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Abstract: The centuries-old idea of a lighter-than-air vacuum balloon has not materialized yet as
such structure needs to be both light enough to float in the air and strong enough to withstand
atmospheric pressure. We propose a design of a rigid spherical sandwich shell and demonstrate that
it can satisfy these stringent conditions with commercially available materials, such as boron carbide
ceramic and aluminum alloy honeycomb. A finite element analysis was employed to demonstrate
that buckling can be prevented in the proposed structure. Also discussed are other modes of failure
and approaches to manufacturing.
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1. Introduction

The idea of a lighter-than-air vacuum balloon is centuries old. In 1670, F. Lana di
Terzi proposed a design of an airship where buoyancy was to be created by evacuated
copper spheres (Ref. [1], see also [2] containing historical information related to the design).
Vacuum balloons could aid in important applications, such as transportation, internet
delivery, and cellular communications, as they have some advantages compared to lighter-
than-air gas balloons: they do not need hydrogen, which is hazardous, or helium, which
is increasingly expensive and difficult to contain; they do not need constant heating, like
hot-air balloons, and they can have simpler altitude control through pumping air in and
out. However, this dream of vacuum balloon has not materialized so far because it is
very difficult to design and manufacture a shell that is light enough to float in the air and
strong enough to reliably withstand the atmospheric pressure. For example, A.F. Zahm [3]
calculated the stress in a thin homogeneous one-layer rigid shell with vacuum inside and
zero buoyancy, so that its mass equals that of the displaced air:

4
3

πR3ρa = 4πR2hρs, (1)

where R is the radius of the shell, h is the shell thickness, and ρa and ρs are the densities of
air and of the shell material, respectively (we use an approximation for a thin shell). Let us
then consider the condition of equilibrium for half of the shell (see Figure 1):

2πRhσ = πR2 pa, (2)

where σ is the compressive stress in the shell and pa = 101 kPa is the atmospheric pressure
at 0 ◦C (we used a condition of equilibrium for a hemisphere of air in the atmosphere to
calculate the right-hand side).
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i.e., the stress is of the same order of magnitude as the compressive strength of contempo-
rary aluminum alloys. It is important to note that this result does not depend on the radius 
of the shell. 

 
Figure 1. Stress and atmospheric pressure acting on one half of an evacuated spherical shell (not to 
scale). 

A.F. Zahm notes that, while the results of stress calculation are quite problematic, 
buckling is an even more dangerous mode of failure for such a structure. Let us perform 
a simple buckling analysis for this structure [4]. The critical buckling pressure for a thin 
spherical shell is given by the well-known formula of the linear theory of stability [5]: 
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ally spherical shape would inevitably fail already at ~0.2𝑝 . Thus, one-layer shells made 
of any solid material in existence either cannot float in the air or have no chance of with-
standing the atmospheric pressure. (It should be noted that we only considered the spher-
ical shape in our analysis, as this shape provides the best volume-to-surface ratio [6] and 
is believed to be the optimal one to withstand external pressure with minimum weight 
[7].) 

Problems of this kind are quite common in aircraft design, and typical solutions are 
multilayer shells with light core or stiffened shells. 

In our patent application [4], we defined viable designs of a vacuum balloon based 
on three-layer shells made of commercially available materials. Numerous patents and 
articles on vacuum balloons had been published earlier (see, e.g., [8]), but, to the best of 
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Figure 1. Stress and atmospheric pressure acting on one half of an evacuated spherical shell (not
to scale).

We obtain:
h
R

=
ρa

3ρs
, σ =

3
2

ρs

ρa
pa. (3)

If ρs = 2700 kg·m−3 (the density of aluminum), ρa = 1.29 kg·m−3 (the density of air at
0 ◦C and 1 atm (101 kPa)), and pa = 1.01×105 Pa, then h

R ≈ 1.6 × 10−4, σ ≈ 320 MPa, i.e.,
the stress is of the same order of magnitude as the compressive strength of contemporary
aluminum alloys. It is important to note that this result does not depend on the radius of
the shell.

A.F. Zahm notes that, while the results of stress calculation are quite problematic,
buckling is an even more dangerous mode of failure for such a structure. Let us perform
a simple buckling analysis for this structure [4]. The critical buckling pressure for a thin
spherical shell is given by the well-known formula of the linear theory of stability [5]:

pcr =
2Eh2√

3(1− µ2)R2
, (4)

where E and µ are the modulus of elasticity and the Poisson’s ratio of the material of the
shell, respectively. If pcr = pa and, e.g., µ = 0.3, then

E
ρ2

s
=

9pa
√

3(1− µ2)

2ρ2
a

≈ 4.5× 105 kg−1m5s−2. (5)

Even if we use diamond as the shell material (E = 1.2× 1012 Pa and ρs = 3500 kg·m−3),
we obtain

E
ρ2

s
≈ 105 kg−1m5s−2. (6)

In other words, even the maximally optimized homogeneous diamond shell of ideally
spherical shape would inevitably fail already at∼ 0.2 pa. Thus, one-layer shells made of any
solid material in existence either cannot float in the air or have no chance of withstanding
the atmospheric pressure. (It should be noted that we only considered the spherical shape
in our analysis, as this shape provides the best volume-to-surface ratio [6] and is believed
to be the optimal one to withstand external pressure with minimum weight [7].)

Problems of this kind are quite common in aircraft design, and typical solutions are
multilayer shells with light core or stiffened shells.



Eng 2021, 2 482

In our patent application [4], we defined viable designs of a vacuum balloon based
on three-layer shells made of commercially available materials. Numerous patents and
articles on vacuum balloons had been published earlier (see, e.g., [8]), but, to the best of our
knowledge, none of them properly addressed the crucial issue of buckling. More recently,
other work addressing the issue of buckling for vacuum balloons was published (see,
e.g., [9–13] and references there). The recent popular articles on vacuum balloons [14,15]
also reflect current interest in this topic.

As our design [4] garnered some interest, it is advisable to describe it here, in a journal
article format, after significant rework, providing details of the all-important buckling
analysis. Detailed comparison with the vastly different designs featured in related work
by others [9–13] would perhaps require finite-element analysis of each proposed structure
and is beyond the scope of this article. We would just like to note that our design, unlike
many others, is spherically symmetric and scalable (multiplying all linear dimensions by
the same factor provides an equally viable design; see some caveats related to intracell
buckling in Section 2.2.), so it has fewer parameters (as there is no dependence on the
polar and azimuthal angles or absolute linear dimensions), which facilitates its analytical
optimization. It is also noteworthy that the design does not contain any components
under tension. This may be advantageous for using materials such as ceramics, whose
compressive properties are typically much better than the tensile properties.

2. Methods and Results
2.1. A Sandwich Vacuum Balloon and Its Buckling Analysis

As an example, let us consider a three-layer spherical shell with face skins of equal
thickness h1 = h2 and a core of aluminum alloy honeycomb of thickness h3 (see Figures 2
and 3 below).
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Figure 3. A fragment of a spherical sandwich shell (a) before and (b) after assembly (not to scale). 

In order to prove the design feasibility, we used parameters of commercially availa-
ble materials in our study. Boron carbide ceramic was chosen as the face skin material 
(density 𝜌 = 2500 kg ∙ m , elasticity modulus 𝐸 = 460 GPa,  compressive strength 𝜎 = 3200 𝑀𝑃𝑎, Poisson’s ratio 𝜇 = 0.17  [16]). PLASCORE PAMG-XR1-3.1-1/8-7-N-
5056 honeycomb was chosen as the core material (cell size 1/8 inch (3.2 mm), nominal foil 
gauge 0.0007 inch (18 μm), nominal density 3.1 pcf ( 50 kg ∙ m ), bare compressive 
strength 340 psi (2.3 MPa) / modulus 97 ksi (670 MPa), plate shear strength 250 psi 
(1.7 MPa) (“L”), 155 psi (1.1 MPa) (“W”) / modulus 45 ksi (310 MPa) (“L”), 20 ksi (140 MPa) 
(“W”) [17]). 

If 𝑅 is the radius of the shell, we assume that 𝑅 ≫ ℎ ≫ ℎ . To assess the design 
feasibility, we also anticipate that the shell allows a small payload fraction 𝑞 = 0.1 (the 
ratio of the mass of the payload at zero buoyancy and the mass of the displaced air). Then, 
the condition of zero buoyancy has the following form: 
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Figure 3. A fragment of a spherical sandwich shell (a) before and (b) after assembly (not to scale).

In order to prove the design feasibility, we used parameters of commercially available
materials in our study. Boron carbide ceramic was chosen as the face skin material (density
ρ f = 2500 kg·m−3, elasticity modulus E f = 460 GPa, compressive strength σf = 3200 MPa,
Poisson’s ratio µ f = 0.17 [16]). PLASCORE PAMG-XR1-3.1-1/8-7-N-5056 honeycomb
was chosen as the core material (cell size 1/8 inch (3.2 mm), nominal foil gauge 0.0007
inch (18 µm), nominal density 3.1 pcf (50 kg·m−3), bare compressive strength 340 psi
(2.3 MPa)/modulus 97 ksi (670 MPa), plate shear strength 250 psi (1.7 MPa) (“L”), 155 psi
(1.1 MPa) (“W”)/modulus 45 ksi (310 MPa) (“L”), 20 ksi (140 MPa) (“W”) [17]).

If R is the radius of the shell, we assume that R � h3 � h1. To assess the design
feasibility, we also anticipate that the shell allows a small payload fraction q = 0.1 (the ratio
of the mass of the payload at zero buoyancy and the mass of the displaced air). Then, the
condition of zero buoyancy has the following form:

4
3

πR3ρa(1− q) = 4πR2
(

2h1ρ f + h3ρ3

)
(7)

or
6h′1ρ′f + 3h′3ρ′3 = 1− q, (8)

where h′1 = h1
R , h′3 = h3

R , ρ′f =
ρ f
ρa

, ρ′3 = ρ3
ρa

.
The buckling stability condition that we used is described by the following semi-

empirical formula for critical pressure obtained for three-layer domes [18]:

pcr = 2E f
h1(h3 + h1)

R2 ≈ 2E f
h1h3

R2 = 2E f h′1h′3. (9)

In this case, E f is the modulus of elasticity of the face skin material, and pcr is the
maximum pressure at which the three-layer shell is stable. The requirements for core
rigidity are discussed below, but let us first find the values of h′1 and h′3 that maximize pcr.
Using Equation (8), let us eliminate h′1 from Equation (9):

pcr = 2E f
1− q− 3h′3ρ′3

6ρ′f
h′3 (10)
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The value of pcr is maximal for

h′3 = h′3opt =
1− q
6ρ′3

≈ 3.9× 10−3 (11)

In that case, the optimal values of h′1 and pcr are:

h′1 = h′1opt =
1− q− 3h′3ρ′3

6ρ′f
≈ 3.9× 10−5, pcr ≈ 1.37 pa (12)

This is a good indication that the design is feasible. However, we need to assess the
buckling stability more accurately and consider other modes of failure. We cannot rely
on the results of the above analytical approach as it hinges on the semi-empirical formula
Equation (9) from [18]. The validity limits of this formula are not clear; in particular, it
is not clear how this formula should be modified to take into account manufacturing
imperfections when they are different from those in the shells of [18]. The results of the
above approach were verified and optimized by a finite element analysis (FEA) using
ANSYS (ANSYS Mechanical Enterprise, R19.0), which enabled us to compute the stress
and strain in the shell components and to perform the eigenvalue buckling analysis (which
is actually a classical Euler buckling analysis). The results of the FEA analysis confirmed
that the analytical approach provides reasonable estimates and a good starting point for
optimization in our case. However, we base the conclusions of this article on the results of
the FEA analysis, not on the results of the analytical approach.

For the FEA analysis, a 2D axisymmetric model in the spherical system of coordinates,
with due regard for corresponding boundary conditions at the edges, was found to be
sufficient and adequate (Figure 4). In this model, PLANE82 2D high-order 8-node elements,
which are well suited for curved boundaries, were used for the finite element mesh in
axisymmetric mode. The mesh was heavily refined and the elements’ aspect ratios were
appropriately adjusted. The mesh is shown in Figure 5.
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solid model.
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Figure 5. A fragment of the mesh used for the FEA (portions of the upper face skin and honeycomb 
are shown). The face skin has 6 divisions radially (the upper six “layers” of elements in the Figure). 
The honeycomb core has 32 divisions radially. 

Some results of FEA are shown in Figure 6. 

 
Figure 6. Von Mises stress in the structure (fragment) from the FEA analysis (buckling safety factor 
of 2.65 and payload fraction of 0.1). The maximum stress in the face skins does not exceed 645 MPa, 
and the stress in the honeycomb is comparable to the atmospheric pressure. 

In the FEA, the anisotropic material properties of the honeycomb were treated in ac-
cordance with recommendations of a honeycomb manufacturer (Ref. [19], p. 20). For the 
sake of simplicity, we assume that the honeycomb is a transversally isotropic material, so 
the lesser of the two values of shear modulus from [17] was used (which makes the results 

Figure 5. A fragment of the mesh used for the FEA (portions of the upper face skin and honeycomb
are shown). The face skin has 6 divisions radially (the upper six “layers” of elements in the Figure).
The honeycomb core has 32 divisions radially.

Some results of FEA are shown in Figure 6.
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Figure 6. Von Mises stress in the structure (fragment) from the FEA analysis (buckling safety factor
of 2.65 and payload fraction of 0.1). The maximum stress in the face skins does not exceed 645 MPa,
and the stress in the honeycomb is comparable to the atmospheric pressure.

In the FEA, the anisotropic material properties of the honeycomb were treated in
accordance with recommendations of a honeycomb manufacturer (Ref. [19], p. 20). For the
sake of simplicity, we assume that the honeycomb is a transversally isotropic material, so
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the lesser of the two values of shear modulus from [17] was used (which makes the results
more conservative). Thus, we used the following values: the out-of-plane component of
the modulus −670 MPa; the in-plane components of the modulus −67 Pa; the out-of-plane
components of the shear modulus 140 MPa; the in-plane component of the shear modulus
14 Pa; the Poisson’s ratio 10−5 (very small values of the Poisson’s ratio and the in-plane
components of the modulus and the shear modulus were used to avoid singularities, in
accordance with [19], p. 20).

Thus, the ANSYS eigenvalue buckling analysis input includes the loads. The output
of the analysis is the eigenvalues (buckling load multipliers), which are the safety factors
for buckling modes (for the input loads). The minimum eigenvalue λmin obtained in the
eigenvalue buckling analysis determines the critical buckling load. As we load our structure
with atmospheric pressure pa, we have the following relation between the minimum
eigenvalue λmin and the critical buckling pressure:

λmin =
pcr

pa
. (13)

The optimized parameters of the analytical approach were used as initial values for
optimization through the FEA. The eigenvalue λmin, regarded as a function of h′3, has a
rather sharp maximum of λmin ≈ 2.65 (see Figure 7) for a value of h′3 ≈ 3.53× 10−3, which
is close to the value we arrived at using the simplified method. The corresponding value of
h′1 approximates 4.23× 10−5. To give an idea of how the eigenvalue λmin varies with the
payload fraction q, let us note that λmin is approximately 3.21 for an optimized design with
zero payload fraction.

Eng 2021, 2, 7 
 

 

more conservative). Thus, we used the following values: the out-of-plane component of 
the modulus −670 MPa; the in-plane components of the modulus −67 Pa; the out-of-plane 
components of the shear modulus 140 MPa; the in-plane component of the shear modulus 
14 Pa; the Poisson’s ratio 10−5 (very small values of the Poisson’s ratio and the in-plane 
components of the modulus and the shear modulus were used to avoid singularities, in 
accordance with [19], p. 20). 

Thus, the ANSYS eigenvalue buckling analysis input includes the loads. The output 
of the analysis is the eigenvalues (buckling load multipliers), which are the safety factors 
for buckling modes (for the input loads). The minimum eigenvalue 𝜆  obtained in the 
eigenvalue buckling analysis determines the critical buckling load. As we load our struc-
ture with atmospheric pressure 𝑝 , we have the following relation between the minimum 
eigenvalue 𝜆  and the critical buckling pressure: 

The optimized parameters of the analytical approach were used as initial values for 
optimization through the FEA. The eigenvalue 𝜆 , regarded as a function of ℎ , has a 
rather sharp maximum of 𝜆 ≈ 2.65 (see Figure 7) for a value of ℎ ≈ 3.53 × 10 , 
which is close to the value we arrived at using the simplified method. The corresponding 
value of ℎ  approximates 4.23 × 10 . To give an idea of how the eigenvalue 𝜆  varies 
with the payload fraction 𝑞, let us note that 𝜆  is approximately 3.21 for an optimized 
design with zero payload fraction. 

We also performed some preliminary buckling analysis using a 3D model with a 
coarse mesh and obtained the minimum eigenvalue of 3.0. This result is subject to adjust-
ments after a better mesh is used. We used the optimal linear dimensions obtained for the 
2D model with the payload fraction of 0.1. 

 
Figure 7. The 3 least eigenvalues 𝜆 , 𝜆 , and 𝜆  from the ANSYS eigenvalue buckling analysis versus the relative core 
thickness ℎ  for payload fraction 𝑞 = 0.1. 

The safety factor of 2.65 is not very high, as empirical knockdown factors are typically 
applied to the results of small-deflection analysis for externally pressurized thin-walled 
spherical shells to take into account initial imperfections and other factors. For example, 
the knockdown factor of 0.2 is recommended in [20] for hemispherical sandwich domes 
(there is very good agreement between our FEA results and the results obtained with the 
use of formulas in [20] with a knockdown factor of 1 for buckling critical pressure/stress). 
The formulas of [20] are based on the solution from [21,22]. If we perform linear (and, if 

𝜆 = 𝑝𝑝 . (13) 

Figure 7. The 3 least eigenvalues λmin, λ2, and λ3 from the ANSYS eigenvalue buckling analysis versus the relative core
thickness h′3 for payload fraction q = 0.1.

We also performed some preliminary buckling analysis using a 3D model with a coarse
mesh and obtained the minimum eigenvalue of 3.0. This result is subject to adjustments
after a better mesh is used. We used the optimal linear dimensions obtained for the 2D
model with the payload fraction of 0.1.

The safety factor of 2.65 is not very high, as empirical knockdown factors are typically
applied to the results of small-deflection analysis for externally pressurized thin-walled
spherical shells to take into account initial imperfections and other factors. For example,
the knockdown factor of 0.2 is recommended in [20] for hemispherical sandwich domes
(there is very good agreement between our FEA results and the results obtained with the
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use of formulas in [20] with a knockdown factor of 1 for buckling critical pressure/stress).
The formulas of [20] are based on the solution from [21,22]. If we perform linear (and, if
required, non-linear) buckling analysis with due regard for imperfections of manufacturing,
the safety factors will decrease, but the obtained results are high enough to reasonably
expect that the safety factors will still be quite sufficient for state-of-the-art manufacturing
accuracy, as thoroughly manufactured thin spherical shells were shown to withstand
external pressure of up to 80–90% of the critical one [23,24]. The relevant variation of
thickness of the shallow spherical shells in the experiments of [23,24] was about ±1% of
the thickness. In our design, if the radius is 2.5 m, the thickness of the sandwich shell is
about 9 mm (see the dimensions in Conclusion), so the comparable manufacturing accuracy
would be about ±0.1 mm. While such accuracy may be difficult to achieve, the knockdown
coefficient of 0.2 is conservative. According to the review of experimental results on
buckling of spherical shells in [25], the knockdown factors for various technologies often
exceed 0.4, which would be sufficient in our case (for payload factor of 0.1). If necessary,
incoming testing of sandwich plates can be performed before the assembly of the shell to
make sure the knockdown factor for the plates exceeds the required value.

Only homogeneous spherical shells are discussed in [23–25], and information on
spherical sandwich shells is scarce, but the results and recommendations of [18] suggest
similar conclusions.

Taking into account the imperfections in the finite-element analysis is beyond the
scope of this work as the imperfections depend on the specific technologies.

Let us summarize the approximations used to estimate the critical buckling pressure
for the design. We used air pressure of 101 kPa and density of 1.29 kg·m−3 for the tempera-
ture of 0 ◦C, material properties provided by manufacturers, a conservative simplification
for honeycomb shear modulus, a 2D linear buckling FEA, and a payload fraction of 0.1. We
did not take into account the very small buoyant force reduction due to the shell compres-
sion by atmospheric pressure and the weight of adhesives (see the reasoning at the end of
Section 2.3.). We provided some arguments based on a review of available experimental
data suggesting that the safety factor of the linear buckling analysis should be enough to
neutralize the knockdown factor due to imperfections and nonlinear effects.

2.2. Other Modes of Failure

Now let us verify that other modes of failure are not problematic for the design. We
used standard unity checks from [19,26]. Providing detailed descriptions of the failure
modes and explanations of the standard formulas here does not seem warranted.

Let us first check that the compressive stress σf in the face skins does not exceed the
compressive strength of the face skin material. Instead of Equation (2) we have:

2πR·2h1σf = πR2 pa, σf =
pa

4h′1
≈ 600 MPa, (14)

which is much less than the compressive strength of boron carbide (3.2 GPa).
The following formula is used to check the design for shear crimping [19,26]:

Nall = h3G3 ≈ 0.49 MPa·R (15)

where Nall is the allowable force per unit length of a sandwich plate in some direction and
G3 = 20 ksi ≈ 138 MPa is the honeycomb shear modulus. The actual force per unit length
is much less:

N = 2h1σf ≈ 51 kPa·R (16)

The design was checked for face skin wrinkling using the following formula [26]:

σwr = k2E f

√
E3h1

E f h3
, (17)
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where σwr is the allowable uniaxial wrinkling stress, k2 = 0.82 is a theoretically de-
rived coefficient for honeycomb cores, E f = 460 GPa is the face skin modulus, and
E3 = 97 ksi ≈ 0.69 GPa is the honeycomb modulus. We obtain: σwr ≈ 1.58 GPa. However,
we have biaxial stress, so we should check that [26]:(

σ3
x + σ3

y

) 1
3

Kσwr
+

(
τxy

σwr

)2
< 1, (18)

where σx and σy are stresses in two orthogonal directions (σx = σy = σf ≈ 600 MPa)
and τxy is the shear stress (τxy = 0), K = 0.95. The left side of Equation (18) equals
approximately 0.5, so this check also yields a satisfactory result.

The design is scalable with respect to all of the above modes of failure: an equally
successful design can be obtained by multiplying all linear dimensions by the same factor.
However, this is not true for another mode of failure—so-called intracell buckling (also
known as dimpling). We use the following formula [26]:

σdp =
2E f

1− µ2
f

(
h1

S

)2
, (19)

where σdp is the critical stress for intracell buckling, µ f = 0.17 is the Poisson’s ratio of the
face skins, and S = 1

8 inch (3.2 mm) is the cell size. We obtain σdp ≈ 168 MPa·m−2·R2.
However, we have biaxial stress, so we must make sure that [26]:(

σn
x + σn

y

) 1
n

σdp
+

(
τxy

0.8 σdp

)2

< 1, (20)

where n = 3 if the cell size S > 15.63 h1 (that means R < 4.8 m for our values of S and h′1)
and n ≥ 3 otherwise (see [26], p. 243). If R ≥ 4.8 m, we have:

σf < 2−
1
3 σdp ≤ 2−

1
n σdp, (21)

and condition (20) is satisfied. If R < 4.8 m, we have σf < 2−
1
3 σdp ≈ 134 MPa·m−2·R2, or

R > 2.11 m.
Thus, we obtain the following condition of stability for intracell buckling: R > 2.11 m.
We did not study possible effects of small leaks in the face skins, but they should

not present a greater problem than for other vacuum systems, as only rough vacuum is
required for vacuum balloons. If pressure difference in neighboring honeycomb cells is a
concern, one may need to use a honeycomb with cell perforations [17].

2.3. Towards a Prototype Vacuum Balloon

Manufacturing of the boron carbide face skins seems to be the most challenging part
of the design, as they may be very thin, and their density needs to be close to the theoretical
boron carbide density, otherwise the elasticity modulus can be insufficient.

For large prototypes (R ≥ 25 m), the face skin thickness exceeds 1 mm, and parts of
the face skins can be produced using traditional methods, such as uniaxial pressing with
subsequent sintering [27,28].

For smaller prototypes, the thickness of the face skins is 0.1 mm by order of magnitude.
Producing such parts is technologically challenging, and the parts may be too fragile.
Detailed treatment of these issues is beyond the scope of this article, but a preliminary
discussion is clearly necessary.

The face skins can be produced either by deposition on a sacrificial substrate (this
can be time consuming if the process is to yield high elasticity modulus) or by using gel
casting, which can provide “fine features down to 100 µm scale” [29]). Another approach to



Eng 2021, 2 489

manufacturing uniform spherical boron carbide shells with a thickness of the order of 100
µ by dropping a slurry coating on a molybdenum substrate and subsequent drainage and
curing is described in [30]. While the radius of the shells in [30] is small (1 mm), the method
was used with different materials to manufacture shells of a radius of up to 375 mm [31].
Shells of larger radius can probably be manufactured by varying the viscosity of the slurry
and/or using rotation.

To circumvent the issue of fragility, one can first bond the face skins to the honeycomb
and then remove the face skin supports (the substrates or parts of the molds).

To fabricate the entire vacuum balloon, one will need to join several sandwich panels
using some standard approach, such as bonded butt joints using H sections [32]. The
weight penalty is not estimated in this article, but it will be smaller for larger sandwich
panels.

According to [33], “in terms of volume efficiency, convex stellated shells are com-
parable to spherical shells with a knockdown factor of 0.65”, so the former can achieve
better buckling efficiency than the latter “when the effects of geometric imperfections are
considered”. If a similar conclusion is also true for sandwich shells, then sandwich stellated
shells can be another option for vacuum balloons. In terms of manufacturing, such shells
can be attractive as they can be assembled using flat sandwich panels.

The exterior and the interior of the structure can be connected with a valve at a modest
weight penalty for initial evacuation of the structure or for altitude control.

The buoyant force reduction due to the shell compression by atmospheric pressure
was calculated to be less than 0.4%.

Point loading of the structure should be avoided. For example, it is relatively easy to
provide distributed support with larger contact area for the structure on the ground.

The face skins can be bonded to the honeycomb core using adhesives. To reduce the
weight, the adhesive can be applied only to the tops of the honeycomb cell walls using
the approach of [34]. We did not discuss other issues related to adhesives here (mass
requirements, modes of failure, etc.), but these issues are less significant for shells of larger
radius, as the adhesive mass scales as R2, and the mass of the entire structure scales as
R3. Neither did we discuss potential use of more exotic materials (such as chemical vapor
deposition (CVD) diamond for the face skins or architected cellular materials [13] for the
core) to significantly increase safety factors and/or the payload fraction.

3. Discussion

We showed that a lighter-than-air rigid vacuum balloon can theoretically be built
using commercially available materials. The design in this article is an evacuated spherical
sandwich shell of outer radius R > 2.11 m containing two boron carbide face skins of
thickness 4.23× 10−5·R each that are reliably bonded to an aluminum honeycomb core of
thickness 3.52× 10−3·R. The structure is lighter than air (it allows a payload fraction of
0.1) and can withstand the atmospheric pressure. For example, if R = 2.5 m, the face skin
thickness is 106 µm, the honeycomb thickness is 8.8 mm, the mass of the shell is 75.7 kg,
and the payload capacity for zero buoyancy is 8.7 kg.

A prototype vacuum balloon would also become the first ever lighter-than-air solid
(for example, aerogels are actually not lighter than air due to the air inside).

Manufacturing a prototype vacuum balloon will be a major breakthrough. It will
require detailed engineering to resolve numerous less essential issues, but the results of this
article suggest that we can finally bring to fruition the ancient dream of a vacuum balloon.

It took mathematicians 357 years to prove Fermat’s Last Theorem. Will it take us more
to build the first vacuum balloon?
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Nomenclature

E = compressive modulus of elasticity of the material of a thin homogeneous shell. E f = compres-
sive modulus of elasticity of the face skin material of a sandwich shell. G3 = honeycomb shear
modulus. h = thickness of a thin homogeneous shell. h1 = thickness of the outer face skin of a
sandwich shell, h1 = h2. h′1 = relative thickness of the outer face skin of a sandwich shell, h′1 = h1/R.
h′1opt = optimum relative thickness (analytical estimate) of the outer face skin of a sandwich shell.
h2 = thickness of the inner face skin of a sandwich shell, h2 = h1. h3 = thickness of the honey-
comb core of a sandwich shell. h′3 = relative thickness of the honeycomb core of a sandwich shell,
h′3 = h3/R. h′3opt = optimum relative thickness (analytical estimate) of the honeycomb core of a
sandwich shell. K = a factor in a formula for face skin wrinkling analysis, K = 0.95. k2 = a factor
in a formula for face skin wrinkling analysis, k2 = 0.82. n = an exponent in a formula for intracell
buckling analysis. N = actual force per unit length of a sandwich plate. Nall = allowable force per
unit length of a sandwich plate (for shear crimping analysis). pa = atmospheric pressure, 101 kPa.
pcr = critical buckling pressure. q = payload fraction of a vacuum balloon. R = outer radius of a
shell. S = honeycomb core cell size. λmin = minimum eigenvalue obtained in the finite element
eigenvalue buckling analysis. µ = Poisson’s ratio of a thin homogeneous shell. µ f = Poisson’s
ratio of the face skins of a sandwich shell. ρ3 = density of the honeycomb core of a sandwich shell.
ρ′3 = relative density of the honeycomb core of a sandwich shell, ρ′3 = ρ3/ρa. ρa = atmospheric
air density, 1.29 kg·m−3. ρ f = density of the face skins of a sandwich shell. ρ′f = relative den-
sity of the face skins of a sandwich shell, ρ′f = ρ f /ρa. ρs = density of a thin homogeneous shell.
σ = compressive stress in a thin homogeneous shell. σdp = critical uniaxial stress for intracell buckling.
σf = compressive stress in the face skins of a sandwich shell. σwr = allowable uniaxial wrinkling stress
(for face skin wrinkling analysis). σx, σy = stresses in the face skins in two orthogonal directions,
σx = σy = σf . τxy = shear stress in the face skins, τxy = 0.
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