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Abstract: Numerical simulations were generated to investigate the response of a floating airport
to airplane movement using the nonlinear shallow water equations of velocity potential for water
waves interacting with a floating thin plate. First, in the 1D calculations, the airplanes were B747
and B737. At touch-and-go, when the airplane speed is closer to the water wave speed, even B737
produced large waves based on the resonance. The impacts due to both the touchdown and leaving
of the airplanes generated other forward and backward waves. At landing, when the airplane speed
approached the water wave speed, a forced wave was generated and amplified, with many free
waves ahead. At takeoff, a wave clump, generated shortly after starting to run, propagated in front
of the airplanes. Although the wave height increased from superposition with the reflected waves,
the wave reflectance was reduced by lowering the flexural rigidity near the airport edge. Second, in
the 2D calculations, B787 performed landing and takeoff. When the still water depth is shallower, a
grid-like pattern was formed at the floating airport and appeared more remarkably in landing than
in takeoff. The effective amplification occurred from a sufficient load applied when the airplane
speed approached the water wave speed. Furthermore, the maximum upslope gradient beneath the
airplane increased as the still water depth decreased, and it was larger in takeoff than in landing.

Keywords: very large floating structure; VLFS; offshore airport; landing; takeoff; touch-and-go;
hydroelasticity; resonance; wave reflection

1. Introduction

A very large floating structure, a VLFS, which is designed to be an offshore airport,
storage facility, wind/solar power plant, evacuation area in disaster events, or others, has
advantages such as towability and environmental friendliness due to the ability of seawater
to flow under the structure. In recent years, techniques to obtain sustainable energy by
converting water wave energy using floating flexible structures have also been devised,
e.g., [1,2]. Such floating structures exist at sea, i.e., on a fluid, and because of their large
size, they deform and vibrate based on hydroelasticity. Therefore, to design a VLFS, it is
necessary to understand the interaction between the oscillation of the structure and the
motion of the fluid. For the design of a flexible VLFS interacting with wind waves including
typhoon-driven waves, various models have been developed, e.g., [3–9].

Even in nature, the interaction between flexible platforms and a fluid can be observed
when ice plates float on the sea surface [10]. The effects of floating ice in different forms on
water waves have been studied [11–14], and the response of an ice plate to a moving load
on it has also been investigated [15–17]. These results can be referred to when designing
a VLFS.

Regarding the response of a VLFS to long waves including tsunamis, the Boussinesq-
type equations for surface waves were solved numerically using a finite difference method
(FDM) to examine the relationship between the bending moment and flexural rigidity of a
floating thin plate on a progressing solitary wave [18]. The interaction of a thin plate with

Eng 2023, 4, 1236–1264. https://doi.org/10.3390/eng4020073 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng4020073
https://doi.org/10.3390/eng4020073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0009-0004-8427-4582
https://doi.org/10.3390/eng4020073
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng4020073?type=check_update&version=2


Eng 2023, 4 1237

an incident solitary wave was also investigated by coupling a finite element method (FEM)
and boundary element method (BEM) in two vertical dimensions [19]. This interaction was
also reproduced by hydraulic experiments, and the solitary waves were disintegrated by
the floating thin plate, as their nonlinearity was strong [19]. The results—the wave height
of the incident waves decreased because of the generation of floating-body waves—suggest
that the wave height of a huge tsunami decreases after propagating through an offshore
VLFS. The tsunami-height reduction using a VLFS was discussed based on the numerical
simulation of water waves interacting with a floating thin plate using an FDM [20].

When density stratification is developed under a floating structure, its oscillation
may generate internal waves, leading to a change in seawater salinity and temperature,
especially in coastal environments, through the propagation, shoaling, and breaking of
the internal waves. To study the response of a floating thin plate in a coexisting field of
surface and internal waves, a vertical two-dimensional problem was formulated with the
framework of a linear potential theory [21]. The surface/internal waves due to a moving
load on a VLFS in two vertical dimensions were examined using an FDM, considering both
the nonlinearity and dispersion of the water waves [22].

One of the artificial loads on a VLFS is the movement of airplanes on a floating
airport, and cases of an airplane moving on a floating airport have also been studied.
For example, the drag against an airplane taking off from a floating airport of infinite
length was evaluated numerically, using the Fourier transform theory, for different flexural
rigidities of the airport [23]. Conversely, the transient response of a floating airport under
the load of a landing airplane was studied using an FEM [24]. In the coexistence field of
linear waves and a current, a BEM was applied to simulate the thin plate response to a
moving weight [25]. Under the combined loads of water waves and an airplane landing
or taking off, the time variation of an airport profile and the drag induced on an airplane
by the deformed runway were obtained using both an FEM-scheme-based method and
Wilson’s θ method [26]. The horizontally two-dimensional linear response of a floating
airport to the landing and takeoff of an airplane was investigated using the time-domain
mode expansion method [27]. Moreover, a combination of a BEM and moving element
method (MEM) was utilized to study the hydroelastic response of floating composite plates
subjected to moving loads [28].

In the present paper, an offshore airport is assumed as a floating thin plate, and its
oscillation due to airplane movement—touch-and-go, landing, and takeoff—is discussed
based on numerical simulations with an FDM. The governing equations were the nonlinear
shallow water equations on velocity potential, which were obtained by reducing the
equations obtained based on a variational principle for water waves, considering the
flexibility of floating thin plates [29]. In the numerical calculations, the flexural rigidity
is given at the location of a thin plate to express the thin plate covering part of the water
area. With this method, it is possible to consider the reflection and transmission of waves
at the edges of the thin plate, so we also discuss the reflection and transmission of floating-
body waves, which were not discussed for infinite length airports. First, we investigate
the response of a very large floating airport to the movement of two sizes of jetliners in
one-dimensional problems. Thereafter, we discuss horizontally two-dimensional problems
of the behavior of the floating airport due to the movement of a medium-sized jetliner.

2. Numerical Calculation Method
2.1. Governing Equations

The illustration in Figure 1 is our schematic for a system consisting of multilayer fluids
and thin plates, where the fluid layers and thin plates are represented as the i-layers and
i-plates (i = 1, 2, . . . , I) from top to bottom, respectively.
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Figure 1. Schematic for a system consisting of multilayer fluids and thin plates.

We assume that none of the fluids mix even in motion without plates, and the density
ρi (ρ1 < ρ2 < . . . < ρI) of the i-layer is spatially uniform and temporally constant in each
layer. The thickness of the i-layer is hi(x) in still water, where x is the coordinate in the
horizontal plane, namely (x, y). The origin of the vertical axis z is located at the top surface
of the system in the stationary state, and the positive direction of z is vertically upward.
The elevations of the lower and upper interfaces of the i-layer are expressed by z = ηi,0 (x, t)
and z = ηi,1 (x, t), respectively, and the pressures at the lower and upper interfaces of the
i-layer are defined as pi,0 (x, t) and pi,1 (x, t), respectively.

The thin plate touching the upper interface of the i-layer is called the i-plate. The
density and vertical width of the i-plate are mi and δi, respectively. When mi, δi, and the
flexural rigidity of the i-plate are zero, the plate yields no resistance to fluid motion, where
two immiscible fluids touch each other directly without any plate. Both surface tension
and capillary action are ignored, and friction is also ignored for simplicity. Moreover, the
energy attenuation inside the thin plates is not considered.

We assume that the fluids are inviscid and incompressible, and fluid motion is irrota-
tional, resulting in the existence of velocity potential φi in the i-layer, and φi is expanded
into a power series of z with weightings fi,α as

φi(x, z, t) =
Ni−1

∑
α=0

[ fi,α(x, t)·zα], (1)

where Ni is the number of terms for an expanded velocity potential in the i-layer.
In the i-layer, when both the displacement of one interface, z = ηi,1−j(x, t) (j = 0 or 1),

and the pressure on the other interface, pi,j(x, t), are known, the unknown variables are the
velocity potential φi(x, z, t) and interface displacement ηi,j(x, t). Then, the definition of the
functional for the variational problem in the i-layer, Fi, is as follows [29]:

Fi

[
φi, ηi,j

]
=
∫ t1

t0

x

A

∫ ηi,1

ηi,0

[
∂φi
∂t

+
1
2
(∇φi)

2 +
1
2

(
∂φi
∂z

)2
+ gz +

pi,j + Pi + Wi

ρi

]
dz dA dt, (2)

where ∇ = (∂/∂x, ∂/∂y) is a horizontal partial differential operator, and the gravitational
acceleration g is 9.8 m/s2. The plane A, which is the orthogonal projection of the object
domain on to the x-y plane, is assumed to be independent of time.

In comparison with the functional referred to in [30] for the rotational motion of a
fluid, Equation (2) introduces an additional term of the integral of (pi,j + Pi + Wi)/ρi as an
interfacial pressure term, without the terms related to vorticity. Using the functional of [30],
after omitting the vorticity terms, the set of nonlinear equations for one-layer problems
without thin plates was derived by [31].

Pi and Wi in Equation (2) are expressed by

Pi = ∑i−1
k=1[(ρi − ρk)ghk], (3)

Wi = ∑i
k=1(−mkgδk), (4)
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respectively, in the case of no buoyancy of the structures.
After substituting the velocity potential φi expanded in Equation (1) into Equation (2),

the Euler–Lagrange equations on ηi,j and fi,α are derived as

ηα
i,1

∂ηi,1
∂t
− ηα

i,0
∂ηi,0

∂t
+∇

[(
η

α+β+1
i,1 − η

α+β+1
i,0

)
∇ fi,β

]
− αβ

α + β− 1

(
η

α+β−1
i,1 − η

α+β−1
i,0

)
fi,β = 0, (5)

η
β
i,j

∂ fi,β

∂t
+

1
2

η
β+γ
i,j ∇ fi,β∇ fi,γ +

1
2

βγη
β+γ−2
i,j fi,β fi,γ + gηi,j +

pi,j + Pi + Wi

ρi
= 0 (j = 0 or 1), (6)

where the sum rule of product is adopted for subscripts β and γ. For example, f 2,3 is the
weighting of z3 in the 2-layer.

For long surface waves in one-layer problems without thin plates, the accuracy of the
above equations was investigated by [32]: when the maximum order of equations is 2n, the
order of error in the set of Equations (5) and (6) is σ4n+2, where σ is the representative ratio
of water depth to wavelength. Conversely, the order of error in the extended Green–Naghdi
equation [33] is σ2n+2. Therefore, especially when O(σ)� 1, the accuracy of the former is
significantly higher than that of the latter for n ≥ 1.

Regarding the i-plate, the horizontal length scale is assumed to be much larger than the
thickness of the thin plate, so the differences in curvature between the upper surface, neutral
plane, and lower surface of the thin plate are ignored. Therefore, the governing equation of
motion for the i-plate is the following classical equation to describe the oscillation of an
elastic thin plate as

miδi
∂2ηi,1

∂t2 + Bi∇2 ∇2ηi,1 + migδi + pi−1,0 − pi,1 = 0, (7)

where Bi is the flexural rigidity of the i-plate between the (i − 1)- and i-layers. Although
both the plate density mi and vertical width δi are assumed to be constant throughout the
i-plate for simplicity, the flexural rigidity Bi can be distributed along the thin plate.

When the representative values of wave height, wavelength, fluid depth, and density
are H, l, d, and ρ, respectively, the dimensionless quantities are

x∗ = x
l , y∗ = y

l , t∗ =
√

gd
l t, ∇∗ = l∇, ∂

∂t∗ =
(

∂
∂t

)∗
= l√

gd
∂
∂t ,

η∗i,e =
ηi,e
H , δ∗i = δi

H , m∗i = mi
ρ , B∗i = Bi

ρgl4 , p∗i,e =
pi,e
ρgd

, (8)

where e = 0 and 1.
We substitute Equation (8) into Equation (7) and obtain

ε2σ2m∗i δ∗i
∂2η∗i,1
∂t∗2

+ εB∗i ∇∗2∇∗2η∗i,1 + εm∗i δ∗i + p∗i−1,0 − p∗i,1 = 0, (9)

where ε = H/d and σ = d/l are the representative ratio of wave height to water depth and that
of water depth to wavelength, respectively. In a manner similar to that of [18], each layer is
assumed to be relatively shallow, so the orders of the parameters are O(ε) = O(σ2)� 1. Thus,
the first term on the left-hand side of Equation (9) can be ignored. Without this term, we
obtain the i-plate equation for the dimensional quantities as

Bi∇2 ∇2ηi,1 + migδi + pi−1,0 − pi,1 = 0. (10)

In the present paper, the interaction between surface water waves and a flexible
platform floating at the sea surface is discussed, so the velocity potential for the one layer is
described as φ(x, z, t) = fα zα. Thus, the unknown values are the weighting factors fα and
the surface displacement η1,1(x, t), which is simply described as ζ(x, t) for the horizontally
two-dimensional cases and η(x, t) for the one-dimensional cases.
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2.2. Numerical Method

The governing equations—Equations (5), (6), and (10)—were transformed to finite
difference equations and solved to study the interaction of surface water waves with a
floating thin plate. An implicit scheme to solve the present equations without thin plates
was developed by [34], in which the two-layer problems between two fixed horizontal
plates were solved to simulate one-dimensional propagations of internal waves. We applied
this scheme to the equations with a thin plate floating at the sea surface to simulate
the propagations of surface waves. This model has been applied for several numerical
simulations [20,22,35].

In the initial state at t = 0 s, the weighting coefficients fi,α(x, 0 s) of the expanded
velocity potential in Equation (1) were all zero, so the initial velocity was zero everywhere.
In this paper, the values are written without considering significant digits, although the
calculations were conducted using 64-bit floating-point numbers. In the present study, the
number of terms for the velocity potential expanded as in Equation (1), i.e., N1 = N was
one, so the governing equations were reduced to nonlinear shallow water equations for
velocity potential considering the flexural rigidity of a floating thin plate. The numerical
calculation method described above is also applicable in this case.

In order to verify the accuracy of this numerical model, the reproducibility of the
response of a floating thin plate is examined by comparing the results of numerical com-
putation and those of existing hydraulic experiments. A floating thin plate with a flexural
rigidity of 450 N·m2 was installed in a wave channel [19], as sketched in Figure 2.
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In the numerical computation, the computational domain is illustrated in Figure 3.
It should be noted that discretization in the z-axis direction is not performed because the
governing equations are vertically integrated equations.
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As depicted in Figure 4, the distribution of the flexural rigidity B was given at the
location of the structure floating at the water surface to express the thin plate covering part
of the water area.
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Figure 4. Distribution of the flexural rigidity at the surface of the computational domain depicted in
Figure 3.

The grid sizes and time interval were ∆x = ∆y = 5.0 × 10−2 m and ∆t = 2.5 × 10−5 s,
respectively. When a solitary wave is incident, Figure 5 presents the experimental and
numerical displacements ζ of the floating thin plate or water surface at x = 7.0 m and
14.5 m. Based on the results, it is confirmed that the surface displacements in the almost
one-dimensional wave propagation were simulated successfully.
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Figure 5. Surface displacements ζ at x = 7.0 m (a) and 14.5 m (b). The still water depth was 0.4 m and
the incident wave height was 0.02 m.

In the present study, we generated numerical calculations for one- and two-dimensional
propagations of surface waves. In the 1D calculations, we obtained surface waves gener-
ated by two sizes of airplanes with different weights at touch-and-go, takeoff, and landing.
When the hydroelastic runway is not so wide compared to the spacing of the aircraft’s
left and right landing gears, 1D wave propagation can be dominant. Conversely, in the
2D calculations, we obtained surface wave patterns for different water depths when a
medium-sized airplane lands at or takes off from a floating airport.

3. Calculation Conditions
3.1. 1D Calculations
3.1.1. Common Conditions

In the 1D calculations, an airport with a length of 5 km was floating at the sea surface
within 0.5 km ≤ x ≤ 5.5 km, and the still water depth h was uniform. An airplane ran on
the floating airport in the positive direction of the x-axis. The grid size ∆x was 20 m and
the time interval ∆t was 0.01 s.

We considered the movement of airplanes of two sizes—B747-400 and B737-800. The
B747 series airplanes, nicknamed “jumbo jet”, continued growth in sales from the 1990s
to the early 2000s, playing a leading role in long-haul international flights. In recent
years, however, for reasons such as energy saving, more compact airplanes have become
mainstream, including A320 and B737 jetliners, especially in the routes connecting domestic
regional cities. Figure 6 shows the photographs of airplane models for size comparison.

For simplicity, we call the B747-400 and B737-800 airplanes B747 and B737, respec-
tively, in this paper. The masses of B747 and B737 were set to 397,000 kgs and 79,000 kgs,
respectively, referring to the maximum takeoff weights [36]. The unit “kgs” is often used
for the mass of airplanes in aviation industry and is the same as “kg” in physics. In the 1D
calculations, the tire contact distances of both B747 and B737 were assumed to be 9.8 m,
considering the unit width of 1 m. In all 1D cases of touch-and-go, landing, and takeoff,
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B747 ran from x = 1 km to 4 km, whereas B737 ran from x = 1 km to 3 km, on the floating
airport. To simplify the conditions, we assumed that the point load due to the airplanes
was constant while the airplanes were running on the airport, unlike in the following
2D calculations.
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Figure 6. Photographs of the airplane models for size comparison. The upper model is B747-400
and the lower model is B737-800, which were produced by SkyMarks Models and Solaseed Air Inc.,
respectively. The length scale is 1/200.

3.1.2. Conditions for Touch-and-Go

In touch-and-go, an airplane lands on an airport, keeps running while preparing for
takeoff, and takes off from the runway. This is part of basic training called “circuits and
bumps”. In touch-and-go, both B747 and B737 were assumed to run at their constant
speeds. The calculation conditions for touch-and-go are listed in Table 1. The values of
flexural rigidity B were determined with reference to those obtained during the prototype
test at the Mega-Float airport [37]. It should be noted that the airport length of 15 km is an
unrealistic value set to ignore wave reflections at an edge of the airport.

Table 1. Calculation conditions for touch-and-go in the 1D calculations.

Case *

Airplane Airport Water Depth

Type
(Mass)

Running
Speed

Running
Distance Run Time Length L Flexural

Rigidity B h

GA-L1 B747-400 83 m/s 3 km 36.1 s 15 km 1 × 1011 N·m 10 m
GA-L2 (397,000 kgs) 10 m to 50 m
GA-S1 5 km 10 m, 20 m
GA-S2 1 × 1010 N·m 10 m
GB-L1 B737-800 78 m/s 2 km 25.6 s 15 km 50 m
GB-L2 (79,000 kgs) 10 m to 50 m
GB-S1 5 km 50 m

* In the case names, GA and GB indicate the touch-and-go of B747 and B737, respectively, and L and S indicate
that the airport is long and short, respectively.

3.1.3. Conditions for Landing

When an airplane lands on a floating airport, we assume that the airplane runs at a
constant deceleration on the airport. In 1D problems, we consider the cases in which an
airplane quickly shifts to taxiing when the running speed becomes sufficiently slow and
leaves the runway, heading for a terminal. Therefore, after the run time, both the running
speed and load of the airplane are assumed to be zero. The calculation conditions are listed
in Table 2.
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Table 2. Calculation conditions for landing in the 1D calculations.

Case *

Airplane Airport Water Depth

Type
(Mass)

Landing
Speed **

Running
Deceleration

Running
Distance

Run
Time Length L Flexural

Rigidity B h

LA-L B747-400 72 m/s 0.86 m/s2 3 km 83.7 s 15 km 1 × 1011 N·m 10 m
LA-S (397,000 kgs) 5 km
LB-L B737-800 1.3 m/s2 2 km 55.4 s 15 km 1 × 1010 N·m 50 m
LB-S (79,000 kgs) 5 km

* In the case names, LA and LB indicate the landing of B747 and B737, respectively, and L and S after hyphen
indicate that the airport is long and short, respectively. ** The landing speed is the airplane speed when the
airplane touches down at the airport.

3.1.4. Conditions for Takeoff

When an airplane takes off from a floating airport, we assume that the airplane runs
at a constant acceleration on the airport. In 1D problems, we consider the cases in which
an airplane plays a rolling start—the airplane starts running to take off immediately after
arriving at the starting point. Therefore, at the starting time, both the running speed and
load of the airplane are assumed to be zero. The calculation conditions are listed in Table 3.

Table 3. Calculation conditions for takeoff in the 1D calculations.

Case *

Airplane Airport Water Depth

Type
(Mass)

Takeoff
Speed **

Running
Acceleration

Running
Distance

Run
Time Length L Flexural

Rigidity B h

TA-L B747-400 83 m/s 1.15 m/s2 3 km 72.2 s 15 km 1 × 1011 N·m 10 m
TA-S (397,000 kgs) 5 km

TA-S-B 1 × 109 N·m to 50 m
1 × 1011 N·m

TB-L B737-800 78 m/s 1.52 m/s2 2 km 51.3 s 15 km 1 × 1010 N·m
TB-S (79,000 kgs) 5 km

* In the case names, TA and TB indicate the takeoff of B747 and B737, respectively, and L and S indicate that
the airport is long and short, respectively. ** The takeoff speed is the airplane speed when the airplane leaves
the airport.

3.2. 2D Calculations
3.2.1. Common Conditions

In 2D problems, we move a point load on a floating airport with a finite width. As
sketched in Figure 7, the computational domain covers the area of 0 km ≤ x ≤ 6 km and
0 km ≤ y ≤ 1 km, and an airport is floating at the sea surface within 0.5 km ≤ x ≤ 5.5 km
and 0 km ≤ y ≤ 0.5 km.

The perfect reflection condition was adopted along the x-axis, considering that the
phenomena are axisymmetric with respect to the x-axis when an airplane runs along the
x-axis. Therefore, the length and width of the airport were assumed to be 5 km and 1 km,
respectively.

The still water depth h was uniformly 10 m, 20 m, or 100 m in the computational
domain. The flexural rigidity of the airport, B, which was uniformly 1.0 × 1011 N·m2, was
given in the area covered by the airport, and it was possible to consider both the reflection
and transmission of waves at the edges of the floating airport, including the side edges.
The Sommerfeld open boundary condition was adopted at the lateral boundaries other
than the x-axis. The grid sizes and time interval were ∆x = ∆y = 20 m and ∆t = 2.0 × 10−4 s,
respectively.
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colored area. The perfect reflection condition is adopted along the x-axis, so the x-axis is the neutral
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At Point S, located at x = 1 km and y = 0 km, an airplane touches down for landing and starts running
for takeoff.

In the 2D problems, we selected a medium-sized passenger airplane, namely the B787-
8 Dreamliner, which we simply call B787. B787 can be operated with approximately 20%
less fuel than its predecessors, bringing the economy of large jetliners to the medium-sized
airplane market. The mass of B787, M, was set to 228,400 kgs, referring to the maximum
takeoff weight [36]. B787 touches down for landing and starts running for takeoff at Point S,
located at x = 1 km and y = 0 km in Figure 7, and runs on the floating airport in the positive
direction of the x-axis from Point S.

When normal stress ω is applied to square grids in the horizontal plane, we assume
that the distribution of the normal stress is a cone, the bottom of which is a circle of radius
∆x centered at a grid point. Therefore, the normal stress ω at the central grid point is
applied, satisfying

M = π∆x2ω/(3g). (11)

3.2.2. Conditions for Landing

B787 lands on a floating airport in Case LC, in which the landing speed is 75 m/s.
The deceleration is assumed to be constant during landing. To understand the phenomena
more clearly, we take an example with a larger value of deceleration, namely 3 m/s2, so
that the running distance and run time are 0.938 km and 25 s, respectively. The conditions
of Case LC are listed in Table 4.

Table 4. Calculation conditions in the 2D calculations.

Case *

Airplane Airport Water Depth

Type
(Mass)

Landing/Takeoff
Speed **

Running
Acceleration

Running
Distance

Run
Time Length L Flexural

Rigidity B h

LC B787 75 m/s −3 m/s2 0.938 km 25 s 5 km 1 × 1011 N·m2 10 m, 20 m,
TC (228,400 kgs) 3 m/s2 or 100 m

* In the case names, LC and TC indicate the landing and takeoff of B787, respectively. ** The landing and takeoff
speeds are the airplane speeds when the airplane touches down at the airport and leaves the airport, respectively.

In the 2D calculations for landing, the load on the airport due to the airplane was zero
at the touchdown time, i.e., t = 0 s, whereafter it increased linearly with time, and the full
weight of the airplane was applied on the airport when the airplane stopped at t = 25 s.

3.2.3. Conditions for Takeoff

B787 takes off from a floating airport in Case TC, in which the takeoff speed is 75 m/s.
The acceleration is assumed to be constant during takeoff. For takeoff, we also consider
a large value of acceleration, namely 3 m/s2, so the running distance and run time are
0.938 km and 25 s, respectively, which are relatively short values. The conditions of Case
TC are listed in Table 4.

In the 2D cases for takeoff, we assume that B787 has stopped and the field is in a steady
state at t = 0 s. Therefore, the full weight of the airplane is applied on the airport in a steady
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state at t = 0 s, and we numerically solve Equation (10) to obtain the initial displacement
of the floating airport. After t = 0 s, the airplane gradually accelerates and the load due to
the airplane is assumed to decrease linearly with time, to become zero at the leaving time,
i.e., t = 25 s, at which the airplane is completely away from the airport. After t = 25 s, no
loading onto the floating airport is carried out.

4. 1D Response of a Floating Airport to Airplane Movement
4.1. Touch-and-Go

We numerically simulated the motion of a floating airport when an airplane performs
touch-and-go, by assuming that the airplane ran at a constant speed and the point load due to
the airplane was constant while running. The calculation conditions are described in Table 1.

In Case GA-L1, B747 performed touch-and-go on a long-enough floating airport. The time
variation of the floating airport and water surface profiles is depicted in Figure 8, in which the
black dotted line indicates the location of the airplane running on the floating airport.Fluids 2021, 6, x FOR PEER REVIEW 3 of 36 
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Figure 8. Profiles of the floating airport and water surface at every 4 s when B747 performed touch-
and-go in Case GA-L1, the conditions of which are described in Table 1. The still water depth h was
10 m, the flexural rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 15 km.
The black dotted line indicates the location of the airplane running on the floating airport. The red
and green dotted lines indicate the waves generated by the touchdown and leaving of the airplane,
respectively.

When the airplane landed on the airport at t = 0 s, the touchdown impact due to the
airplane generated forward and backward waves, the propagation of which is indicated by
the red dotted curves in Figure 8. While the airplane was running, a floating-body wave
train with larger wave heights appeared in front of the airplane. However, the maximum
wavelength of the floating-body waves produced by the running airplane was shorter than
that generated by the touchdown impact. The generated floating-body waves traveled at
velocities greater than the running velocity of the airplane. When the airplane took off
at t = 36.1 s, this leaving impact due to the airplane generated other waves, which are
indicated by the green dotted curves in the figure. The maximum wavelength of these
waves generated by the leaving impact was also longer than that of the waves due to the
running airplane.

In Case GA-S1, the time variation of the floating airport and water surface profiles is
depicted in Figure 9, in which the black dotted line indicates the location of the airplane
running on the floating airport.
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Figure 9. Profiles of the floating airport and water surface at every 4 s when B747 performed touch-
and-go in Case GA-S1, the conditions of which are described in Table 1. The still water depth h was
10 m, the flexural rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 5 km. The
black dotted line indicates the location of the airplane running on the floating airport. The two blue
dotted ellipses indicate examples of wave height reduction.

A floating-body wave generated by an airplane and reaching an end of a floating
airport is divided into a reflected wave and a transmitted wave. The former is a floating-
body wave that travels in the negative direction of the x-axis after being reflected at the
airport edge, whereas the latter is a water wave that propagates in the positive direction
of the x-axis. The wave height ratio between the former and the wave before reaching the
airport edge is called reflectance in the present paper. Especially at t = 36 s, large wave
heights appeared based on the superposition of the waves reflected at the airport edge
and the waves newly generated by the running airplane. There are two reasons why the
reflectance of floating-body waves increases: (1) the wave energy attenuation is not effective,
and (2) the difference between the traveling velocity of the floating-body waves and that
of the water surface waves is large. Regarding the former, the wave energy attenuation
was ignored in the present computation. A case study will be required because wave
attenuation in a floating body depends on the type of structure and members. Conversely,
to discuss the latter, we consider the dispersion relation of floating-body waves. When
the draft of a floating thin plate is assumed to be zero, the linear dispersion relation of
floating-body waves is expressed by

θ2 =

(
Bk4

m
+ g
)

k tanh(kh), (12)

where θ and k are the angular frequency and wavenumber of floating-body waves, respec-
tively, and m is the density of the floating body [38]. As an example, Figure 10 displays
the relationship between the traveling speed C and wavelength λ of floating-body waves
evaluated by Equation (12) when B = 1.0 × 1011 N·m, m = 1000 kg/m3, and h = 20 m. As
depicted in Figure 10, we also obtained the corresponding numerical result of the linearized
present model when the number of expansion terms for the velocity potential, N, is one,
by considering the wave dispersion only due to the flexural rigidity of the floating body.
For comparison, the phase velocity of linear water waves is depicted in the figure, which
indicates that the difference in traveling velocity C between floating-body waves and water
surface waves increases as the wavelength λ decreases. In Case GA-S1, the wavelength of
the floating-body waves generated by the running airplane was less than 120 m based on
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Figures 8 and 9. Moreover, the phase velocity of water waves decreases as the still water
depth decreases in shallow water. Therefore, in Case GA-S1, the traveling velocity ratio
between the floating-body waves and water waves was large, and the wave reflectance at
the airport edges was large.
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Figure 10. Traveling velocities of floating-body waves from Equation (12) and the linearized present
model when the number of expansion terms for the velocity potential, N, is one. The flexural rigidity
B and density m are 1.0 × 1011 N·m and 1000 kg/m3, respectively. The still water depth h is 20 m.
The phase velocity of linear water waves is also depicted for comparison.

The relationships between the traveling velocity of floating-body waves, C, and the
flexural rigidity of the floating body, B, is presented in Figure 11, using Equation (12),
when the density of the floating body, m, is 1000 kg/m3, the wavelength of the floating-
body waves is 100 m, and the still water depth h is 10 m. Based on the figure, as B is
increased, C increases remarkably when B > 109 N·m. When the flexural rigidity B decreases,
the difference between the decreased traveling velocity of floating-body waves and the
phase velocity of water waves decreases, so the wave reflectance is reduced. Thus, the
reflectance of floating-body waves depends on both the flexural rigidity of an airport and
the wavelength-to-water-depth ratio.
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Figure 11. Relationship between the traveling velocity of floating-body waves, C, and the flexural
rigidity of the floating body, B, using Equation (12). The density of the floating body, m, is 1000 kg/m3,
the wavelength of the floating-body waves is 100 m, and the still water depth h is 10 m.

Moreover, the relationship between the traveling velocity of floating-body waves, C, and
the still water depth h is depicted in Figure 12, using Equation (12), when B = 1.0 × 1011 N·m,
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m = 1000 kg/m3, and the wavelength of the floating-body waves is 100 m. Figure 12
indicates that C decreases as h is increased for the same wavelength.
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Figure 12. Relationship between the traveling velocity of floating-body waves, C, and the still
water depth h, using Equation (12). The flexural rigidity B and density m of the floating body are
1.0 × 1011 N·m and 1000 kg/m3, respectively. The wavelength of the floating-body waves is 100 m.

In Figure 9, at t = 48 s, the reflected waves mentioned above, the re-reflected waves
at another edge of the airport, and the waves produced by the touchdown impact due to
the airplane are superposed. Conversely, within the two blue dotted ellipses depicted in
the figure, the wave height is reduced because the phase of the waves newly produced
by the running airplane and that of the reflected waves happen to be close to opposite.
If the reflectance of floating-body waves at airport edges is large, it is necessary to pay
attention to the long-lasting vibrations of the floating airport for flight landing and takeoff.
A method of reducing the reflectance will be described in Section 4.3.

Figure 13 depicts the time variation of the floating airport and water surface profiles
in Case GA-S2, which was obtained by reducing the flexural rigidity B from Case GA-S1.
Comparing Figure 13 with Figure 9 for Case GA-S1, both the wavelength and traveling
velocity of the floating-body waves generated by the running airplane decreased, so the
total length of the floating-body wave train decreased.
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Figure 13. Profiles of the floating airport and water surface at every 4 s when B747 performed touch-
and-go in Case GA-S2, the conditions of which are described in Table 1. The still water depth h was 
10 m, the flexural rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was 5 km. The 
black dotted line indicates the location of the airplane running on the floating airport. 

Figure 13. Profiles of the floating airport and water surface at every 4 s when B747 performed
touch-and-go in Case GA-S2, the conditions of which are described in Table 1. The still water depth h
was 10 m, the flexural rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was 5 km.
The black dotted line indicates the location of the airplane running on the floating airport.
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Conversely, when B737 performed touch-and-go in Cases GB-L1 and GB-S1, the time
variations of the floating airport and water surface profiles are depicted in Figures 14 and 15,
respectively. Comparing these results, in Case GB-S1 with an airport of limited length,
the wave heights of the floating-body waves were also larger near the edge of the airport
because of wave superposition based on the high reflectance of the floating-body waves at
the airport edge.Fluids 2021, 6, x FOR PEER REVIEW 5 of 36 
 

52 

Figure 14. Profiles of the floating airport and water surface at every 4 s when B737 performed
touch-and-go in Case GB-L1, the conditions of which are described in Table 1. The still water depth
h was 50 m, the flexural rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was
15 km. The black dotted line indicates the location of the airplane running on the floating airport.
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Figure 15. Profiles of the floating airport and water surface at every 4 s when B737 performed touch-
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Comparing Figures 14 and 15 with Figures 8 and 9, B737 produced floating-body 
waves with wave heights comparable to those of B747 because the water depth was larger 
for the former than for the latter. When the still water depth is larger, i.e., h = 20 m, the 
time variation of the floating airport and water surface profiles in Case GA-S1 is depicted 

Figure 15. Profiles of the floating airport and water surface at every 4 s when B737 performed
touch-and-go in Case GB-S1, the conditions of which are described in Table 1. The still water depth h
was 50 m, the flexural rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was 5 km.
The black dotted line indicates the location of the airplane running on the floating airport.

Comparing Figures 14 and 15 with Figures 8 and 9, B737 produced floating-body
waves with wave heights comparable to those of B747 because the water depth was larger
for the former than for the latter. When the still water depth is larger, i.e., h = 20 m, the time
variation of the floating airport and water surface profiles in Case GA-S1 is depicted in
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Figure 16. When the still water depth was increased, the wave heights of both the floating-
body waves generated by the running airplane and those produced by the touchdown and
leaving shocks due to the airplane increased in comparison with the results depicted in
Figure 9 for h = 10 m.Fluids 2021, 6, x FOR PEER REVIEW 6 of 36 
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Figure 16. Profiles of the floating airport and water surface at every 4 s when B747 performed
touch-and-go in Case GA-S1, the conditions of which are described in Table 1. The still water depth h
was 20 m, the flexural rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 5 km.
The black dotted line indicates the location of the airplane running on the floating airport.

Figure 17 presents two examples of the relationships between the maximum displace-
ment of the floating airport, ηmax, and the still water depth h in Cases GA-L2 and GB-L2,
when B747 and B737 left the long-enough airport in touch-and-go, respectively. These rela-
tionships are linearly approximated by ηmax = 0.0025h + 0.013 and ηmax = 0.0009h + 0.0087
(unit length in meter), respectively. When installing a floating airport in deeper water,
it should be noted that the wave height of floating-body waves may increase because of
airplane movement. The reason why larger water depths produce larger floating-body
waves due to a running airplane will be discussed in Section 4.2.

Eng 2023, 4, FOR PEER REVIEW 16 
 

 

in Figure 16. When the still water depth was increased, the wave heights of both the float-
ing-body waves generated by the running airplane and those produced by the touchdown 
and leaving shocks due to the airplane increased in comparison with the results depicted 
in Figure 9 for h = 10 m. 

 
Figure 16. Profiles of the floating airport and water surface at every 4 s when B747 performed touch-
and-go in Case GA-S1, the conditions of which are described in Table 1. The still water depth h was 
20 m, the flexural rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 5 km. The 
black dotted line indicates the location of the airplane running on the floating airport. 

Figure 17 presents two examples of the relationships between the maximum dis-
placement of the floating airport, ηmax, and the still water depth h in Cases GA-L2 and GB-
L2, when B747 and B737 left the long-enough airport in touch-and-go, respectively. These 
relationships are linearly approximated by ηmax = 0.0025h + 0.013 and ηmax = 0.0009h + 0.0087 
(unit length in meter), respectively. When installing a floating airport in deeper water, it 
should be noted that the wave height of floating-body waves may increase because of 
airplane movement. The reason why larger water depths produce larger floating-body 
waves due to a running airplane will be discussed in Section 4.2. 

 
Figure 17. Relationships between the maximum displacement of the floating airport, ηmax, and the 
still water depth h in Cases GA-L2 (red) and GB-L2 (blue), when B747 and B737 left the airport in 
touch-and-go, respectively. The conditions of which are described in Table 1. The flexural rigidity 

Figure 17. Relationships between the maximum displacement of the floating airport, ηmax, and the
still water depth h in Cases GA-L2 (red) and GB-L2 (blue), when B747 and B737 left the airport in
touch-and-go, respectively. The conditions of these cases are described in Table 1. The flexural rigidity
of the airport, B, was 1 × 1011 N·m in Case GA-L2, whereas B was 1 × 1010 N·m in Case GB-L2. The
airport length L was 15 km in both cases.
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4.2. Landing

We numerically simulated the motion of a floating airport when an airplane lands,
by assuming that the airplane ran at a constant deceleration and the point load due to the
airplane was constant while running. The calculation conditions are described in Table 2.

When B747 landed on a long-enough floating airport in Case LA-L, the time variation
of the floating airport and water surface profiles is depicted in Figure 18. As the running
speed of the airplane slowed down, both the wave height and wavelength of the floating-
body waves generated by the running airplane increased. Based on the results of the one-
dimensional propagation calculations [22], floating-body waves are significantly amplified
when the moving speed of a point load on a floating thin plate is close to the phase velocity
of the linear shallow-water waves, i.e.,

√
gh, in shallow-water conditions. This is due to

resonance similar to that occurring in tsunami generation due to atmospheric-pressure
waves, e.g., [39], based on the Proudman resonance [40]. Such resonance phenomena,
often with a tail including waves of short wavelengths, are also known in other transient
waves, e.g., [41–46]. In Case LA-L,

√
gh is approximately 9.9 m/s, which corresponds to

the running speed of the airplane at t ' 72 s, near its stop time. Therefore, the airplane
produced larger floating-body waves as it approached a stop. As depicted in Figure 17 for
touch-and-go, the wave height of the floating-body waves increases as the still water depth
increases, the reason for which is that the traveling speeds of the airplane and water waves
become closer.
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Figure 18. Profiles of the floating airport and water surface at every 8 s when B747 landed in Case 
LA-L, the conditions of which are described in Table 2. The still water depth h was 10 m, the flexural 
rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 15 km. The black dotted line 
indicates the location of the airplane running on the floating airport. 

In more detail, at landing, when the running speed of an airplane approaches the 
phase velocity of water waves, a “forced wave” is generated and amplified. In the present 
paper, a wave that follows the airplane is called a forced wave even if it contains a free-
wave component in the resonance process. The generated forced waves do not satisfy the 

Figure 18. Profiles of the floating airport and water surface at every 8 s when B747 landed in Case
LA-L, the conditions of which are described in Table 2. The still water depth h was 10 m, the flexural
rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 15 km. The black dotted
line indicates the location of the airplane running on the floating airport.

In more detail, at landing, when the running speed of an airplane approaches the
phase velocity of water waves, a “forced wave” is generated and amplified. In the present
paper, a wave that follows the airplane is called a forced wave even if it contains a free-
wave component in the resonance process. The generated forced waves do not satisfy the
dispersion relation of floating-body waves, so the waves are disintegrated to produce “free
waves” that satisfy the dispersion relation with traveling velocities larger than the airplane
speed. The restraint by the airplane is released at the stop time of the airplane, whereafter
the floating-body wave with the maximum wave height also propagates as a free wave.
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Conversely, in Case GA-L1, in which B747 performed touch-and-go as described
above, effective amplification did not occur because the airplane speed was too fast, and it
was not close to the water wave speed at the water depth. While energy was being supplied
by the running airplane, modest forced waves were generated and free waves continued
to occur so as to satisfy the dispersion relation. Thus, large floating-body waves were not
generated, not even by the jumbo jet.

Furthermore, although the landing impact due to the airplane at t = 0 s generated
floating-body waves, as in the above cases of touch-and-go, no shock wave appeared when
the airplane came to a stop because the airplane slowed down gradually.

When B747 landed on a floating airport of limited length in Case LA-S, the time
variation of the floating airport and water surface profiles is depicted in Figure 19. The
figure indicates that the floating-body waves reflected at the airport edge were superposed
with the waves newly created by the running airplane. However, after t = 72 s, transmitted
waves clearly appeared from the airport edge. Immediately after landing, the airplane
speed was larger and the wavelength of the generated floating-body waves was shorter,
so the wave reflectance was larger. Thereafter, as the airplane speed slowed down, the
wavelength of the floating-body waves increased, and the wave reflectance decreased, as
described above for Figure 10. Thus, some time after landing, transmitted waves may begin
to appear.
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When B737 landed on a long-enough floating airport in Case LB-L, the time variation 
of the floating airport and water surface profiles is depicted in Figure 20. Based on the 
figure, as the airplane speed decreased, the wave height of the generated floating-body 
waves increased, as in the cases of B747. It should be noted that the amplification factor of 

Figure 19. Profiles of the floating airport and water surface at every 8 s when B747 landed in Case
LA-S, the conditions of which are described in Table 2. The still water depth h was 10 m, the flexural
rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 5 km. The black dotted line
indicates the location of the airplane running on the floating airport.

When B737 landed on a long-enough floating airport in Case LB-L, the time variation
of the floating airport and water surface profiles is depicted in Figure 20. Based on the
figure, as the airplane speed decreased, the wave height of the generated floating-body
waves increased, as in the cases of B747. It should be noted that the amplification factor of
the wave height due to B737 in Figure 20 is larger than that due to B747 in Figure 18. As
far as the flexural rigidity of the floating airport, B, is concerned, when B decreases, the
traveling velocity of floating-body waves, C, decreases, as indicated in Figure 11. In the case
of Figure 20, B decreased and C decreased, so the wavelength decreased, also depending on
the relationship between C and the airplane speed. Moreover, the deceleration of B737 was
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larger than that of B747; hence, the floating-body waves were generated more effectively
by B737 running at a slower speed. Consequently, combined with the deeper water, the
maximum wave height generated by B737 became larger than that due to B747.
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Furthermore, when B737 landed on a floating airport of limited length in Case LB-S, 
the time variation of the floating airport and water surface profiles is depicted in Figure 
21. Comparing this figure with Figure 19, because of the reduced flexural rigidity, the 
traveling velocity of the floating-body waves generated by the running airplane de-
creased, as described above, whereas the water wave speed increased in the deeper water. 
Thus, the transmitted waves from the airport edge started appearing at t = 52 s, earlier 
than in the case for Figure 19. 

Figure 20. Profiles of the floating airport and water surface at every 4 s when B737 landed in Case
LB-L, the conditions of which are described in Table 2. The still water depth h was 50 m, the flexural
rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was 15 km. The black dotted
line indicates the location of the airplane running on the floating airport.

Furthermore, when B737 landed on a floating airport of limited length in Case LB-S,
the time variation of the floating airport and water surface profiles is depicted in Figure 21.
Comparing this figure with Figure 19, because of the reduced flexural rigidity, the travel-
ing velocity of the floating-body waves generated by the running airplane decreased, as
described above, whereas the water wave speed increased in the deeper water. Thus, the
transmitted waves from the airport edge started appearing at t = 52 s, earlier than in the
case for Figure 19.

In the present paper, the acceleration of the light airplane was increased using the
values close to the current actual conditions. However, in less congested airports, reverse
thrust can be reduced to save fuel, allowing airplanes to land over longer distances. Future
studies will also consider the cases of the same traveling speed but different airplane types.

4.3. Takeoff

We numerically simulated the motion of a floating airport when an airplane takes off,
by assuming that the airplane ran at a constant acceleration and the point load due to the
airplane was constant while running. The calculation conditions are described in Table 3.

When B747 took off from a long-enough floating airport in Case TA-L, the time
variation of the floating airport and water surface profiles is depicted in Figure 22. Moreover,
when B747 took off from a floating airport of limited length in Case TA-S, the result is
depicted in Figure 23.
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Figure 21. Profiles of the floating airport and water surface at every 4 s when B737 landed in Case
LB-S, the conditions of which are described in Table 2. The still water depth h was 50 m, the flexural
rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was 5 km. The black dotted line
indicates the location of the airplane running on the floating airport.
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indicates the location of the airplane running on the floating airport. 

Based on Figures 22 and 23, during the takeoff, much of the floating-body wave en-
ergy generated by the running airplane was localized in a short interval, resulting in a 
“wave clump” or wave group with a waveform like a discrete breather. The wavelength 
of the waves in the clump was approximately 170 m, and the traveling speed of the wave 
clump was approximately 43 m/s from Equation (12). The airplane reached this speed at t ≃ 37 s after departure. Although the traveling velocity of the wave clump did not reach 
43 m/s for a while after its generation, the wave clump, which was produced by the slow-
moving airplane shortly after its departure, traveled faster than the airplane. Thus, the 
wave clump traveling ahead of the airplane was followed by the waves newly generated 
by the running airplane. 

Figure 22. Profiles of the floating airport and water surface at every 8 s when B747 took off in Case
TA-L, the conditions of which are described in Table 3. The still water depth h was 10 m, the flexural
rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 15 km. The black dotted
line indicates the location of the airplane running on the floating airport.
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Figure 23. Profiles of the floating airport and water surface at every 8 s when B747 took off in Case
TA-S, the conditions of which are described in Table 3. The still water depth h was 10 m, the flexural
rigidity of the airport, B, was 1 × 1011 N·m, and the airport length L was 5 km. The black dotted line
indicates the location of the airplane running on the floating airport.

Based on Figures 22 and 23, during the takeoff, much of the floating-body wave energy
generated by the running airplane was localized in a short interval, resulting in a “wave
clump” or wave group with a waveform like a discrete breather. The wavelength of the
waves in the clump was approximately 170 m, and the traveling speed of the wave clump
was approximately 43 m/s from Equation (12). The airplane reached this speed at t ' 37 s
after departure. Although the traveling velocity of the wave clump did not reach 43 m/s
for a while after its generation, the wave clump, which was produced by the slow-moving
airplane shortly after its departure, traveled faster than the airplane. Thus, the wave
clump traveling ahead of the airplane was followed by the waves newly generated by the
running airplane.

To explain the above based on resonance, at takeoff, while airplane speed is close
to water wave speed, the airplane generates and amplifies a forced wave based on the
resonance. Thereafter, as the airplane speed increases and the difference in traveling speed
between the airplane and the water waves increases, the restraint by the airplane is grad-
ually released, and the amplified wave propagates as a free wave at a traveling velocity
greater than the airplane speed. Therefore, the wave clump, which has been formed by
changing the wave profile of the forced wave generated and amplified in a limited time,
propagates in front of the airplane.

Conversely, when B737 took off from a long-enough floating airport and one of limited
length in Cases TB-L and TB-S, respectively, the time variations of the floating airport and
water surface profiles are depicted in Figures 24 and 25, respectively. Comparing these
figures with Figures 22 and 23, when B737 takes off in deeper water, it may produce floating-
body waves with a wave height similar to that of B747 in shallower water, depending on
the flexural rigidity of the airport.
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Figure 24. Profiles of the floating airport and water surface at every 4 s when B737 took off in Case
TB-L, the conditions of which are described in Table 3. The still water depth h was 50 m, the flexural
rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was 15 km. The black dotted
line indicates the location of the airplane running on the floating airport.

To mitigate the hydroelastic vibration of a VLFS under wave action, several methods
have been proposed: for example, the introduction of floating breakwaters [47], aircush-
ions [48], and member connectors [49]. The reduction of the resonance phenomena due to
the presence of a breakwater near a VLFS was also investigated [50]. If airplanes land or
take off while floating airport vibration remains, unexpected large floating-body waves
may occur because of wave superposition. As one of the methods of lowering the wave
reflectance at the edges of a floating airport, we consider reducing the flexural rigidity of
the airport, B, near the airport edges. In Case TA-S-B, the airplane to take off is B747 and
the still water depth is 50 m. We numerically evaluated the wave reflectance R from the
maximum wave heights before and after the first reflection at the airport edge. When B
was 1 × 1011 N·m throughout the airport for 0.5 km ≤ x ≤ 5.5 km, R was approximately
0.67. Conversely, when B was 1 × 1011 N·m for 0.5 km ≤ x < 5 km, and 1 × 1010 N·m
for 5 km ≤ x ≤ 5.5 km, R was approximately 0.55. This reduction in wave reflectance
was due to two-stage reflection, which suppressed the wave height of the reflected waves.
Furthermore, when B was 1 × 1011 N·m for 0.5 km ≤ x < 5 km, and B decreased linearly
from 1 × 1011 N·m at x = 5 km to 1 × 109 N·m at x = 5.5 km, R was approximately 0.27
because of successive reflection near the airport edge. Consequently, the wave reflectance
was reduced by lowering B near the airport edge. Even if the flexural rigidity is structurally
or economically fixed for most of a floating airport, the wave reflectance can be reduced by
modifying the structure or installing accessories to lower the flexural rigidity only near the
airport edges, leading to an increase in the calmness of the floating airport.
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Figure 25. Profiles of the floating airport and water surface at every 4 s when B737 took off in Case
TB-S, the conditions of which are described in Table 3. The still water depth h was 50 m, the flexural
rigidity of the airport, B, was 1 × 1010 N·m, and the airport length L was 5 km. The black dotted line
indicates the location of the airplane running on the floating airport.

5. 2D Response of a Floating Airport to Airplane Movement
5.1. Landing

We numerically simulated the two-dimensional motion of a floating airport when
B787 lands in Case LC, by assuming that the airplane ran at a constant deceleration and the
point load due to the airplane increased linearly with time while running. The calculation
conditions are described in Table 4.

Figure 26 presents the surface level distributions at t = 25 s, at which B787 stopped
after landing, for different still water depths h. As indicated in the figure, numerous surface
waves exhibiting directional dispersion propagated and reflected at the airport edges. As
a result, the superposition of the floating-body waves formed grid-like surface profiles
at the airport. As the still water depth increases, the difference in propagation speed
between the floating-body waves and water waves is reduced, so the wave reflectance at
the airport edges decreases. Therefore, when h = 100 m in Case LC, the grid-like pattern
was suppressed at the floating airport compared to when the still water depth is shallower.
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nal centerline of the floating airport, at the stop time t = 25 s, for different still water depths 
in Case LC. The order of the results was the same as that of the existing horizontally two-
dimensional results for a jumbo jet [27], although the maximum values of the present re-
sults were less because of the different airplane weights, decelerations, etc. When the still 
water depth h is 20 m, the phase velocity of linear shallow-water waves, i.e., gh, is 14 
m/s, which corresponds to the airplane speed at t ≃ 20 s. At around this time, the point 
load due to the airplane was approximately 4/5ths of the maximum value and large 
enough to generate floating-body waves, resulting in a relatively large amplitude. Con-
versely, when h is 100 m, gh is approximately 31.3 m/s, which corresponds to the air-
plane speed at t ≃ 15 s. At around this time, the point load was still only approximately 
3/5ths of the maximum value, so the floating-body waves were not generated effectively. 

Figure 26. Surface-level distributions at t = 25 s, at which B787 stopped after landing on the floating
airport in Case LC. The still water depth h values were 10 m, 20 m, and 100 m for the figures
on the left (a), middle (b), and right (c), respectively. The flexural rigidity of the airport, B, was
1 × 1011 N·m2.

Figure 27 depicts the surface profiles along the x-axis, which includes the longitudinal
centerline of the floating airport, at the stop time t = 25 s, for different still water depths
in Case LC. The order of the results was the same as that of the existing horizontally
two-dimensional results for a jumbo jet [27], although the maximum values of the present
results were less because of the different airplane weights, decelerations, etc. When the still
water depth h is 20 m, the phase velocity of linear shallow-water waves, i.e.,

√
gh, is 14 m/s,

which corresponds to the airplane speed at t ' 20 s. At around this time, the point load
due to the airplane was approximately 4/5ths of the maximum value and large enough to
generate floating-body waves, resulting in a relatively large amplitude. Conversely, when
h is 100 m,

√
gh is approximately 31.3 m/s, which corresponds to the airplane speed at

t ' 15 s. At around this time, the point load was still only approximately 3/5ths of the
maximum value, so the floating-body waves were not generated effectively.Fluids 2021, 6, x FOR PEER REVIEW 7 of 36 
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Figure 27. Surface profiles along the x-axis at t = 25 s, at which B787 stopped after landing in Case
LC. The still water depth h values were 10 m, 20 m, and 100 m, and the flexural rigidity of the airport,
B, was 1 × 1011 N·m2.

Figure 28a,b depict the time variations of the vertical positions of B787 and the surface
gradients at the location of B787, respectively, for different still water depths in Case LC.
As indicated in Figure 28a, the airplane position was gradually lowered. The surface-



Eng 2023, 4 1259

gradient graphs are zigzag in Figure 28b because the values of the surface displacements
are discretized at the grid points.
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During landing, the floating-body waves were generated by the airplane, as de-
scribed above for the one-dimensional calculations, and Figure 28b indicates that the air-
port deflection caused the airplane to run uphill while the running speed of the airplane 
was large. The maximum upslope gradient of the floating airport beneath the airplane 
increased as the still water depth h decreased. When h = 10 m, the airplane was on an 
upslope most of the time during landing. When h = 20 m, the airplane ran downhill just 
before coming to a stop. Conversely, when h = 100 m, the airplane was on a downslope 

Figure 28. Time variations of the vertical positions of B787, ζp, (a), and the surface gradient ∂ζ/∂x
at the location of B787 (b), in Case LC, in which B787 stopped at t = 25 s after landing. The still
water depth h values were 10 m, 20 m, and 100 m, and the flexural rigidity of the airport, B, was
1 × 1011 N·m2.

During landing, the floating-body waves were generated by the airplane, as described
above for the one-dimensional calculations, and Figure 28b indicates that the airport
deflection caused the airplane to run uphill while the running speed of the airplane was
large. The maximum upslope gradient of the floating airport beneath the airplane increased
as the still water depth h decreased. When h = 10 m, the airplane was on an upslope most
of the time during landing. When h = 20 m, the airplane ran downhill just before coming to
a stop. Conversely, when h = 100 m, the airplane was on a downslope for approximately
1/3rd of the landing time. It is necessary to pay attention to the gradient change of the
runway in rolling an airplane.

5.2. Takeoff

We numerically simulated the two-dimensional motion of a floating airport when B787
takes off in Case TC, by assuming that the airplane ran at a constant acceleration and the
point load due to the airplane decreased linearly with time while running. The calculation
conditions are described in Table 4.

Figure 29 depicts the surface-level distributions at t = 25 s, at which B787 left the
airport, for different still water depths h. Figure 29a,b indicate that grid-like patterns were
also produced at the floating airport in takeoff when h = 10 m and 20 m, respectively,
although the grid-like patterns were not so remarkable as those in Figure 26a,b for landing.
Conversely, when h = 100 m, such a grid-like vibration was not formed at the floating
airport. The grid-like oscillation did not appear in the existing results for relatively deep
water, e.g., [27], and this phenomenon, which occurs based on the high wave reflectance
at airport edges, is peculiar to floating airports with large flexural rigidity installed in
shallower water.
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airport, for different still water depths in Case TC. When the still water depth h is 100 m, 
the phase velocity of linear shallow-water waves, i.e., gh, is approximately 31.3 m/s, 
which corresponds to the airplane speed at t ≃ 10 s. Before this time, the point load due 
to the airplane was larger than 3/5ths of the maximum value. In addition, the wave clumps 
were produced when the running speed of the airplane was low, as indicated in Figures 
22–25. Therefore, when h = 100 m, larger floating-body waves were generated in takeoff 
than in landing. 

Figure 29. Surface-level distributions at t = 25 s, at which B787 left the floating airport in Case TC.
The still water depth h values were 10 m, 20 m, and 100 m for the figures on the left (a), middle (b),
and right (c), respectively. The flexural rigidity of the airport, B, was 1 × 1011 N·m2.

Figure 30 depicts the surface profiles along the x-axis at t = 25 s, at which B787 left the
airport, for different still water depths in Case TC. When the still water depth h is 100 m, the
phase velocity of linear shallow-water waves, i.e.,

√
gh, is approximately 31.3 m/s, which

corresponds to the airplane speed at t ' 10 s. Before this time, the point load due to the
airplane was larger than 3/5ths of the maximum value. In addition, the wave clumps were
produced when the running speed of the airplane was low, as indicated in Figures 22–25.
Therefore, when h = 100 m, larger floating-body waves were generated in takeoff than
in landing.
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Figure 30. Surface profiles along the x-axis at t = 25 s, at which B787 left the airport in Case TC. The
still water depth h values were 10 m, 20 m, and 100 m, and the flexural rigidity of the airport, B, was
1 × 1011 N·m2.

Moreover, Figure 31a,b present the time variations of the vertical positions of B787 and
the surface gradients at the location of B787, respectively, for different still water depths in
Case TC. As indicated in Figure 31a, although the airplane passed the peak of height when
h = 10 m and 20 m, the airplane position was increased most of the time during takeoff,
which was different than during landing as depicted in Figure 28a.
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of the floating airport because we assumed that the floating airport was bending under 
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Figure 31. Time variations of the vertical positions of B787, ζp, (a), and the surface gradient ∂ζ/∂x at
the location of B787 (b), in Case TC, in which B787 left the airport at t = 25 s. The still water depth h
values were 10 m, 20 m, and 100 m, and the flexural rigidity of the airport, B, was 1 × 1011 N·m2.

Figure 31b indicates that when taking off, the airplane ran on an upslope in a trough
of the floating airport because we assumed that the floating airport was bending under
the weight of the stationary airplane at t = 0 s in Case TC. During takeoff, when h = 100 m,
the upslope gradient beneath the airplane decreased with time, whereas it dropped, then
increased, and then dropped again when h = 10 m and 20 m. For all these still water depths,
the peak values of the upslope gradient were larger than those in landing depicted in
Figure 28b. Therefore, during takeoff, the airplane ran on steeper slopes than during
landing. For example, in Japan, the maximum longitudinal slope of a long airport runway
is allowed up to 0.8% [51], and the calculated values of the slopes indicated in Figure 31b,
as well as Figure 28b, are within the allowable range. However, if the floating-body waves
from the previous landing/takeoff remain, or if the wave height of the reflected waves
is large, the runway gradient may increase, not only in the traveling direction of the
airplanes but also in the transverse direction. When the wave reflectance at the edges of a
floating airport is large, it is necessary to take a sufficient time interval between landings
and takeoffs.

6. Conclusions

Numerical simulations were generated to investigate the response of a very large
floating airport to airplane movement using the set of nonlinear shallow water equations
of velocity potential for water waves interacting with a floating thin plate.

First, the one-dimensional motion of a floating airport was simulated numerically
when B747 and B737 performed touch-and-go, landing, and takeoff. During touch-and-
go, when the running speed of the airplanes is much faster than the phase velocity of
the water waves, effective amplification did not occur, and modest forced waves were
generated while the airplanes were running, with many free waves ahead that satisfied the
dispersion relation. However, when the airplane speed is closer to the water wave speed,
even B737 produced large floating-body waves based on the resonance. Moreover, the
impacts due to both the touchdown and leaving of the airplanes generated other forward
and backward waves.

Conversely, during landing, when the airplane speed approached the water wave
speed, a forced wave was generated and amplified based on the resonance. When the
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airplanes stopped, the restraint from the airplanes was released, whereafter the amplified
floating-body wave with the maximum wave height also propagated as a free wave.

During takeoff, while the airplane speed was close to the water wave speed, the
airplanes also generated and amplified a forced wave. Thereafter, as the running speed of
the airplanes increased and the difference in traveling speed between the airplanes and
the water waves increased, the restraint from the airplanes was gradually released and the
amplified wave propagated as a free wave at a traveling velocity greater than those of the
airplanes. Therefore, the wave clump, which was formed by changing the wave profile of
the forced wave generated and amplified shortly after starting to run, propagated in front
of the airplanes.

If the reflectance of floating-body waves at airport edges is high, prolonged vibrations
may interfere with the operation of airplanes and cause structural fatigue. When we
tried lowering the flexural rigidity of the airport near its edge, the wave reflectance was
reduced. In the present study, we ignored the attenuation of wave energy in the floating
airport, so future work is required to consider wave energy attenuation by modifying the
present model.

Second, the horizontally two-dimensional motion of a floating airport was simulated
numerically when B787 performed landing and takeoff. When the still water depth is
shallower, a grid-like pattern was formed on the floating airport. This pattern was due
to the reflection of the floating-body waves with directional dispersion at the edges of
the floating airport and appeared more remarkably in landing than in takeoff. In the
2D calculations, we assumed that the load of the airplane changed while running, so the
effective amplification of waves occurred from the sufficient load applied when the airplane
speed approached the water wave speed. Furthermore, the maximum upslope gradient
beneath the airplane increased as the still water depth decreased, and it was larger in
takeoff than in landing.

Although we used the numerical scheme for the water wave equations considering
both wave nonlinearity and dispersion, we ignored the dispersion of water waves in the
present study. In the future, we should simulate floating-body waves with more expansion
terms of velocity potential when the frequency dispersion is significant, especially for an
airport installed in deep water. It is also necessary to consider whether the plate equation
can be linear since there may be cases where the nonlinearity of floating-body motion that
does not interfere with airplane operation cannot be ignored.
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