
Citation: Johnson, J.B. Rapid

Prediction of Leaf Water Content in

Eucalypt Leaves Using a Handheld

NIRS Instrument. Eng 2023, 4,

1198–1209. https://doi.org/

10.3390/eng4020070

Academic Editor: Antonio Gil Bravo

Received: 23 March 2023

Revised: 18 April 2023

Accepted: 18 April 2023

Published: 19 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Rapid Prediction of Leaf Water Content in Eucalypt Leaves
Using a Handheld NIRS Instrument
Joel B. Johnson

School of Health, Medical and Applied Sciences, Central Queensland University,
North Rockhampton, QLD 4701, Australia; joel.johnson@cqumail.com

Abstract: Leaf water content (LWC) is a crucial physiological parameter that plays a limiting role in
the efficiency of photosynthesis and biomass production in many plants. This study investigated
the use of diffuse reflectance near-infrared spectroscopy (NIRS) for the rapid prediction of the
gravimetric LWC in eucalypt leaves from Eucalyptus and Corymbia genera. The best-performing
model for LWC gave a R2

pred of 0.85 and RMSEP of 2.32% for an independent test set, indicating
that the handheld NIR instrument could predict the LWC with a high level of accuracy. The use of
support vector regression gave slightly more accurate results compared with partial least squares
regression. Prediction models were also developed for leaf thickness, although these were somewhat
less accurate (R2

pred of 0.58; RMSEP of 2.7 µm). Nevertheless, the results suggest that handheld NIR
instruments may be useful for in-field screening of LWC and leaf thickness in Australian eucalypt
species. As an example of its use, the NIR method was applied for rapid analysis of the LWC and leaf
thickness of every leaf found on an E. populnea sapling.
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1. Introduction

The leaf water content (LWC) is an important physiological parameter in the discipline
of plant science [1]. The water content of leaves and their transpiration rates control the
extent of stomata opening [2], thus influencing the rate of photosynthesis [3]. In turn, this
limits the growth rates and biomass productivity of the plant [4]. Furthermore, LWC also
plays a role in determining salinity tolerance [5] and even affects oviposition preferences of
herbivorous insects [6,7].

Consequently, measuring LWC may provide information on various physiological
aspects of plants such as their current levels of water stress [8–10], drought tolerance [11,12],
salinity tolerance [5], flammability [13,14], and photosynthetic rates [15]. Survey studies
have indicated that genetics (particularly classification at a family or order level) have
the largest impact on LWC, while precipitation and climate have smaller effects [16].
Nevertheless, there is significant spatial variation in LWC between different habitat types.
Researchers have also highlighted that LWC will be an important variable to measure in
future studies of large-scale trait variations [16].

The most common method of measuring LWC is by oven-drying the leaves to a
constant mass and determining the loss of mass. However, this method is destructive
and can be time consuming, particularly when large numbers of leaves must be analysed.
Consequently, in order to better understand the distribution of LWC within plants and
ecosystems, rapid methods of measuring this parameter are required. This is particularly
significant for the eucalypts (tribe Eucalypteae; principally comprising the Eucalyptus,
Corymbia, and Angophora genera), as these species are a crucial part of many Australian
ecosystems [17].

Rapid, non-invasive analytical techniques have been reported for measuring
LWC [1,10,18], principally using near-infrared spectroscopy (NIRS) [19,20]. This analytical
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technique uses light with a longer wavelength than visible light to investigate the presence
of key functional groups (e.g., OH, CH, NH) in a sample matrix. The benefits of NIRS
include its speed (no sample preparation), low cost (no ongoing expenses), portability, and
broad applicability to a range of sample types [8,21]. Recent technological advances in
reducing the size and cost of NIR instruments have made them highly suited to use in field
surveys investigating various analytes [20,22–24].

However, there are limited studies applying NIRS for the prediction of LWC in euca-
lypt species. This tribe of plants is somewhat unique in possessing a thick waxy cuticle
layer on their leaves [25], which acts to reduce water loss [26]. This physiological feature
may potentially complicate the development of NIRS models for the prediction of LWC.
Yang, et al. [27] used NIRS to predict the leaf water potential (Ψleaf) in E. camaldulensis,
but not the absolute LWC. Similarly, Datt [28] was able to predict the equivalent water
thickness in several eucalypt species using NIRS, but not the gravimetric water content
(i.e., the absolute LWC). In contrast, Kumar [29] was able to predict LWC in six Eucalyptus
species by using a laboratory NIR instrument. This appears to be the only study to date
reporting NIRS calibration for LWC that can be utilised across different eucalypt species.
Furthermore, there are no comparable studies incorporating the Corymbia genus. Conse-
quently, the aim of this study was to apply portable NIRS instrumentation for the rapid
prediction of gravimetric LWC in eucalypt leaves from several species across two genera
(Eucalyptus and Corymbia).

As a secondary aim, NIRS was also trialled for the prediction of leaf thickness in these
species. Although this parameter is not usually measured with NIRS, it was thought that
the leaf thickness could be indirectly predicted from the magnitude of absorbance produced
from all of the compounds (e.g., structural carbohydrates, proteins, and water) present in
the leaves. Leaves with a smaller thickness would consequently be expected to show less
absorbance overall, and vice versa for thicker leaves. This is supported by previous work
demonstrating that leaf thickness was the best predictor of NIR reflectance and internal
light scattering [30]. Therefore, NIRS might be able to rapidly screen for leaf thickness at
the same time as measuring leaf water content.

2. Materials and Methods
2.1. Eucalyptus Leaf Samples

This study was conducted in May 2022 on a grazing property in Central Queensland,
comprising an open woodland of mixed eucalypt species. Leaves of varying maturity stages
were collected from six different Eucalyptus and Corymbia species (E. populnea, C. citriodora,
E. platyphylla, E. tereticornis, E. melanophloia, and C. tessellaris). Between 2 and 4 trees were
sampled for each species; 20 leaves were collected for each species (only 19 for E. tereticornis).
Effort was made to collect leaves from multiple canopy levels in each species. The leaves
sampled were from the ‘intermediate’ and ‘adult’ maturity stages [31].

The NIR spectra were collected from the fresh leaf samples as soon as practicable after
collection (approx. 10–20 min).

2.2. Collection of NIR Spectra

Spectra between 908–1676 nm were collected directly from the eucalypt leaves using a
MicroNIR OnSite handheld spectrometer (Viavi, Santa Rosa, CA, USA). This instrument has
a diffuse reflectance geometry. The instrument was calibrated using dark and light reference
measurements every 10 min. The following parameters were used: 6 nm resolution; 100 ms
integration time; 1 scan per spectra. Spectra were collected in triplicate, from different
locations on each leaf. No tile was placed behind the leaves during measurement, to
simulate the situation that would take place during in-field measurements. The adaxial
and abaxial sides of each leaf were both randomly sampled, again to simulate a simplified
method for potential in-field use. Previous work indicated some variation in the spectral
absorbance from the adaxial and abaxial sides, albeit relatively minor [32].
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In addition to collecting spectra from all of the fresh leaves, NIR spectra were also
collected from 20 E. populnea leaves half-way through the drying process, and another 5
E. populnea leaves when they were completely oven-dried (0% moisture). Furthermore,
spectra were collected from 30 E. populnea leaves that had naturally dried (to varying
extents) after falling off the trees. Inclusion of these samples provided a wider range of
moisture contents for the creation of a robust prediction model.

In total, 174 leaf samples were scanned, each in triplicate (n = 522 spectra). One leaf
sample (n = 3 spectra) was excluded due to outlier values. The spectra were not averaged
prior to data analysis.

2.3. Measurement of LWC and Leaf Thickness

The leaf water content was measured by oven drying the leaves at 65 ◦C until they
reached a constant mass. The loss in mass was recorded for each leaf and the moisture
content was calculated and expressed as a percent of the fresh weight as per the follow-
ing formula:

LWC (%) = (massfresh − massdried)/massfresh × 100

Leaf thickness (recorded to ±0.1 µm) was measured near the centre of each leaf,
using an engineer’s micrometer (RS PRO External Micrometer; item code 705–1213; range
0–25 mm; accuracy ±0.004 mm). Care was taken to ensure that the thickness was not
measured through the central vein, which could have influenced the results.

2.4. Model Development

The NIR spectra were exported in ASCII (*.csv) format and subsequently imported
into Unscrambler X software (version 10; Camo Analytics; Oslo, Norway) for chemometric
analysis.

The spectra were split into 2 sets: the calibration set (comprising all 5 eucalypt species,
but excluding all E. platyphylla spectra), and the independent test set (comprising all of the
E. platyphylla spectra). Each model was built and cross-validated using the entire calibration
set, then applied to the independent test set to assess its performance. Full cross-validation
was performed on each calibration model using the leave-one-out (LOO) approach. All
models were limited to a maximum of 7 factors to avoid the potential of over-fitting.

Partial least squares regression (PLS-R) was performed in Unscrambler X, using leave-
one-out (LOO) cross-validation. Various spectral pre-processing treatments were trialled,
including standard normal variate (SNV) normalisation, multiplicative scatter correction
(MSC), and first and second derivative treatments using differing numbers of smoothing
points for the Savitzky–Golay algorithm. Abbreviations for these pre-processing methods
indicate the derivative and number of Savitzky–Golay smoothing points used. For example,
1d5 indicates 1st derivative with 5 smoothing points. Each pre-processing method was
trialled on the entire calibration set.

Support vector regression (SVR) was also trialled as an alternative algorithm method
to PLS-R. An Epsilon SVR model was used, with a radial basis function, gamma value of
0.008, and 2 classes.

Graphs were drawn in R Studio, running R version 4.0.5 [33].

2.5. In-Field Application

Finally, the NIR method was applied in-field to measure the LWC and leaf thickness
of every leaf found on a small E. populnea sapling (~2.5 m height; 67 leaves) in central
Queensland. The process of NIR spectra collection was quite rapid, with up to 7 leaves
scanned per minute.

In addition to collecting the NIR spectra, the height of each leaf above the ground was
measured using a laser distance measurer (Ozito LMR-025), to determine whether there
were any correlations between leaf height and LWC/thickness.
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3. Results and Discussion
3.1. Descriptive Statistics

As shown in Table 1, the size (as measured by fresh mass), thickness, and water content
of the leaves varied significantly between the six eucalypt species. The leaf thickness did not
vary significantly between the four Eucalyptus species; however, it was significantly lower
for the two Corymbia species (Figure 1). There was no clear difference in LWC between
Corymbia and Eucalyptus (Figure 2), with E. melanophloia and C. citriodora showing the lowest
LWC, and E. platyphylla and C. tessellaris the highest. This agreed with observations by
Wang et al. [16] that genetic factors had the largest impact on leaf moisture content, rather
than environmental or climatic factors.

Table 1. Physical parameters and leaf water contents for the fresh eucalypt leaf samples. The one-way
ANOVA row shows the results of ANOVA testing between the six species. Results followed by the
same superscript letter were not significantly different according to post-hoc Tukey testing at α = 0.05.

Species Leaf Fresh Mass
(g)

Leaf Thickness
(µm)

Leaf Water Content
(%)

C. citriodora (n = 20) 0.72 ± 0.24 c 28.4 ± 2.0 b 46.1 ± 1.3 d

C. tessellaris (n = 20) 0.39 ± 0.15 d 24.6 ± 3.7 c 51.2 ± 1.5 ab

Corymbia average (n = 40) 0.55 ± 0.26 26.5 ± 3.5 48.6 ± 3.0
E. melanophloia (n = 20) 1.29 ± 0.43 a 34.8 ± 2.7 a 45.3 ± 2.5 d

E. platyphylla (n = 20) 1.30 ± 0.48 a 34.0 ± 3.7 a 53.1 ± 4.6 a

E. populnea (n = 20) 0.96 ± 0.34 bc 34.8 ± 3.6 a 49.7 ± 5.2 bc

E. tereticornis (n = 19) 1.04 ± 0.29 ab 32.2 ± 3.2 a 47.8 ± 3.6 cd

Eucalyptus average (n = 79) 1.15 ± 0.42 34.0 ± 3.4 49.0 ± 5.0

One-way ANOVA *** *** ***
*** p < 0.001.
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There was a positive correlation between the fresh leaf mass and the leaf thickness
(r117 = 0.58, p < 0.001), but not with the LWC (Table 2). There was also a moderate negative
relationship between the leaf thickness and the LWC (r117 = −0.25, p < 0.01).

Table 2. Correlation between the fresh leaf mass, thickness, and water content of the eucalypt leaves
from five different species. Values are given as Pearson R correlation coefficients (n = 119 leaves).

Parameter Mass (g) Thickness (µm) LWC (%)

Mass (g) - - -
Thickness (µm) 0.58 *** - -

LWC (%) −0.13 NS −0.25 ** -
NS = p > 0.05, ** p < 0.01, *** p < 0.001.

3.2. NIR Spectra

The NIR spectra of the leaf samples showed a large peak at 1454 nm, a shoulder at
approximately 1350 nm, and a smaller peak centred at 1196 nm (Figure 3). These may
be attributed to the OH first overtone, CH first overtone combination, and CH second
overtone of the stretching mode, respectively [34,35]. Only a very small peak was observed
in the OH second overtone region (around 970 nm). Overall, the spectra were very similar
to those previously reported for E. pellita leaves [36] and mulberry (Morus alba) leaves [37].

Additionally, there were clear visual differences in the leaf samples with different
moisture contents, with lower absorption in the ca. 1450 nm region (first overtone of the
stretching mode (vs) of -OH) in samples with less water content.
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3.3. Prediction of Leaf Water Content

As shown in Table 3, most of the analyte values for the independent test set fell within
the range of values included in the calibration set. Moderately good results were found
for the prediction of LWC from the NIR spectra. The best pre-processing method was SNV
smoothing (Table 4), which gave an excellent R2

CV of 0.97 and RMSECV of 2.21% (Figure 4).
Furthermore, the performance on the independent test set was acceptable, with an R2

pred
of 0.80 and RMSEP of 2.46%.

Table 3. Descriptive statistics for the calibration and test sets. Values are given as mean ± SD, with
the range provided in brackets.

Sample Set Leaf Water Content (%) Leaf Thickness (µm)

Calibration—five different
species (n = 153) 41.1 ± 13.8 (0–62.6) 31.1 ± 4.9 (20.4–41.3)

Test set—E. platyphylla (n = 20) 53.1 ± 4.6 (47.9–64.6) 34.0 ± 3.7 (30.0–42.9)
Note that all sample numbers refer to the number of samples, not spectra; i.e., 20 samples = 60 spectra.

Table 4. Statistical results for the prediction of leaf water content (LWC) in eucalypt leaves using
different pre-processing methods combined with PLS regression.

Pre-Processing Factors R2
CV

RMSECV
(% w/w) RPD R2

pred
RMSEP
(% w/w)

Bias
(% w/w) Slope Intercept

None 3 0.939 3.41 4.05 0.567 4.38 −3.12 0.43 26.9
MSC 5 0.962 2.68 5.15 0.738 2.76 −0.90 0.51 25.1
SNV 6 0.974 2.21 6.24 0.803 2.46 −0.40 0.53 24.4
1d5 3 0.943 3.30 4.18 0.546 3.49 −1.68 0.50 25.1

1d11 4 0.955 2.93 4.71 0.788 2.85 −1.77 0.63 17.7
1d15 3 0.946 3.21 4.30 0.651 3.54 −2.32 0.64 16.8
2d5 5 0.953 3.00 4.60 0.478 3.99 −2.27 0.43 27.9

2d11 6 0.961 2.73 5.05 0.582 2.95 −1.34 0.58 21.1
2d15 4 0.947 3.17 4.35 0.576 2.99 −2.42 0.51 23.7
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Figure 4. Predicted vs. reference leaf water content in the calibration set (purple) and test set (yellow),
using PLSR with SNV pre-processing.

The loadings plot for the LWC model showed a strong positive loading at around
1404 nm, with a smaller shoulder at 1348 nm (Figure 5). This corresponded to the first
overtone of the OH bond in water, with potentially a more minor contribution from the CH
combination overtone.
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The use of support vector regression (SVR) was also trialled for the prediction of LWC
in the leaf spectra. Again, the pre-processing method had a strong impact on the model
accuracies, with the lowest RMSEP found using 2d11 pre-processing. A similar RMSEP
and higher linearity (R2

pred) were found using 2d15 pre-processing. As shown in Table 5,
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the SVR model with 2d15 pre-processing showed a moderate improvement in performance
over the PLSR method, with an R2

pred of 0.85 and RMSEP of 2.32%.

Table 5. Statistical results for the prediction of leaf water content (LWC) in eucalypt leaves, obtained
using different pre-processing methods combined with support vector regression.

Pre-Processing R2
CV

RMSECV
(% w/w) RPD R2

pred
RMSEP
(% w/w)

Bias
(% w/w) Slope Intercept

None 0.897 4.48 3.08 0.264 5.93 −4.26 0.10 43.3
MSC 0.961 2.76 4.99 0.72 3.67 −2.26 0.41 28.8
SNV 0.965 2.62 5.26 0.735 3.47 −2.01 0.43 28.2
1d5 0.973 2.31 5.96 0.837 2.69 −1.18 0.52 24.5

1d11 0.970 2.42 5.69 0.807 3.01 −1.48 0.47 26.8
1d15 0.968 2.49 5.53 0.784 3.16 −1.74 0.47 26.4
2d5 0.979 2.09 6.59 0.778 2.53 −0.72 0.55 23.1

2d11 0.979 2.09 6.59 0.800 2.22 −0.45 0.64 18.7
2d15 0.973 2.31 5.96 0.845 2.32 −0.71 0.58 21.7

3.4. Prediction of Leaf Thickness

Compared to the predictions of LWC, somewhat poorer prediction results were found
for the predictions of leaf thickness (Table 6). This is because the leaf thickness was indirectly
sensed by the magnitude of absorbance resulting from all IR-active compounds present in
the leaves. In other words, thinner leaves showed less absorbance from compounds such
as structural carbohydrates, proteins, and water, and therefore had weaker NIR signals.

Table 6. Prediction results for leaf thickness in eucalypt leaves using different pre-processing methods
combined with PLS regression.

Pre-Processing Factors R2
CV

RMSECV
(µm) RPD R2

pred
RMSEP

(µm) Bias (µm) Slope Intercept

None 5 0.543 3.29 1.48 0.546 2.98 −1.46 0.73 7.8
MSC 7 0.54 3.31 1.47 0.488 2.89 −1.10 0.61 12.1
SNV 6 0.524 3.36 1.45 0.571 2.83 −0.88 0.56 14.2
1d5 7 0.569 3.19 1.52 0.483 2.85 −0.25 0.70 10.1

1d11 7 0.557 3.24 1.50 0.500 2.83 −0.46 0.71 9.3
1d15 5 0.529 3.38 1.44 0.479 2.97 −0.40 0.73 8.7
2d5 7 0.602 3.07 1.58 0.487 2.90 −0.88 0.66 10.6

2d11 7 0.626 2.97 1.64 0.583 2.73 −1.11 0.76 7.0
2d15 7 0.608 3.05 1.59 0.480 3.14 −0.37 0.80 6.4

The best-performing PLSR model for leaf thickness was found using 2d11 pre-processing,
with an R2

CV of 0.63, RMSECV of 3.0 µm, R2
pred of 0.58, and RMSEP of 2.7 µm. This appears

to be the best pre-processing combination for smoothing out the background noise while
retaining the informative wavelengths for the prediction of LWC. While a greater number
of smoothing points does necessarily remove a proportionate number of wavelengths from
both ends of the spectrum, the wavelengths found in these regions were not considered to
contain informative peaks arising from OH bonds, so should not significantly influence the
results. The loadings plot for leaf thickness indicated the strongest contribution was from
approximately 1390 nm (Figure 6), again corresponding to the combination of the OH and
CH first overtones.

In contrast to the results observed for the prediction of LWC, the use of support vector
regression gave slightly poorer results for the prediction of leaf thickness, with an R2

pred of
0.53 and RMSEP of 2.8 µm (Table 7).
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MSC 0.448 3.61 1.35 0.438 2.84 −0.67 0.52 15.6 
SNV 0.461 3.57 1.36 0.443 2.85 −0.68 0.54 15.0 
1d5 0.589 3.12 1.56 0.469 2.88 −0.20 0.68 10.7 
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Figure 6. Loadings plot (first factor) for the prediction of leaf thickness using NIRS, with 2d11
pre-processing.

Table 7. Prediction results for leaf thickness in eucalypt leaves using different pre-processing methods
combined with support vector regression.

Pre-Processing R2
CV

RMSECV
(µm) RPD R2

pred
RMSEP

(µm) Bias (µm) Slope Intercept

None 0.257 4.22 1.15 0.312 3.18 −0.87 0.23 25.3
MSC 0.448 3.61 1.35 0.438 2.84 −0.67 0.52 15.6
SNV 0.461 3.57 1.36 0.443 2.85 −0.68 0.54 15.0
1d5 0.589 3.12 1.56 0.469 2.88 −0.20 0.68 10.7

1d11 0.539 3.30 1.47 0.441 2.97 −0.22 0.66 11.5
1d15 0.525 3.35 1.45 0.454 2.90 −0.33 0.65 11.7
2d5 0.673 2.79 1.74 0.522 2.70 −0.38 0.70 9.7

2d11 0.684 2.74 1.77 0.527 2.75 −0.62 0.72 8.9
2d15 0.595 3.09 1.57 0.461 2.87 −0.10 0.66 11.6

Despite the lower accuracy compared with the prediction of LWC, the results may be
useful for general screening of leaf thickness in some settings. For example, leaf thickness
could be another piece of information extracted from leaf NIR spectra collected during
field surveys.

3.5. Correlations between Leaf Height and LWC/Thickness

Finally, to demonstrate the potential in-field use of this technique, NIR spectra were col-
lected from all 67 leaves on a 2.5-metre-tall E. populnea sapling. The predicted LWCs ranged
from 44.0–53.9% (mean 47.8 ± 2.3%), while the leaf thickness was between 7.1–89.9 µm
(mean 42.4 ± 19.3 µm).

There was no significant correlation between leaf height and LWC or thickness
(Figure 7; p > 0.05 for both). However, LWC and thickness were positively correlated
with one another in this sapling (r65 = 0.65, p < 0.001; Figure 7). This concurred with
previous research by Búrquez [38], who found a positive correlation between leaf thickness
and water potential in four non-woody species.
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4. Conclusions

This study developed for the first time a rapid NIRS model for the prediction of leaf
water content across Corymbia and Eucalyptus genera. High accuracy was obtained using
NIRS for the prediction of leaf water content, with an R2

pred of 0.85 and RMSEP of 2.32.
Somewhat poorer results were found for the prediction of leaf thickness; however, the
results could still be useful for screening purposes where high accuracy is not required.
Handheld NIR instrumentation with a diffuse reflectance geometry—such as the instrument
used in this study—may be particularly useful for the rapid, in-field measurement of LWC
during survey studies.
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