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Abstract: This study investigates the application of carbon quantum dots as tracers in inter-well
connectivity monitoring. A new laboratory-made water-soluble carbon quantum dot fluorescent
tracer (CQD-W) was studied using 3D fluorescence characterization, structural characterization,
reservoir suitability evaluation, and core flow experiments. The experimental results showed that
CQD-W has a size of about 2 nm, a minimum detection limit of 10−2 mg·L−1. It has good stability
when the salinity is 200,000 mg·L−1, the concentration of Ca2+ is 1000 mg·L−1, the pH value is 1–9,
and the temperature is 80 ◦C. Because CQD-W contains many functional groups, such as carboxyl
and hydroxyl, it shows good water solubility and has a negative surface charge. In the process
of formation flow, CQD-W has a small adsorption amount, high tracer resolution, and excellent
injectivity and mobility, meaning it is less likely to cause reservoir damage. Through the study of this
method, the application field of carbon quantum dots is broadened, and it is proved that the CQD-W
fluorescent tracer has a high potential for application in the oil industry, laying the foundation for the
popularization of this technology.
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1. Introduction

In oil and gas development, it is important to obtain inter-well parameters. Tracer
technology is considered an effective way to obtain subsurface information [1,2]. The
tracers currently used are primarily classified as radioactive tracers and non-radioactive
tracers [3,4]. Radioactive tracers are primarily represented by tritium and tritium com-
pounds that are used in small quantities, are easy to detect, and have a minimum detection
limit of 10−5 mg·L−1. However, they are limited due to their radioactivity, the complexity
of operation, hazards to staff, and environmental safety [5]. The non-radioactive tracers are
primarily thiocyanates (SCN−), halogenated ions (Cl−, Br−), fluorescent dyes, halogenated
hydrocarbons, and alcohols. They have been commonly used as inter-well tracers due to
their wide variety and low toxicity. However, these tracers also have disadvantages, such
as poor adaptability and selectivity, easy interaction with minerals, and adsorption [6–9].

Carbon quantum dots are a new class of carbon nanomaterial with fluorescent proper-
ties [10,11]. Due to their advantages in water solubility, chemical inertness, low toxicity, easy
functionalization, and resistance to photobleaching, they are primarily used in biomedical
imaging [12–17], photocatalysis [16–19], and water treatment [20,21]. These nanomaterials
consist of a carbon core (internal carbon atoms) and surface functional groups. The carbon
core is a skeleton composed of sp2 heterogeneous graphitic microcrystalline carbon and sp3

heterogeneous amorphous carbon. Its surface usually shows abundant oxygen-containing
functional groups, such as hydroxyl and carboxyl groups [22–29]. Therefore, the carbon
quantum dots exhibit good stability and water solubility. In addition, a rigid planar struc-
ture is formed in the center of the carbon nucleus. The energy trap formed on the surface
can trap additional electrons to ensure that it fluoresces strongly when excited [25,30].
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Related studies in the biomedical field have shown that carbon quantum dots exhibit strong
mobility and have more advantages in terms of luminescence intensity and stability than
conventional organic dyes [31,32]. In addition, these nanomaterials inherit the biocom-
patibility of carbon materials and can meet the needs of real-time monitoring of complex
biological environments [33,34].

In recent years, related research scholars started to study the application of carbon
quantum dots as tracers in oil fields. Murugesan et al. [2] synthesized a nitrogen-doped
carbon quantum dot using an electrochemical method and preliminarily verified the po-
tential of carbon quantum dots as a tracer through a core flow experiment. Ma et al. [1]
synthesized five carbon quantum dots using a hydrothermal method. He conducted tem-
perature and acid-base resistance tests as well as core flow experiments. He confirmed that
the adsorption of carbon quantum dots on the rock surface determines whether they can be
effective as tracers. Hu et al. [35] synthesized a carbon quantum dot and studied its flow
performance in sandstone cores. The results showed that the carbon quantum dots could
detect the oil saturation of unknown sandstone cores. Shi et al. [25] synthesized a high
fluorescence yield quantum dot using a hydrothermal method and confirmed that carbon
quantum dots have good stability, mobility, and low adsorption with different minerals
through reservoir adaptability evaluation experiments and core flow experiments.

Previous studies on applying carbon quantum dots as tracers in the petroleum industry
have focused on the reservoir suitability study and oil saturation determination of carbon
quantum dots. In this paper, the team has designed a Si-doped CQD-W fluorescent nano-
tracer, conducted preliminary research on its three-dimensional fluorescence characteristics,
structural characteristics, and reservoir adaptability, and verified the injectivity and mobility
of CQD-W through single-tube core flow experiments. Finally, a double-tube core flow
experiment study was conducted to confirm whether carbon quantum dots have the ability
to distinguish dominant channels. This latter experiment is expected to be applied to oil
field development.

2. Materials and Methods
2.1. Experimental Materials

Main experimental reagents used are showned in Table 1.

Table 1. Main experimental reagents.

Reagent Name Purity Manufacturers

Sodium chloride (NaCl) Analysis of pure National Pharmaceutical Reagent
Calcium chloride (CaCl2) Analysis of pure Sinopharm Reagent

Disodium hydrogen phosphate
(Na2HPO4) Analysis of pure National Pharmaceutical Reagent

37% Hydrochloric acid (HCI) Analysis of pure National Pharmaceutical Reagent
Citric acid anhydrous (C6H8O7) Analysis of pure National Pharmaceutical Reagent

Potassium bromide (KBr) Analysis of pure National Pharmaceutical Reagent
CQD-W is homemade in the laboratory; quartz sand is purchased from Jiangxi Shanggao Huasil Mining Co.;
Artificial Sandstone Cores (Φ2.5 × 10) A (611 mD) and B (795 mD).

2.2. Experimental Methods
2.2.1. Method of Infrared Spectroscopy Test

6 mg of CQD-W and 600 mg of KBr were taken and ground, and 10 Mpa pressure
was applied, pressing the materials into thin slices. The treated samples were tested by
infrared spectroscopy using a Fourier transform infrared spectrometer (Vector-33, Bruker
Instruments, Germany) [1,35].

2.2.2. Method of ζ-Potential Test and Particle Size Characterization

A ζ-potential cuvette was loaded with 1 mg·L−1 CQD-W solution 0.5 mL and the
cuvette was placed into a nanoparticle size ζ-potential analyzer (Litesizer 500, Anton Paar,
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Austria) for ζ-potential testing. The CQD-W particle size testing was performed similarly,
with a quartz cuvette chosen for the test [36].

2.2.3. Method of Fluorescence Characteristics Test

The concentration of 1 mg·L−1 CQD-W solution was configured. 1 mL of the solution
was taken in a quartz fluorescent cuvette and the quartz fluorescent cuvette was put into a
fluorescence spectrophotometer (F97pro, Shanghai Prism, China) for three-dimensional
fluorescence scanning with a slit width of 10 and a gain of 9 (the fluorescence intensity tests
were all tested under this parameter).

The standard concentration solutions of 0~20 mg·L−1 were configured. The quartz
fluorescent cuvettes with a standard concentration of CQD-W solutions were put into a
fluorescence spectrophotometer (F97pro, Shanghai Prism, China) at the optimal excitation
wavelength, emission wavelength, and slit width to measure the fluorescence intensity.
Finally, the relationship between CQD-W and fluorescence intensity was obtained.

2.2.4. Method of Reservoir Suitability Evaluation

The CQD-W mixed solutions with concentrations of 0~200,000 mg·L−1 NaCl of
0.1 mg·L−1 CQD-W, 0~1000 mg·L−1 CaCl2 of 0.1 mg·L−1 CQD-W, and 0.1 mg·L−1 CQD-
W at pH = 1~9 were prepared and tested for CQD-W fluorescence intensity by diluting
10 times with pure water.

CQD-W mixed solutions with concentrations of 0.1 mg·L−1 CQD-W and 5000 mg·L−1

NaCl were prepared, placed in small sample bottles, sealed and heated in an electric
thermostatic water bath (DK-8AX, Shanghai Heheng Instruments, China). Every 24 h, a
portion of the mixed solution was removed and diluted 10 times using pure water for the
CQD-W fluorescence intensity test (repeated for one week).

δ =
x1 − x2

x1
(1)

where: δ—relative error.
x1—control CQD-W concentration.
x2—CQD-W concentration in the experimental group.
The CQD-W mixed solution with concentrations of 0.1 mg·L−1, 5000 mg·L−1 NaCl was

prepared, and the 0.1 mg·L−1 CQD-W solution and liquid paraffin were mixed according to
the volume ratio (20:20) with magnetic stirring for 5 h. Then, the solution was transferred
to a partition funnel and left for 2 h. After being completely layered, the aqueous/oil phase
fraction was removed for fluorescence intensity test analysis [37].

2.2.5. Static Adsorption Experiments

CQD-W solution of 0.1 mg·L−1 was added to a 250 mL reagent bottle with quartz
sand (60–120 mesh) at a solid-liquid ratio of 1:4 (mass ratio). Then the bottle was placed in
a 50 ◦C digital water bath shaker (SHA-CA, Changzhou Jintan Kexing Instruments) for 2 h.
Every 2 h, all the supernatant samples were removed and separated by centrifugation at
4000 r/min for 10 min in a benchtop high-speed centrifuge (TG16, Shanghai Lu Xiangyi
Centrifuge Instruments Co. Ltd.). Part of the supernatant was removed to determine its
fluorescence intensity, then new quartz sand was added according to the solid-liquid ratio
of 1:4 for adsorption. This process was repeated 8 times [38].

Γ =
(C0 − C1)V

m
(2)

where: Γ—apparent adsorption of CQD-W per unit mass of quartz sand, ug/g.
C0—concentration of CQD-W before adsorption, mg/L.
C1—concentration of CQD-W after adsorption, mg/L.
V—the volume of CQD-W added, mL.
m—single quartz sand mass, g.
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2.2.6. Core Flow Experiments

The multi-functional core repelling device (Jiangsu Lianyou Research Instruments)
was installed. The core A (porosity 25.1%) was saturated with deionized water before
the experiment and injected with a mixture of 5000 mg·L−1 NaCl and 1 mg·L−1 CQD-W
solution at a constant flow rate of 1 mL/min at standard atmospheric pressure and a
temperature of 25 ◦C. The brine concentration of the extracted fluid and the concentration
of the CQD-W solution were measured periodically for a certain PV. The concentration
output curves of NaCl and CQD-W were summarized. The schematic diagram of the
single-tube repulsion device is shown in Figure 1.
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Figure 1. Schematic diagram of core flow device.

The experimental method for the double-tube core flow is similar, except that an
additional group of core B (porosity 30.4%) is connected in parallel for the experiment
(cores A and B are saturated with 5000 mg·L−1 NaCl before the experiment), and 0.1 PV
5000 mg·L−1 NaCl mixed with 5 mg·L−1 CQD-W is injected at a constant flow rate of
2 mL/min. The concentration is detected as above.

3. Results and Discussion
3.1. Characterization Analysis of CQD-W
3.1.1. Infrared Spectral Analysis of CQD-W

As shown in Figure 2, the Fourier transform infrared (FTIR) spectra indicated CQD-W
exhibits abundant hydrophilic groups on its surface, including O-H (3600–3100 cm−1),
C=C (1525.63 cm−1), C=O (1639.03 cm−1 ) and Si-O (1208.87 cm−1 ), thus promoting a
good solubility in water. In addition, the O-H vibrational band, about 3437.14 cm−1, is
broad peaked, indicating that the CQD-W surface has multiple structures of hydroxyl
groups, thus leading to high polarity and hydrophilicity [35,39,40]. These functional
groups make the carbon quantum dots scalable and their surface tunable for a variety of
applications [7,41,42].
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Figure 2. Fourier Transform Infrared (FTIR) Spectroscopy of CQD-W.

3.1.2. ζ-Potential Analysis of CQD-W

As shown in Figure 3, the average ζ-potential of CQD-W is 0.3 mV, primarily due to
the presence of Si-O and carboxyl groups’ in the CQD-W structure. In general, the carboxyl
group exists in the dissociated state (-COO-). The covalent bond between Si-O is very polar,
and it will attract many hydrogen ions in water to form Si-OH, that will be ionized under
certain conditions [43–47].

Si − OH 
 Si − O− + H+ (3)

Si − OH + OH− 
 Si − O− + H2O (4)
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3.1.3. Particle Size Test Analysis of CQD-W

As shown in Figure 4, CQD-W has a very narrow strong peak at 0~2 nm, indicating
that CQD-W has good particle size and particle size homogeneity (particle size is about
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1 nm). The size of CQD-W microspheres needs to be adapted to the fluid flow in the
formation. According to the equation of the hydrodynamic radius of the pore throat [48]:

R =
d
4
=

r
2
=

1
2

(
8K
φ

)0.5
(5)

where: R—the hydrodynamic diameter of the orifice throat.
K—permeability.
φ—Take the value of 10%.
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To ensure that the tracer particles can pass through the formation pore throat smoothly,
the radius of the tracer microspheres should be no larger than the hydrodynamic radius
of the pore throat. For size 10 nm particles, this generally applies to reservoirs with
permeability above 0.005 mD.

3.2. Analysis of CQD-W Fluorescence Characteristics
3.2.1. Three-Dimensional Fluorescence Characterization of CQD-W

As shown in Figure 5, CQD-W appears clear and transparent under natural light
conditions and exhibits a strong fluorescence emission band (green fluorescence) under UV
light irradiation.
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As shown in Figure 6, the three-dimensional fluorescence spectra showed that the
fluorescence waveform of CQD-W had a single fine shape and obvious fluorescence charac-
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teristics with good discrimination. The best excitation wavelength was 491.1 nm and the
best emission wavelength was 518.9 nm.
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3.2.2. Standard Curve of CQD-W

As shown in Figure 7, the concentration of CQD-W is no longer linear above 3 mg·L−1.
This is primarily because when the CQD-W concentration is too high due to factors such as
internal filtration and energy transfer, causing the fluorescence intensity and concentration
are not stable, and fluorescence quenching phenomena such as linearity and spectral
distortion [49–52]. In the concentration range of 0 mg·L−1 to ~0.5 mg·L−1, the tracer
concentration has an excellent linear correlation with the fluorescence intensity (bandwidth
10, gain 9), which satisfies the Lang–Bier law. It can be used as a standard curve for
concentration measurement [53,54], and its linearity equation is as follows.

I = −55.50 + 13697.96 × C
(

R2 = 0.998
)

(6)
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Figure 7. The concentration of CQD-W versus fluorescence intensity (bandwidth 10, gain 7).

3.3. Reservoir Suitability Analysis of CQD-W
3.3.1. Stability Analysis of CQD-W

Common ions in stratigraphic water may bind to the tracer and thus alter the fluorescence
intensity of the tracer [55]. This paper examines the measurements of 0~200,000 mg·L−1 NaCl
solution and 0~1000 mg·L−1 CaCl2 solution in a calibrated 0.1 mg·L−1 tracer solution.
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As shown in Table 2, the mineralization and Ca2+ had minimal interference with the
concentration of the tracer and their concentration deviations were within 5%, indicating
that the CQD-W tracer has good stability [25,35,56].

Table 2. Effect of stratigraphic ions on the stability of CQD-W.

The
Concentration of

NaCl (%)

The
Concentration of
CQD-W (mg/L)

Relative Error
The

Concentration of
CaCl2 (mg/L)

The
Concentration of
CQD-W (mg/L)

Relative Error

Blank group 0.10083 0.00% Blank group 0.10307 0.00%
0.5 0.10087 0.04% 50 0.10482 1.70%
5 0.10206 1.21% 100 0.10488 1.76%

10 0.10243 1.58% 500 0.10581 2.66%
20 0.10190 1.06% 1000 0.10693 3.75%

The concentration variation of CQD-W solution of 0.1 mg·L−1 in the temperature range
of 30~80 ◦C is shown in Figure 8. The results showed that temperature and aging time
influenced the measurement results, and its measurement error was basically within 10%.
The maximum deviation did not exceed 8%, indicating that CQD-W has good reservoir
adaptability [25,35].
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of time.

As shown in Table 3, the pH value of the solution had little effect on the measurement
results, and its concentration deviation was within 6%, indicating that the tracer has good
pH stability [56].
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Table 3. Effect of pH on concentration test of CQD-W.

pH The Concentration of CQD-W (mg/L) Relative Error

Blank group 0.10785 0.00%
1 0.10189 5.53%
3 0.10234 5.11%
5 0.10714 0.66%
7 0.10416 3.43%
9 0.10564 2.05%

3.3.2. Solubility of CQD-W in Oil and Water

Since formation fluids generally exist as multiphase flows with oil and water coexis-
tence, the dissolution properties and partitioning ratio of tracer in oil and water phases
significantly impact the separation methods and test results of samples [57,58]. As shown
in Figure 9, the water phase part of the solution showed obvious fluorescence under UV
irradiation after CQD-W and liquid wax were entirely mixed and left to stand. In contrast,
the oil phase part did not show fluorescence characteristics.
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As shown in Figure 10, the fluorescence value of CQD-W changed very little after
oil-water mixing, indicating that this CQD-W has good hydrophilic properties. It is because
CQD-W contains many carboxyl and hydroxyl groups, that can easily form hydrogen
bonds with water molecules and therefore has better water solubility [59,60]. In the actual
testing process, only a simple oil-water separation of the extracted fluid is required for
testing and analysis.

3.3.3. Static Adsorption Experiments of CQD-W

Tracer adsorption occurs when the tracer flows over the rock surface. This leads to
tracer loss and may impact the tracer concentration detection during the actual detection
process. As shown in Figure 11, the tracer concentration of CQD-W was 0.92 mg·L−1 after
eight repeated adsorptions, with a fluctuation of 8.7% relative to the initial concentration
and average adsorption of 0.0435 ug/g. This is because CQD-W is negatively charged with
the formation rock and its adsorption is low under the effect of electrostatic repulsion [25].
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3.4. Core Flow Experiment
3.4.1. Injectivity and Brine Flow Variability Analysis of CQD-W

As shown in Figure 12, in CQD-W and brine synchronous flow experiments, CQD-W
and brine flow were consistent with each other and had good flow performance inside the
core. No adsorption hysteresis was observed in the CQD-W concentration curve when
compared with the brine flow curve. In the process of core flow, the pressure inside the core
remained unchanged after injecting CQD-W and pure water. It indicates that the internal
pore structure of the core was not changed after the flow of CQD-W, which is not easy to
cause reservoir damage and other problems [25].
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As shown in Figure 13, the cumulative recovery of NaCl reached 99.21%, and the
cumulative recovery of CQD-W reached 96.83%. The two confirm each other, indicating
that the adsorption between CQD-W and the core is minimal, primarily because of the
repulsive effect between CQD-W and the negatively charged core [7,25].
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3.4.2. Description of Cores by CQD-W

As shown in Figure 14, after injecting a 0.1 PV small segment plug CQD-W in two
segments of the core with little difference in permeability, the slightly larger permeability
core saw the CQD-W first. This is because the flow rate of the segment plug in the flow
pipe increases after the permeability increases and the time to see the CQD-W becomes
shorter. With the same plug length, the time difference between the leading and trailing
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edges of the plug to reach the production well becomes shorter. Therefore, the overall
time to see the CQD-W becomes shorter. This is reflected in the shape of the curve, i.e.,
the bandwidth becomes narrower [61]. As a side effect, the CQD-W tracer can distinguish
superior channels with higher permeability and has excellent tracer resolution.
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As shown in Figure 15, the cumulative recovery of low and high permeability cores
reached 97.41% and 96.57%, respectively, indicating that the adsorption of CQD-W is low
and meets the performance requirements for the tracer used.
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As shown in Figure 16, the two sections of cores with little difference in permeability
were subjected to core flow experiments. The shunt ratios of both in the pre-water drive,
CQD-W injection, and subsequent water drive stages were maintained, indicating that the
internal pore structure of the cores was less affected by the flow of CQD-W [62,63].
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4. Conclusions

The surface of CQD-W is rich in polycarboxyl and siloxy groups with good water
solubility, and CQD-W shows negative electrical properties in pure water; this makes
CQD-W adsorption on the rock surface very low. The particle size characterization results
show that the average particle size of CQD-Ws is 2 nm; this can meet the reservoir mobility
and injectivity with permeability above 0.005 mD.

(1) CQD-W three-dimensional fluorescence spectrogram shows that the three-dimensional
fluorescence peak is a single peak that has better differentiation in practical application
detection. The minimum detection limit of CQD-W reaches 10−8. CQD-W has the
advantage of small dosage, convenient detection, and the luminescence situation of
CQD-W is very little affected by temperature, mineralization, and pH.

(2) In the core flow experiment, after injecting a 0.1 PV small section plug CQD-W tracer
in two sections of cores with little difference in permeability, the permeability of
slightly larger cores saw the CQD-W first. This shows that CQD-W can distinguish
the superior channel with higher permeability and has excellent tracer resolution. At
the same time, CQD-W has an excellent flow ability and will not change the internal
pore structure of the core during the flow, making it more difficult to produce reservoir
damage. The cumulative recovery rate in the low and high permeability cores reached
97.41% and 96.57%, respectively, primarily because CQD-W has negative electricity
and the negative core has a repulsive effect between the two.

(3) CQD-W testing and characterization, reservoir suitability analysis, and core flow
experiments can verify that CQD-W meets the performance requirements of con-
ventional tracers and, to a certain extent, proves the possibility of CQD-W’s future
application in oil field sites. It can also provide in-depth guidance on the preparation
of target CQD-W materials and broaden the application fields of carbon quantum dots.
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