limb leads I, II, and III, augmented
leads aVR, aVL, aVF, and precordial leads V1 through V6. Vectorcardiography (VCG) [1]
is complementary to the S12. It is essentially the spatiotemporal representation of the
cardiac vector in 3 orthogonal planes—namely vertical, transverse, and sagittal planes.
S12 is the standard whereas VCG is rarely acquired. However, several conditions have
more prominent VCG changes than S12, so it is a useful complement to S12. Furthermore,
dynamic spatial and temporal information that can be derived from VCGs is unavailable
from an ECG, which may enhance the automatic assessments of cardiovascular diseases [2].

Ernest Frank introduced the XYZ lead system known as vectorcardiography to pro-
vide a 3-dimensional representation of the cardiac vector. Figure 1 shows the electrode
placement for vectorcardiogram and an example of a vectorcardiogram tracing for a healthy
male subject.

Following the illustration in Figure 1, a vector tracing the boundary of this 3D object
circumscribed by the vectorcardiography is the cardiac vector. Ideally, these ECG leads—X,
Y, and Z—would be orthogonal to each other and form a basis for the cartesian space
spanned by the cardiac vector. Figure 2 illustrates how the temporal X, Y, and Z lead
waveforms translate to a spatiotemporal VCG.
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spanned by the cardiac vector. Figure 2 illustrates how the temporal X, Y, and Z lead 
waveforms translate to a spatiotemporal VCG. 

 
Figure 1. For obtaining VCG—(a) ventral electrode positions, (b) dorsal electrode positions, (c) 
resistor network needed to compensate for non-homogenous human tissue—additional instru-
mentation beyond standard 12-lead ECG equipment [1] (d) 3-D illustration of a single heartbeat 
from a 58-year-old healthy male [3,4]. 

 
Figure 2. (a) Vectorcardiography of one heartbeat (b) Tracing of Vx, Vy, and Vz, which are the three 
leads of a Vectorcardiogram [3,4]. 

The S12 requires ten electrodes on the skin while the Frank XYZ requires only 7 elec-
trodes. There is only one electrode position in common (i.e., the left leg). Suppose all 15 
leads are to be recorded with an ECG acquisition system, then sixteen electrodes should 
be placed on the patient’s skin. Another practical issue with the location of the Frank XYZ 
electrodes is the rear electrodes. Patients can sleep on their backs, but having cables on 
their backs can be uncomfortable. 

  

Figure 1. For obtaining VCG—(a) ventral electrode positions, (b) dorsal electrode positions, (c) resistor
network needed to compensate for non-homogenous human tissue—additional instrumentation
beyond standard 12-lead ECG equipment [1] (d) 3-D illustration of a single heartbeat from a 58-year-
old healthy male [3,4].

Eng 2023, 4,  2 
 

 

spanned by the cardiac vector. Figure 2 illustrates how the temporal X, Y, and Z lead 
waveforms translate to a spatiotemporal VCG. 

 
Figure 1. For obtaining VCG—(a) ventral electrode positions, (b) dorsal electrode positions, (c) 
resistor network needed to compensate for non-homogenous human tissue—additional instru-
mentation beyond standard 12-lead ECG equipment [1] (d) 3-D illustration of a single heartbeat 
from a 58-year-old healthy male [3,4]. 

 
Figure 2. (a) Vectorcardiography of one heartbeat (b) Tracing of Vx, Vy, and Vz, which are the three 
leads of a Vectorcardiogram [3,4]. 

The S12 requires ten electrodes on the skin while the Frank XYZ requires only 7 elec-
trodes. There is only one electrode position in common (i.e., the left leg). Suppose all 15 
leads are to be recorded with an ECG acquisition system, then sixteen electrodes should 
be placed on the patient’s skin. Another practical issue with the location of the Frank XYZ 
electrodes is the rear electrodes. Patients can sleep on their backs, but having cables on 
their backs can be uncomfortable. 

  

Figure 2. (a) Vectorcardiography of one heartbeat (b) Tracing of Vx, Vy, and Vz, which are the three
leads of a Vectorcardiogram [3,4].

The S12 requires ten electrodes on the skin while the Frank XYZ requires only 7 elec-
trodes. There is only one electrode position in common (i.e., the left leg). Suppose all
15 leads are to be recorded with an ECG acquisition system, then sixteen electrodes should
be placed on the patient’s skin. Another practical issue with the location of the Frank XYZ
electrodes is the rear electrodes. Patients can sleep on their backs, but having cables on
their backs can be uncomfortable.

1.1. Diagnostic Importance of VCG and Its Complementarity to ECG

Over several decades of research, three parameters extracted from the VCG waveform
are considered diagnostically important. They are the QRS amplitude, T-loop magnitudes,
and Spatial QRS-T loop angles. Figure 3 illustrates these parameters on a vectorcardiogram.
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VCG Signal Feature Clinical Application 
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T magnitude Lower values are associated with an increased risk of cardiac events 

Spatial QRS-T angle 

In addition to assisting with risk stratification for cardiac events, the angle is also 
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• Incident coronary heart disease 
• Heart failure  
• Efficacy of therapy for  
• Adult hypertension  
• Diabetes mellitus  

Figure 3. Illustration of the parameters that are extracted from a VCG peak QRS magnitude, peak T
wave magnitude, and spatial QRS to T angle [3,4].

Table 1 lists the clinical applications of these parameters that have been validated in
the literature. The spatial QRS-T angle parameter has been shown to be useful for risk
stratification for cardiac events, evaluation of incident coronary disease and heart failure,
and efficacy of therapy for adult hypertension and diabetes mellitus [5]. For example,
in the PTB diagnostic database [3,4] ECG used in this study, the mean and standard
deviation of the Spatial QRS-T angles from patients with MI and healthy controls were
87.9◦ ± 46.84◦ and 52.95◦ ± 35.76◦, respectively, as computed using the VCG parameter
extraction algorithms described in this study.

Table 1. Diagnostic parameters of interest computed from Vectorcardiograms.

VCG Signal Feature Clinical Application

QRS magnitude Predicts ventricular arrhythmia in selected cohorts

T magnitude Lower values are associated with an increased risk of cardiac events

Spatial QRS-T angle

In addition to assisting with risk stratification for cardiac events, the angle is also useful for
the evaluation of
• Incident coronary heart disease
• Heart failure
• Efficacy of therapy for
• Adult hypertension
• Diabetes mellitus

Additionally, there are specific conditions where the VCG is considered superior to
the ECG. VCG is more sensitive and specific than ECG in detecting atrial and ventricular
enlargements. Due to the greater spatially localized information in a VCG, the suspicion
of electrically inactive areas in the septal or anteroseptal walls of the left ventricle can
be assessed with a VCG. The left ventricular mass, which is currently assessed with an
echocardiogram, can be assessed with a VCG. VCG findings are better correlated to echocar-
diography findings than ECG findings. VCG has a greater diagnostic sensitivity than ECG
for AMI when associated with a left anterior fascicular block [6]. Lastly, the myocardial
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damage caused by Chagas disease can be assessed with VCG findings complementing
ECG findings [7]. Figure 4 illustrates the conditions and the location of the affected heart
anatomy.
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Figure 4. List of conditions where VCG is more effective than ECG for diagnosis and the correspond-
ing anatomic location of the affected region of the heart. Authored by Wapcaplet and shared under
Creative Commons (CC BY-NC-SA 3.0). The white arrows indicate the direction of blood flow.

Since VCGs are not acquired during regular clinical settings, but standard 12-lead
waveforms are acquired, there is a need to derive VCG from the 12-lead ECG. Specifically,
an arbitrarily complex transformation mapping the 12-lead ECG to the VCG is needed.
Several research efforts are focused on arriving at the linear transformation of ECGs from
standard 12-lead to Frank XYZ. However, the transformation is likely to be arbitrarily
complex due to multiple underlying variabilities from person to person in terms of the
distribution of fat, muscle, and organs in the torso where the ECG leads are measured. These
complex variations suggest that we need methods capable of approximating arbitrarily
complex transformations, such as neural networks [8,9]. Therefore, we used a class of
neural networks, namely Long Short-term Memory (LSTM) [10,11], that might be best
suited for time-series data regression tasks, such as transforming leads. Moreover, most
recently, Sohn et al. [12] reported the successful use of LSTM networks to achieve accurate
lead transformations. The following are the original contributions of this research:

• We apply LSTM networks to the task of deriving VCG from 12-lead ECGs. Since LSTM
networks require the pre-specification of several hyperparameters, we apply Bayesian
global optimizations to find the combination of these parameters that is optimal to
obtain the least error between derived VCG and actual VCG;

• We apply transfer learning to obtain personalized transformations for each subject as
part of the data set;

• We compare the accuracy of extraction of VCG diagnostic parameters from derived
VCG and actual VCG.

1.2. Related Work

Linear regression has been explored in the literature for lead transformation. Some
studies have used open, publicly available data sets, whereas others have used closed data
sets or data sets acquired with custom built hardware devices. Between 1986 and 2009, the
lead transformation of interest was from S12 to Frank XYZ. Closed data sets were used for
some studies [13–16] and open for others [17,18]. A neural network-based transformation
was first proposed in 2010 [19]. Table 2 summarizes the works in the literature that focused
on obtaining Frank XYZ from S12. Since then, several efforts have been made in reducing
leads required to be monitored while retaining the diagnostic power of S12. Most of the
studies have tried to derive S12 from a three-lead ECG [12,19–24].
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Table 2. List of related works that evaluated lead transformations from S12 to Frank XYZ. (N is the
number of samples per ECG channel, y is the actual acquired ECG, and ŷ is the output ECG from the
transformation).

Publication Data Availability/Transformation Method Reported Performance Metrics

Bjerle P et al., 1986 [11]

closed/Linear regression

Amplitudes of ECG waves QRS, ST and T

Edenbrandt L et al., 1988 [12] Amplitude of R wave

Kors J. A et al., 1990 [13] Distance Measure D = 1
K ∑K

k=1
|Vk−V∗k |
|Vk |

Hyttinen J et al., 1995 [14]

Pearson Correlation Coe f f icient ={
∑N

i=1 ŷ [i]∗y [i]

(∑N
i=1 y [i]2∗∑N

i=1 ŷ [i]2)
1
2

}

Guillem MS et al., 2006 [15]

open/Linear Regression

RMSE =√
∑N

i=1(y[i]−ŷ[i])2

N ; Pearson correlation coefficient

Dawson D et al., 2009 [16] R2 =

{
1− ∑N

i=1[ŷ[i]−y[i]]2

∑N
i=1[y[i]]

2

}
∗ 100.

This work PTB diagnostic ECG [3,4]. Open/LSTM RMS error; Correlation coefficient, R2, QRS
magnitude, T magnitude, and Spatial QRS-T angle

Several studies have used closed data sets that are unavailable to other researchers.
We used the PTB diagnostic ECG repository for this study [3,4].

The Root Mean Square (RMS) and correlation coefficient are the most commonly
reported metrics used to evaluate the error between generated or derived ECG compared
to the ground truth waveform. In the literature, R-squared is used. Table 2 includes the
definitions and equations of these metrics. Some clinically relevant VCG-derived parame-
ters can also be compared between the derived ECG leads and the ground truth waveform.
Therefore, the RMS error, correlation coefficient, R2, QRS amplitude or magnitude, T wave
amplitude or magnitude, and spatial QRS-T angle form a complete assessment.

The coefficients of the transformations reported in the literature are presented in
Table S1 in the Supplementary Materials.

2. Materials and Methods
2.1. Experimental Setup

We had previously presented the methodology of training a generalized model and
then applying transfer learning for a different problem, which was for the S12 lead ECG
derivation from a subset of leads, namely Lead II, V2, and V6 [25]. However, in this paper,
we evaluate the performance of the transformations from S12 lead to Frank XYZ lead. We
present the methodology here for the convenience of the reader. All data analysis programs
and applications were implemented using MATLAB 2021a Update 5 version 9.10.0.1739362
(MathWorks Inc., Natick, MA, USA) on a system with an Intel processor (i7-7820X), RTX
3090 graphics processing unit (NVIDIA Corp., Santa Clara, CA, USA), and 32 GB of RAM.

2.1.1. Source of Data and Data Preparation

The PTB ECG database available on Physionet [3,4] contains fifteen lead ECGs sampled
at 1 kHz from 249 patients. Some patients have multiple records, bringing the total number
of ECGs to 549. Figure 5 plots the histograms that summarize the data set’s characteristics.

This data set contains only one diagnosis per patient. As shown in Figure 5, a large
proportion of the data set is MI patients and healthy controls.

The ECG signals were band pass filtered using a second order Butterworth filter with
a passband from 0.05 Hz to 45 Hz, which is the bandwidth used for long-term rhythm
monitoring according to AAMI standards [26]. Following filtering and suppression of
frequencies beyond 40 Hz, the signal was down sampled using decimation to avoid aliasing
effects. First, ECG signal content in adults was below 100 Hz [26], so 200 Hz satisfied the
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Nyquist rate requirements to avoid aliasing. Second, lower sampling rates reduced the
amount of data so iterations could be faster. Figure 6 shows an example of a recording from
the data set before and after applying the above-stated data preparation steps. The data
processing steps cause no visible distortion.
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Three recordings were removed from the data set because of missing data or com-
plete data corruption by noise. Table 3 lists them and the reason for exclusion. 
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Data augmentation was performed using the sliding window method as used in [12]. 
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17 s solely for formatting and initial review purposes for the S12 leads. We required 12 s 
of data to chart S12 in a standard clinical ECG format. We also had symmetrically cropped 
2.5 s of data on both ends of each 17-s-long segment so that we could be consistent across 
all segments. The beginning and end of several records had settling noise, such as baseline 
wander or powerline noise, so we removed these segments during data preparation. The 
16 s overall was chosen to maximize overlap and number of training samples available 
following similar approaches in the literature that showed good performance using 
LSTM. 

2.2. Neural Network Architecture 
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consisted of a cell state that was updated upon each timestep of input presented to the 
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Three recordings were removed from the data set because of missing data or complete
data corruption by noise. Table 3 lists them and the reason for exclusion.

Table 3. List of recordings that were excluded due to low signal quality or no signal.

Rejected Recording Reason for Exclusion

Record 291 from patient 095 V1 lead missing
Record 537 from patient 285 No ECG data
Record 453 from patient 220 Lead III data missing

2.1.2. Personalized Training Data Preparation

Data augmentation was performed using the sliding window method as used in [12].
Each sliding window was 17 s, and the overlap size was 16 s. We chose a window size of
17 s solely for formatting and initial review purposes for the S12 leads. We required 12 s of
data to chart S12 in a standard clinical ECG format. We also had symmetrically cropped
2.5 s of data on both ends of each 17-s-long segment so that we could be consistent across
all segments. The beginning and end of several records had settling noise, such as baseline
wander or powerline noise, so we removed these segments during data preparation. The
16 s overall was chosen to maximize overlap and number of training samples available
following similar approaches in the literature that showed good performance using LSTM.

2.2. Neural Network Architecture

As mentioned earlier in Section 1.2, we used LSTM neural networks to learn a transfer
function from S12 to Frank XYZ. The principal constituents of the LSTM network were
the input gate (i), forget gate ( f ), and output gate (o). In addition, each LSTM network
consisted of a cell state that was updated upon each timestep of input presented to the
network.

The LSTM cell is a type of recurrent neural network. The output at time t− 1 influences
the output at time t. Figure 7 presents a depiction of a single LSTM cell.
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Figure 7. Depiction of the computation occurring in a unit LSTM cell.

The training process for the LSTM neural network involved a standard four-step
sequence: forward propagation, cost computation, backward propagation, and weight
update. This process was repeated for each item in the training set multiple times. The
loss function was the mean squared error without normalization of the number of output
dimensions or the number of ECG channels. Weight updates were performed using Adam
optimizer [27].

loss =
1

2S ∑S
i=1 ∑R

j=1

(
ŷij − yij

)2 (1)
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where S was sequence length of each ECG channel, R equaled the number of ECG channels
in the output, ŷ was the instantaneous estimated output, and y was the instantaneous
actual sample of ECG.

The LSTM network required selection of the following list of hyperparameters and
architecture specifications prior to training—number of layers, number of hidden units
per layer, learning rate, minibatch size, learning rate schedule (i.e., periodic changes as
training progresses or fixed with no changes), and finally, the weight optimizer parameters—
momentum coefficient (β1) and root mean square (RMS) propagation coefficient (β2).

The LSTM network architecture requires the specification of a list of hyperparameters.
Bayesian optimization (BO) is a global optimization approach that is preferred in the
literature for computationally intensive functions like the training of neural network [28].

2.3. Network Training Options

The 546 available records were split 80/20 between training and testing. The training
set had 437 records, and the test had 109. Network training was performed over 100 epochs
for all networks, including the personalized networks.

BO did not include number of layers as an optimizable variable, so we were able
to infer the meaning of the number of layers in a controlled way rather than as part of a
probabilistic search like BO. Therefore, independent hyperparameter tuning was performed
for 1- through 5-layer networks and the results were compared across the number of layers
to understand the impact of multiple LSTM layers on performance.

Hyperparameter Optimization Using BO

BO was used to find the optimal combination of values for the hyperparameters
needed for the LSTM networks. The application method of BO included three key elements:

1. A Gaussian Process Model ( Q( f |x, y) )—final validation RMSE was the objective
function f (x). The kernel function for the model was ARD Matérn 5/2;

2. A procedure for updating ( Q( f |x, y) ) after each iteration;
3. An acquisition function a(x) that was ‘expected improvement’ [29].

(Expected Improvement)EI(x, Q) = EQ

[
max

(
0, µQ

(
xOptimal

)
− f (x)

)]
(2)

where µQ

(
xOptimal

)
was the minimum of the posterior mean and xOptimal was the location

of this minimum in hyperparameter space. To boost the inclination for sampling x and
prevent over-sampling of a region within the hyperparameter space around a local min-
imum of x, another criterion was added in addition to the one used to select a(x). This
condition was implemented as an additional restriction when choosing the subsequent x for
evaluation. A candidate x had to satisfy the criteria in (3) to be selected as the subsequent
point to be evaluated.

σf (x) ≥ 0.8 ∗ σ (3)

where σf (x) represented the standard deviation of the posterior objective function at x and
σ the additive noise’s posterior standard deviation.

The optimizable variables or the hyperparameters had to be defined in terms of
bounds and the type of transformation to be applied prior to sampling. Table S2 in
the Supplementary Materials lists the hyperparameters optimized for networks ranging
from 1-layer to 5-layer. For each objective function evaluation, networks were trained for
100 epochs to allow adequate iterations to reach the lowest final RMSE.

2.4. Training Personalized Networks

Transfer learning is the process of further training a pre-trained neural network using
a different data set or subset of data [30]. We trained a personalized neural network for
each patient using transfer learning with the optimal network architecture and hyperpa-
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rameter combinations found by BO. The data set had 549 ECG recordings from 290 patients,
averaging 200 s per recording, with a few patients having only 100 s of data.

As described in Section 2.1.2, network training was performed over 100 epochs with
personalized data.

2.5. Evaluation of Extracted VCG Parameters

As described previously in Section 1.1, three VCG extracted parameters—peak QRS
magnitude, peak T wave magnitude, and spatial QRS-T angle—were of diagnostic im-
portance. These parameters were computed from the actual Frank XYZ leads and the
derived Frank XYZ leads from all the transformations. The algorithm for calculating these
parameters began with the detection of the R wave of the ECG in the Vx lead. The QRS
duration and the R wave durations were defined relative to the corresponding RR interval,
as depicted in Figure 8.
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The peak magnitudes of QRS were calculated as the maximum of the L2 norm of (Vx,
Vy, Vz) within the QRS duration time window. Similarly, the maximum within the T wave
duration time window was the peak T wave magnitude. The QRS-T angle was computed
using Equations (4) through (6).

|QRSarea| =
√
(QRSx)

2 +
(
QRSy

)2
+ (QRSz)

2 (4)



Eng 2023, 4 1346

|Tarea| =
√
(Tx)

2 +
(
Ty
)2

+ (Tz)
2 (5)

Mean Spatial QRS− T angle = cos
(

QRSxTx + QRSyTy + QRSzTz

|QRSarea||Tarea|

)−1
(6)

where QRSx, QRSy, and QRSz were the area under the curve of the QRS complex in the
X, Y, and Z leads, respectively, and Tx, Ty, and Tz were the area under the curve of the
T wave in the X, Y, and Z leads, respectively. Several possible integration methods (for
example, the Trapezoidal rule, the Simpson’s rule, or the Simpson’s 3/8) could be used to
calculate the area [31]. In this implementation, we used the trapezoidal rule. We compared
the extracted parameters using Pearson’s correlation coefficient and Bland Altman limits of
agreement.

3. Results

As part of the BO experiment, we trained 250 neural networks: 50 networks each for 1-
through 5-layer networks.

Figure 9 shows the overall results of the BO for 1-to-5-layer neural networks to trans-
form ECG leads from S12 to Frank XYZ leads. The following were the set of hyperparame-
ters that resulted in the optimal Final RMSE: Number of Hidden Units = 47; Mini Batch
Size = 27; Learning rate schedule = Piecewise; β1 = 0.90025; β2 = 0.90035; and Learning
Rate = 0.062561.
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Figure 9. Results of Bayesian Optimization for 1-, 2-, 3-, 4-, and 5-Layer networks to transform
Standard 12-lead to Frank XYZ.

The 1-layer network was found to have the lowest validation RMSE (0.0955 mV).
Overall, there is an insignificant difference between the RMSE across the number of layers.
The best RMSE and the worst RMSE differ by only 5 µV.
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3.1. Comparison of Performance Metrics

The metrics for quantitative comparison of waveforms in this study were RMSE, R2,
and Pearson correlation coefficient. Table 4 provides the results for all the methods of
transformation implemented in this study.

Table 4. Performance and error metrics for comparison of actual VCG and derived VCG.

Method Lead RMSE Mean ± std (µV) R2 Mean ± std (µV)
Correlation Coefficient

Mean ± std (µV)

Bjerle quasi-orthogonal
Vx 67.21 ± 59.68 76.91 ± 34.72 0.91 ± 0.14
Vy 145.51 ± 114.00 −6.12 ± 60.38 0.90 ± 0.15
Vz 108.90 ± 100.54 41.30 ± 60.08 0.81 ± 0.20

Dawson control
Vx 34.65 ± 41.77 96.00 ± 9.33 0.98 ± 0.06
Vy 46.67 ± 43.95 83.53 ± 34.44 0.94 ± 0.11
Vz 46.08 ± 16.34 85.19 ± 14.48 0.94 ± 0.06

Dawson post-MI
Vx 32.50 ± 43.01 88.87 ± 26.42 0.96 ± 0.08
Vy 37.93 ± 56.19 84.54 ± 27.17 0.92 ± 0.21
Vz 49.24 ± 42.21 79.79 ± 25.53 0.92 ± 0.14

General LSTM Model
S12→ XYZ

Vx 36.76 ± 56.04 92.82 ± 16.87 0.97 ± 0.09
Vy 38.08 ± 51.57 86.60 ± 27.40 0.93 ± 0.14
Vz 53.98 ± 81.02 83.24 ± 22.75 0.94 ± 0.11

Guillem
Vx 53.14 ± 70.52 88.87 ± 15.38 0.96 ± 0.07
Vy 66.87 ± 74.99 73.06 ± 34.71 0.87 ± 0.23
Vz 69.24 ± 62.15 68.98 ± 38.38 0.92 ± 0.12

Hyttinen
Vx 468.15 ± 411.65 −214.80 ± 137.96 −0.26 ± 0.48
Vy 378.53 ± 292.08 −176.77 ± 140.56 0.33 ± 0.47
Vz 283.42 ± 283.15 −164.97 ± 140.74 −0.18 ± 0.47

Inverse Dower
Vx 918.51 ± 594.24 −384.11 ± 93.65 0.81 ± 0.26
Vy 493.56 ± 388.43 −351.66 ± 96.28 0.84 ± 0.20
Vz 603.08 ± 418.76 −334.54 ± 97.95 0.92 ± 0.12

Kors quasi-orthogonal
Vx 64.13 ± 57.08 76.55 ± 40.03 0.91 ± 0.14
Vy 66.69 ± 70.20 68.60 ± 43.75 0.89 ± 0.20
Vz 103.74 ± 99.84 43.57 ± 61.47 0.82 ± 0.20

Kors regression-related
Vx 42.87 ± 64.66 90.85 ± 19.77 0.97 ± 0.07
Vy 49.39 ± 57.39 78.55 ± 39.98 0.92 ± 0.17
Vz 73.94 ± 58.37 62.79 ± 47.35 0.91 ± 0.14

Personalized LSTM
Model S12→ XYZ

Vx 24.10 ± 53.10 96.13 ± 16.87 0.98 ± 0.06
Vy 26.28 ± 53.42 92.97 ± 15.78 0.96 ± 0.09
Vz 30.79 ± 89.51 95.32 ± 11.43 0.98 ± 0.07

Personalized Linear
Regression S12→ XYZ

Vx 28.71 ± 79.29 94.46 ± 17.63 0.97 ± 0.12
Vy 27.65 ± 33.81 89.61 ± 19.60 0.95 ± 0.10
Vz 34.07 ± 32.33 87.87 ± 24.26 0.94 ± 0.14

3.2. Comparison of Extracted Diagnostic Parameters

As described in Section 2.5, three diagnostic features of the VCG waveform were
computed from the actual and derived XYZ waveform data. The features computed from
the actual data are treated as actual measurements, and those computed from the derived
data are treated as measurements from a test device or methodology. In this case, the
methodology is the transformation of ECG leads through a general and patient-specific
personalized model. The metrics used for comparison are Pearson’s correlation coefficient
and the Bland-Altman limits of agreement [32]. We further present the effect size for
comparison of VCG parameters from each transformation method and actual VCG. The
effect size metrics include Cohen’s U1, U3 [33], and common language effect sizes [34]. We
also present t-test results with t-statistic and the associated p-value. The t-test p-values
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in this case should be greater than 0.05 if we are to accept the null hypothesis that the
difference in means is not significant (i.e., the transformation method yielded results for
VCG parameters that were comparable or similar to those obtained from the actual VCG).

3.2.1. Peak QRS-Loop Magnitude

The personalized models showed the highest correlation coefficient values and the
smallest limits of agreement, indicating that the derived peak QRS magnitudes were closest
to the values computed from the actual data. Table 5 lists the correlation coefficients for the
different transformation methods in descending order along with the statistical measures of
comparison and effect sizes. Table 6 presents the Bland–Altman limits of agreement between
QRS-loop magnitudes extracted from actual and derived VCG waveforms. Figure 10
presents the Bland-Altman plots for QRS-loop magnitude comparison.

Table 5. Lists transformation methods and the correlation between QRS-loop magnitudes extracted
from actual and derived VCG waveforms.

Method Correlation t-Statistic t-Test p Value Cohens U1
[95% CI]

Cohens U3
[95% CI]

Common Language
Effect Sizes

[95% CI]

Personalized
LSTM S12 to XYZ 0.9985 0.22 0.8251 0.0027

[0.0018, 0.0073]
0.4945

[0.4890, 0.5073]
0.5038

[0.5024, 0.5052]

LSTM S12 to XYZ 0.9616 1.12 0.2649 0.0055
[0.0027, 0.0110]

0.4670
[0.4451, 0.4872]

0.5190
[0.5125, 0.5263]

Personalized
Linear

Regression S12 to
XYZ

0.9484 −0.30 0.7643 0.0027
[0.0018, 0.0073]

0.5000
[0.4817, 0.5266]

0.4949
[0.4872, 0.5018]

Kors regression-
related 0.9283 −2.97 0.0030 0.0018

[0.0018, 0.0165]
0.5897

[0.5568, 0.6145]
0.4494

[0.4390, 0.4592]

Guillem 0.8934 2.46 0.0142 0.0082
[0.0037, 0.0137]

0.4579
[0.4286, 0.4908]

0.5419
[0.5319, 0.5533]

Kors Quasi-
orthogonal 0.8701 −2.42 0.0158 0.0046

[0.0018, 0.0101]
0.5440

[0.5128, 0.5879]
0.4588

[0.4474, 0.4713]

Bjerle Quasi-
orthogonal 0.8467 −8.11 <0.001 0.0064

[0.0037, 0.0211]
0.6703

[0.6374, 0.7051]
0.3643

[0.3492, 0.3776]

Hyttinen 0.8408 −20.36 <0.001 0.1200
[0.1067, 0.2184]

0.9542
[0.9359, 0.9707]

0.1918
[0.1407, 0.2345]

Inverse Dower 0.7934 −46.67 <0.001 0.5668
[0.5504, 0.8755]

1.0000
[1.0000, 1.0000]

0.0229
[0.0151, 0.0311]

3.2.2. Peak T-loop Magnitude

The personalized models show the highest correlations and the smallest limits of agree-
ment. The generalized models perform comparably to the better performing transforms
from the literature. Table 7 shows the methods’ respective correlation coefficients sorted
in descending order along with the statistical measures of comparison and effect sizes.
Table 8 presents Bland–Altman Limits of Agreement between the peak T-loop magnitudes
computed from the actual VCG waveforms and the derived waveforms across different
methods of derivation. Figure 11 presents the Bland -Altman plots for the comparison of
Peak T-loop magnitude.
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Table 6. Lists transformation methods and the Bland–Altman limits of agreement between QRS-loop
magnitudes extracted from actual and derived VCG waveforms.

Method Mean
Differences

Limits of
Agreement

Personalized LSTM S12 to XYZ 0.0068 −0.0483 to 0.0618

LSTM S12 to XYZ 0.0334 −0.2397 to 0.3065

Personalized Linear Regression S12 to XYZ −0.0094 −0.3392 to 0.3204

Kors Regression-Related −0.0907 −0.4650 to 0.2836

Guillem 0.0691 −0.3832 to 0.5215

Kors Quasi-Orthogonal −0.0786 −0.6264 to 0.4691

Bjerle Quasi-orthogonal −0.3125 −1.1248 to 0.4997

Hyttinen −1.3295 −3.3853 to 0.7264

Inverse Dower −4.2346 −7.5364 to −0.9327
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Table 7. Correlation coefficients between the peak T-loop magnitudes computed from the actual VCG
waveforms and the derived waveforms across different methods of derivation.

Method Correlation t-Statistic t Test p Value Cohens U1
[95% CI]

Cohens U3
[95% CI]

Common Language
Effect Sizes

[95% CI]

Personalized
LSTM S12 to XYZ 0.9988 0.43 0.665 0.0018

[0.0018, 0.0064]
0.4927

[0.4817, 0.5000]
0.5074

[0.5061, 0.5088]

Personalized
Linear Regression

S12 to XYZ
0.9861 −0.09 0.924 0.0018

[0.0018, 0.0064]
0.5092

[0.4963, 0.5311]
0.4984

[0.4944, 0.5024]

LSTM S12 to XYZ 0.9706 1.53 0.126 0.0018
[0.0018, 0.0064]

0.4744
[0.4524, 0.4945]

0.5261
[0.5196, 0.5332]

Kors regression-
related 0.9483 −2.90 0.004 0.0055

[0.0027, 0.0119]
0.5842

[0.5440, 0.6117]
0.4506

[0.4408, 0.4591]

Guillem 0.9192 0.33 0.738 0.0046
[0.0027, 0.0133]

0.4982
[0.4634, 0.5330]

0.5057
[0.4956, 0.5152]

Inverse Dower 0.9012 −31.39 <0.001 0.6026
[0.5870, 0.7326]

0.9982
[0.9945, 1.0000]

0.0896
[0.0749, 0.1039]

Kors Quasi-
orthogonal 0.8887 −2.37 0.018 0.0037

[0.0018, 0.0110]
0.5916

[0.5476, 0.6172]
0.4595

[0.4467, 0.4720]

Bierle Quasi-
orthogonal 0.8330 −8.43 <0.001 0.0082

[0.0046, 0.0247]
0.6905

[0.6630, 0.7271]
0.3592

[0.3410, 0.3770]

Hyttinen 0.8271 −15.94 <0.001 0.0330
[0.0256, 0.1081]

0.8901
[0.8645, 0.9185]

0.2476
[0.2059, 0.2800]

Table 8. Bland–Altman Limits of Agreement between the peak T-loop magnitudes computed from
the actual VCG waveforms and the derived waveforms across different methods of derivation.

Method Mean
Differences

Limits of
Agreement

Personalized LSTM S12 to XYZ 0.0049 −0.0137 to 0.0235

Personalized Linear Regression S12 to XYZ −0.0011 −0.0621 to 0.0600

LSTM S12 to XYZ 0.0169 −0.0719 to 0.1056

Kors Regression-Related −0.0338 −0.1565 to 0.0889

Guillem 0.0037 −0.1413 to 0.1487

Kors Quasi-Orthogonal −0.0265 −0.1974 to 0.1444

Bierle Quasi-orthogonal −0.1070 −0.3567 to 0.1427

Hyttinen −0.3398 −0.9754 to 0.2958

Inverse Dower −1.5289 −3.4052 to 0.3473

3.2.3. Mean Spatial QRS-T Angle

The personalized models show the highest correlations and the smallest limits of agree-
ment. The generalized models perform comparably to the better performing transforms
from the literature. Table 9 shows the methods’ respective correlation coefficients sorted
in descending order along with the statistical measures of comparison and effect sizes.
Table 10 presents Bland–Altman limits of agreement between the mean QRS and T-loop
spatial angle magnitudes computed from the actual VCG waveforms and the derived
waveforms across different methods of derivation. Figure 12 presents Bland-Altman plots
for comparison of spatial QRS-T angle.
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Table 9. Correlation coefficients between the mean QRS and T-loop spatial angle magnitudes computed
from the actual VCG waveforms and the derived waveforms across different methods of derivation.

Method Correlation t-Statistic t Test P Value
Cohens U1 Cohens U3 Common Language

Effect Sizes
[95% CI] [95% CI] [95% CI]

Personalized
LSTM S12 to XYZ 0.9956 −0.07 0.944

0.0027 0.5055 0.4988
[0.0018, 0.0064] [0.4890, 0.5156] [0.4966, 0.5010]

Personalized
Linear Regression 0.9746 0.21 0.836

0.0037 0.4908 0.5035
[0.0018, 0.0082] [0.4689, 0.5128] [0.4986, 0.5088]

LSTM S12 to XYZ 0.9461 −0.23 0.821
0.0027 0.4908 0.4961

[0.0018, 0.0101] [0.4615, 0.5165] [0.4878, 0.5044]

Kors
regression-related 0.9182 −1.79 0.074

0.0037 0.5238 0.4695
[0.0018, 0.0110] [0.4963, 0.5604] [0.4597, 0.4792]

Guillem 0.8672 −3.18 0.002
0.0018 0.5623 0.4458

[0.0018, 0.0092] [0.5366, 0.6044] [0.4329, 0.4586]

Inverse Dower 0.8584 −0.11 0.911
0.0027 0.5092 0.4981

[0.0018, 0.0092] [0.4799, 0.5522] [0.4847, 0.5107]

Hyttinen 0.851 1.2 0.23
0.0046 0.4762 0.5205

[0.0027, 0.0137] [0.4377, 0.5037] [0.5084, 0.5328]

Bjerle
Quasi-orthogonal 0.812 −2.78 0.006

0.0027 0.5641 0.4527
[0.0018, 0.0110] [0.5348, 0.6117] [0.4378, 0.4677]

Kors
Quasi-orthogonal 0.8013 −2.37 0.018

0.0027 0.5623 0.4596
[0.0018, 0.0096] [0.5348, 0.6035] [0.4434, 0.4740]
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Table 10. Bland–Altman limits of agreement between the mean QRS and T-loop spatial angle
magnitudes computed from the actual VCG waveforms and the derived waveforms across different
methods of derivation.

Method Mean
Differences

Limits of
Agreement

Personalized LSTM S12 to XYZ −0.1760 −7.7905 to 7.4386

Personalized Linear Regression S12 to XYZ 0.5202 −17.8583 to 18.8987

LSTM S12 to XYZ −0.5558 −26.7171 to 25.6055

Kors Regression-Related −4.4134 −36.7731 to 27.9462

Guillem −7.9564 −49.6889 to 33.7760

Inverse Dower −0.2839 −44.0710 to 43.5032

Hyttinen 3.0254 −41.5211 to 47.5720

Bjerle Quasi-orthogonal −6.8745 −56.0440 to 42.2950

Kors Quasi-Orthogonal −6.0598 −58.3992 to 46.2796
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4. Discussion

The findings in this study indicate that personalized transformation models are prefer-
able, but there are limitations to interpreting the results and practical considerations. The
data set for this research is widely available, supporting further research and reproducibility
of these results. However, the amount of data available is restricted to a small population
that is not geographically or ethnically diverse. There is potential for overly optimistic
results obtained in this study due to this aspect. Future studies should evaluate additional
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data sources from other geographic regions to confirm that these inferences are valid. Fur-
thermore, there is only one diagnosis available per patient as the reason for hospitalization.
ECG and VCG interpretations are unavailable. Comparisons on diagnostic yield and out-
comes will require specific waveform interpretations, as well as longitudinal follow-up with
patients so that we can evaluate how the clinical management of patients were impacted
by the availability of VCG in addition to S12. In the absence of this information within the
current data set, we could only evaluate the performance in terms of quantitative measures.
We have presented effect sizes as statistical measures that could help with the evaluation
of various transformation methods. However, there is no reasonable or equivalent com-
parison available in the literature thus far regarding an absolute interpretation of these
results. The effect sizes can be compared across transformations in this study and reveal
that generalized LSTM, personalized LSTM, and personalized linear regression perform
better than other methods in that they have the least effect sizes when compared to the
actual VCG in terms of values obtained for the VCG diagnostic parameters.

The findings indicate that personalized LSTM and personalized linear regression
methods lead to nearly identical results with marginally better performance for personal-
ized LSTM. Since the S12 leads cover the ventral plane of the body, it is plausible that the
association between S12 and at least X and Y leads of VCG are nearly linear so that they can
be derived using linear models. The comparisons between Z leads of VCG derived from
the methods reveal a larger difference than X and Y leads. A future avenue of research may
be to specifically explore Z-lead comparisons to understand if there is further scope for an
improvement of performance with other lead transformation methods.

It is possible that neural network architectures other than LSTM may lead to better
lead transformation performance. This study only explores LSTM and not the variants of
LSTM. The choice of LSTM for this work was based on recent findings in the literature
that demonstrated the use of this architecture to obtain acceptable results for the problem
of lead transformations [12]. Alternatively, this work explores personalization and its
impact on lead transformation performance and LSTM architecture was evaluated. Several
architectures can be explored in this manner for future research.

We had chosen to down sample and filter the ECG waveforms as part of the prepro-
cessing step. There could be different findings if the ECGs were retained at the 1 kHz
sampling rate and without filtering. Since the entire data set was preprocessed in the same
manner, and all transformation methods were evaluated on the same data, there is no
expectation that there would be bias in the results presented herein. However, an empirical
evaluation of the impact of pre-processing may be beneficial to explore in a future study
with the evaluation of sampling rate and signal conditioning approaches as the goal.

From a practical perspective, implementing the personalized models would require
acquiring 15-lead ECGs for each patient, which is not currently part of standard care and
would result in added costs and work for healthcare professionals. Furthermore, the data
available in this data set is not longitudinal because no recordings span a time frame before
and after a significant cardiovascular event. Longitudinal data of this kind must be used
to validate the hypothesis LSTM networks as trained have adequately inferred the lead
transformations following the subject’s anatomy.

Regarding the evaluation involving the extraction of VCG parameters, there is an
underlying assumption that the algorithms were accurate. Therefore, we did not evaluate
the performance of the algorithms alone. The use of the same algorithm for all data
eliminates potential biases in comparisons, but further testing against a labeled VCG data
set is necessary to assess the performance of the algorithms.

5. Conclusions

The personalized transformations performed better than generalized transformations
in waveform comparisons and error performance of extracted diagnostic parameters from
VCG waveforms. The use of personalized transformations for the derivation of VCG
from S12 has the potential to improve and augment the diagnostic yield and accuracy of
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a S12 interpretation. The differences between personalized LSTM and linear regression
transformation were marginally in favor of personalized LSTM. There were no statistically
significant differences in the performance between them. A study focused on outcomes
for patients and diagnostic yield is needed to evaluate the clinical impact of using such
an approach for the derivation of VCG from S12 and using it as part of the patient man-
agement plan for a broader population. On balance, the results in this study suggest that
personalization should be the preferred approach for ECG lead derivations.
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