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Abstract: New analytical models have been developed for predicting equivalent Young’s and shear
moduli of laminate composites. Sets of procedures and calculations are presented in order to obtain
equivalent properties in all levels, lamina and laminate. An ultimate path to predict the mechanical
properties of laminated composites on the perspective of the material, orientation, and thickness
has been developed. By calculating the mechanical properties using Chamis model then an Objectif
function with five norms, these norms allow the mechanical properties to be examined and the
ultimate answer to be predicted. Another model discusses an alternative concept of equivalent
lamina elements (ELEs) by first using Chamis model for hybrid composites. Next, the ELEs are
laminated in the direction and integrated into the compliance matrix for each ply. In addition, four
new Generalization models for equivalence in thickness and in angle are presented in this paper.
The analytical results are validated against other developed models in published articles as well
as experimental results. Numerical case studies were conducted to assess the precision of results
from the suggested models. The results demonstrated the capability and efficiency of the presented
models for predicting the mechanical properties of multi-layer/multi-material laminate composites
under different orientation conditions.

Keywords: Chamis model; compliance matrix; homogenization; laminate; composite

1. Introduction

Composite materials consist of two or more components such as fiber and matrix and
may or may not be fillers in case of polymer composite materials. They have a wide range
of applications, such as industrial, automotive engineering medical aerospace electrical,
transportation, and sports [1].

The integration of two materials gives better properties compared with individual
components [2].

Composites structures are often classified as four basic structures or levels, i.e., lamina,
laminate, sandwich, and woven composites. A lamina (also called a ply or layer) is a single
flat layer of unidirectional fibers or woven fibers arranged in a matrix, a thin layer of a
composite material, while a laminate is a stack of plies of composites. Each layer can be
laid at various orientations and can be made up of different material systems.

In recent years, conventional materials are continuously being replaced by a variety
of composite materials. This fact has caused an increasing interest on the modeling of
composites. Several approaches have been developed, but there is still a strong need of
predicting models that can be used for the stiffness and strength assessment of this type
of materials in practical situations. [1] Constitutive models for fiber-reinforced composite
laminates can be classified according to the scale in which they are defined [3].

1.1. Problematic

In composite materials, the properties are different depending on the fiber orientation
in the matrix, so knowing the properties or obtaining the correct and more accurate
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properties is a very important key when it comes to analyzing the structures [4]. Using
composite materials in engineering industries requires complicated analysis and modeling
which in most cases computer software runs. It is difficult and time-consuming to calculate
the properties of a very thick laminate with each layer having different stacking sequences.
It would be simpler and less time-consuming to use average properties that would represent
the desired model, instead of going through calculations and obtaining stiffness matrices
for each layer, i.e., ply-by-ply approach.

While experimental tests made to determine the effective elastic properties of compos-
ites, i.e., Young’s and shear moduli (Ex, Ey, Ez, Gxy, Gxz, and Gyz) and Poisson’s ratios
(νxy, νxz, and νyz), are expensive in terms of money and time, analytical and numerical
modeling could present a good alternative solution for industries and the obtained results
are supposed to be more accurate. These methods have the disadvantages of a great deal
of time consumed on the tasks of defining the geometry of the composite, meshing, and
calculation procedures, besides the need of super computers to make the computation.
Analytical modeling presents a more flexible and easier tool in terms of geometric modeling
and the time saved in calculation, without the need of super computers. Therefore, in
order to overcome these difficulties, equivalent properties of lamina or laminate are often
used. Equivalent properties or effective stiffness properties are an average measure of the
stiffness of the desired material. The actual averaging process must be done carefully and
delicately in order to obtain equivalent properties.

Up to now, many models have been proposed to analyze the microstructures and
mechanical performance of laminates composites. Many scholars have paid great efforts
to the prediction of mechanical properties of laminate composite, but there is no physical
model or method that can predict the mechanical properties and behavior of the composite
materials with different sets of parameters in terms of orientation, material properties,
and thicknesses. The novelty of this paper is to provide the most accurate results of the
mechanical properties using an effective algorithm that can be used as an alternative to
software or experimental studies. Different analytical models predict different elastic
properties of composites. Additional problems involve estimating model adequacy and
choosing the most accurate model. Different models are more accurate, depending on the
composite content, the shape of the inclusions, and the relationship between the properties
of the inclusions and the matrix [2].

The works on the mechanical analysis and optimization design of laminate composites
are extremely limited. To the author’s knowledge, there is no literature on applying the
classical laminate theory to analyze the mechanical properties of laminate composites.
In addition, there is no literature on using the ABD matrix (The ABD matrix is a 6 × 6
matrix that serves as a connection between the applied loads and the associated strains
in the laminate. It essentially defines the elastic properties of the entire laminate) to
find and predict the mechanical/engineering properties of laminated composites, such
as compliance or stiffness matrices. Therefore, it is valuable to propose a theoretically
analytical model to investigate the mechanical properties of laminate composites due to its
advantages in low modeling cost and high computational efficiency.

It is important to calculate strain and stress to know the effectiveness of compound
combinations. Combined applications are widely available in the field of automotive,
airports, and sports.

1.2. State of Art

There have been a number of publications regarding predicting composite materials
properties and equivalent or effective properties of composite materials. Richardson [5]
predicted stiffness using rule of mixtures (ROM), ROM with efficiency factors, classical
laminate analysis, and empirical formulas. To discuss effective properties of composites,
Lydzba [6] used the homogenization method to define the heterogeneous medium that
possesses the property of statistical homogeneity as an equivalent homogeneous material
that would have the same average properties. Chan [7] represented the lumping procedures,
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in which a group of plies lumps into a single layer to reduce the size of the problem and
to increase the efficient computation, which is often used in thick composite structure
modelling. On the other hand, Kumar [8] presented a new analytical model to replace the
original laminate ABD by much simpler ABD-equivalent virtual material models. These
virtual material models, under the usual assumptions made in the lamination theory, have
the same constitutive relationship as the corresponding two-dimensional (2D) plate model
of the original laminate but require only a small fraction of computational integration costs
in three dimensions.

It is noted that all the numerical approaches consist in building a representative
volume element (RVE) able to statistically represent the overall material [9]. Prescribed
loads or displacements are applied at the RVE, and the resulting stresses and strains are
correlated with the whole structure at the macroscale by means of the averaging princi-
ple [10]. However, 2D RVEs may not give accurate results for composite materials [5],
especially for out-of-plane properties, demanding more laborious and time-consuming
three-dimensional (3D) models [6]. As an alternative, analytical models are used for
composite homogenization, usually being derived from the strength of materials or semi-
empirical relations. Numerical and analytical models usually share important assumptions
in the homogenization process, namely neglecting the fiber/matrix interface and, homoge-
neous fibers and matrixes and perfect fiber alignment [9]. In addition, in the evaluation
process, the properties of the individual constituents are required, and these may be hard
to obtain, especially for fibers [9].

Regarding the longitudinal Young’s modulus (E1) and the in-plane Poisson ratio (ν12),
the ROM is able to provide accurate results, even for hybrid composites [7–11]. For the
other engineering constants, Banerjee [7] extended the semi-empirical models proposed by
Halpin [12].

Alternatively, as proposed by Chamis [13], HC (Hybrid Composite) properties can
be estimated by splitting it on the primary composite (PC) and the secondary composite
(SC), where the first is reinforced by fiber 1 and the second is reinforced by fiber2, with the
matrix proportionally distributed. The PC and SC properties are calculated analogously to
single-fiber composites [8]. Then, the ROM is applied to compute E2 from PC and SC. This
same methodology is adopted by Chamis to compute G12 and G23. ν23 can be computed
under the transversally isotropic consideration [9].

The model presented by Chou [11] applies the same division and equations pro-
posed by Chamis [8] to compute PC and SC properties. However, the final properties are
evaluated using an inverse ROM.

The relations presented above are well accepted in the literature for laminate compos-
ites [14]. However, many new models with greater complexity were developed, avoiding
assumptions related to long fibers [15] and straight fibers [16] or focusing on other re-
inforcement geometries, such as particles or nanotubes [17]. The semi-analytical model
proposed by Aboudi [18] was also applied for HC [19], yielding good mechanical predic-
tions. The tensile loadings of specimens produce different failure types, and researchers
have studied the inhomogeneity of the matrix [20]. Research interest has been focused
on towards fiber-reinforced polymeric composites, as these composite materials exhibit
excellent mechanical properties. Parvanesh et al. [21] studied the mechanical behavior of
PVC (poly(vinyl chloride)) nanocomposites. They have studied the Young’s modulus and
tensile strength of polymer composites, and the result suggested that good stress transfer
can be obtained at an amorphous interface, depending on the polymer.

The local/global stiffness matrix approach is similar to the transfer and flexibility
matrix formulation presented by Bufler [22] for isotropic layered media with constant
elastic properties. This approach was later reformulated in terms of the local stiffness
matrix by Rowe and Booker [23] and applied to nonhomogeneous isotropic layered soils.
Chatterjee et al. [24] extended the method to anisotropic layered media for generalized
plane deformation problems and used it to solve the problem of an interlaminar crack in
an arbitrarily laminated composite plate under three-point loading.
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1.3. Paper Organization

The first section introduces basic ideas about composites including fibers and matrices
and basic definitions used in the mechanics of composites. This section starts with a review
of basic topics of stress, strain, and elastic moduli. Then, the mechanical behaviors of a
single lamina were discussed, including concepts about the stress–strain relationship for a
lamina and the stiffness and strength of a lamina, and finally, the equivalence in orientation
was discussed by studying the case of rotating fibers and rotating the whole ply, i.e., fiber
and matrix in a laminate composite.

Secondly, two ways to find the equivalence in thickness were presented using the
greatest common divisor (GCD) and another mathematical method based on the stress-
strain relation and Hook’s Law.

Thirdly, two new analytical models were developed for predicting equivalent Young’s
and Shear moduli of a laminate composite. The mechanical properties was calculated using
Chamis model and an Objectif function with five norms, which allowed the mechanical
properties to be examined and ultimate answer to be predicted. Moreover, another model,
an alternative concept of equivalent lamina elements (ELEs), was first established using
Chamis model for hybrid composites. Next, the ELEs were laminated in the direction and
integrated into the compliance matrix for each ply. Finally, the results obtained with these
models were compared to experimental results from other papers and journals, and some
conclusions are shown.

The objective of the paper is to present new analytical models for analyzing the
mechanical properties of laminate composites in all levels, i.e., lamina, laminate, and
structure, from the perspectives of the material, orientation, and thickness. The contribution
of all unit cells to the elastic properties of specimen was considered in the analytical model.
In addition, the effects of the fiber orientation and thickness on the elastic properties were
discussed in detail. Finally, some valuable conclusions are drawn.

An efficient recursive algorithm, the stiffness matrix method, has been developed
for generally anisotropic multi-layered media. This algorithm has the computational
efficiency and simplicity of the standard transfer matrix method and is unconditionally
computationally stable for high frequency and layer thickness. In this algorithm, the
stiffness (compliance) matrix is calculated for each layer and recursively applied to generate
a stiffness (compliance) matrix for a layered system.

This algorithm allows researchers and end users to calculate the stiffness and compli-
ance matrix of any composite material, with any form, orientation, or thickness, by saving
time and cost while finding the optimal solution.

2. Methodology

In this paper, we calculated the mechanical properties of laminate composites on three
different levels and on three different categories. In one category, the variety of materials
used and their homogenization that consisted of two different methods were discussed. In
the other categories or paths, a variety of thicknesses and orientation, in which we are able
to provide researchers the ultimate path and algorithm to calculate the stiffness matrix of
laminated composites and to predict the mechanical properties, was discussed.

The ultimate path is called the K-PY algorithm, and it is shown in the conclusion part
and based on the results found from comparing with experimental data from the literature
(Figure 1).
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Figure 1. All paths of K-PY algorithm.

2.1. UD (Unidirectional)—Homogenization:

Two new analytical models were proposed to predict the mechanical performance of
laminate composites based on Chamis model [25]. The multi-scale modeling strategy was
adopted to predict the elastic properties of the composites (Figure 2). The KY analytical
model consists totally of three basic steps. Firstly, the elastic performance of constituent
components in lamina (or layer), i.e., the fiber and the pure resin matrix, is computed. Sec-
ondly, the stiffness matrix of each layer can be obtained by the stiffness-volume-averaging
theory. Thirdly, an objective function is implemented to optimize the calculation and to
find the optimal solution. Another model was investigated, which consists of finding
equivalence of fibers in angle to be in the same direction 0◦ and to adopt the new fibers
into Chamis and Sinclair’s hybrid method [8].
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2.1.1. Algorithm Objectif Function

For laminate composites, every kind of unit cell actually includes two types of con-
stituent components, i.e., the fiber and the pure resin matrix. First, the compliance matrix
of the lamina was calculated. Similar to many micro-mechanical models, the fibers and the
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resin matrix assume transversely isotropic, and both of them assume to be linearly elastic
in the model. To obtain the elastic properties of the laminate composites, the fiber–matrix
ROM proposed by Chamis was chosen to compute the engineering elastic constants. The
Chamis micro-mechanical model is the most widely used and trusted model, which gives
an equation for all five independent elastic properties as follows [25]:

E11 = VfEf
11 + VmEm, (1)

E22 = E33 = Em/(1−
√

Vf (1 − Em/(Ef
22))), (2)

G23 = Gm/(1 −
√

Vf (1 − Gm/(Gf
23))), (3)

G12 = G13 = Gm/(1 −
√

Vf (1 − Gm/(Gf
22))), (4)

ν23 = Vfνf
23 + Vm (2νm − ν12·(E22/E11)), (5)

ν12 = ν13 = νm + νf (νf
12 − νm), (6)

where Vf is the fiber volume fraction; Ef
11 is the Young’s elastic modulus of the fiber in

principle axis 1; Ef
22 is the Young’s elastic modulus of the fiber in principle axis 2; Gf

12 is
the longitudinal shear modulus of the fiber; Gf

23 is the transverse shear modulus of the
fiber; νf

12 is the primary Poisson’s ratio of the fiber; Em, νm, and Gm represent the Young’s
elastic modulus, Poisson’s ratio, and shear modulus of the matrix, respectively.

The compliance matrix of the fiber [S] can be calculated easily. For the pure resin
matrix pocket, it is generally regarded as isotropic materials. Once the elastic modulus
and Poisson’s ratio of the resin matrix are given, it is easy to determine its constitutive
relationship.

It is easy to obtain their stiffness matrix in the local material coordinate systems (1, 2,
3) to (x, y, z) by inverting their compliance matrix [Sij] [7].

Then, we can obtain the stiffness in the global coordinate system by transforming the
stresses and strains via the generalized transformation matrix as the following form:

[S]= [T]k
T[S]k[T]k (7)

where li, mi, and ni (i = 1, 2, 3) are the direction cosines and are defined as the cosines of the
angle between the axes of the local and global coordinate systems before and after rotation:

[T] =



l2
1 m2

1 n2
1 2m1n1 2n1l1 2l1m1

l2
2 m2

2 n2
2 2m2n2 2n2l2 2l2m2

l2
3 m2

3 n2
3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 + m3n2 n2l3 + n3l2 l2m3 + l3m2

l3l1 m3m1 n3n1 m3n1 + m1n3 n3l1 + n1l3 l3m1 + l1m3

l1l2 m1m2 n1n2 m1n2 + m2n1 n1l2 + n2l1 l1m2 + l2m1


(8)

 l1 m1 n1

l2 m2 n2

l3 m3 n3

 =

 sinτcosϕ −sinϕ −cosτcosϕ

sinτsinϕ cosϕ −cosτsinϕ

cosτ 0 sinτ

 (9)

Each of the matrices is evaluated in ply k, and then the contributions of all the plies n
are added.

• Objective function

The objective function indicates how much each variable contributes to the mechanical
properties to be optimized. It takes the following general form:

J = ∑n
i=1[(E11 − Exxi)

n + (E22 − Eyyi)
n + (E33 − Ezzi)

n+(G13 − Gxzi)
n+

(G23 − Gyzi)
n+(G12 − Gxyi)

n+(v12 − vxy)n+(v23 − vyz)n +(v13 − vxz)n], (10)
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where n is the power of the decision variable Xi; Exxi, Eyyi . . . are the reel values of the
mechanical properties; E11, E22 . . . are the unknown values to be optimized. To solve and
optimize the solutions from the Objectif function J, the partial derivative to each component
is applied as following:

∂J
∂E11

= 0, ∂J
∂E22

= ∂J
∂E33

= 0,

∂J
∂G13

= ∂J
∂G12

= 0, ∂J
∂G23

= 0,

∂J
∂v12

= ∂J
∂v13

= 0, ∂J
∂v23

= 0,

(11)

Norm 0:
E11 = min{Exxi}, E22 = min{Eyyi}, E33 = min{Ezzi}, (12)

Norm ∞:
E11= max{Exxi}, E22 = max{Eyyi}, E33 = max{Ezzi}, (13)

Norm Cartesian:
E11 = Average

{
∑n

i=1 Exxi

}
, (14)

E22 = Average
{
∑n

i=1 Eyyi

}
, (15)

E33 = Average
{
∑n

i=1 Ezzi

}
, (16)

Norm 3:
The second-order equation is shown as:

n·E2
11 − 2·E11·∑n

i=1 Exxi+∑n
i=1 E2xxi = 0 (17)

∆′ = b′2 − ac =
(
∑n

i=1 E2xxi

)2
− n·

(
∑n

i=1 E2xxi

)
(18)

∆′ < 0 is represented by the Cauchy-Schwarz inequality [26], so Norm 3 is not taken
into consideration.

The Cauchy-Schwarz inequality is an elementary inequality and at the same time a
powerful inequality, which can be stated as follows: Let (a1, a2, ..., an) and (b1, b2, ..., bn)
be two sequences of real numbers, then:

(
n

∑
i=1

ai
2)(

n

∑
i=1

bi
2) ≥ (

n

∑
i=1

aibi)
2 (19)

With equality if and only if the sequences (a1, a2, ..., an) and (b1, b2, ..., bn) are
proportional, there is a constant λ, such that ak = λbk for each k ∈ {1, 2, ..., n}.

Norm 4:

n·E3
11−∑n

i=1 Exxi
3 + 3E11[ ∑n

i=1 Exxi
2−E11· ∑n

i=1 Exxi] = 0 (20)

a = n, b = −3·∑n
i=1 Exxi, c = 3 ∑n

i=1 Exxi
2, d = −∑n

i=1 Exxi
3 (21)

E11,1 =
3

√
−q−

√
∆1

2
+

3

√
−q +

√
∆1

2
− b

3a
(22)

E11,2 =
−b− a·E11,1 −

√
∆2

2a
< 0 not acceptable (23)

E11,3 =
−b− a·E11,1 +

√
∆2

2a
(24)

where:

q =
2b3 − 9abc + 27a2d

27a3 , p =
3ac− b2

3a2 (25)
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∆1 = q2 +
4p3

27
(26)

∆2 =
(

b + a E11,1)
2 − 4a(c + (b + aE11,1 ) E11,1 (27)

2.1.2. Hybrid Method

This section presents a review of the current status of hybrid composite materials
technology, in terms of materials available and properties, and an outline of some of the
trends, obvious and speculative, with emphasis on analytical models (Figure 3) including
some details of smart hybrid composites. The equations are a simple extension of those
applied for unidirectional single-fiber composites [8]. HC properties can be estimated by
splitting it on PCs and SCs [13].

• Chamis model for Hybrid Composites:

Figure 3. Algorithm Hybrid Method.

As mentioned earlier, for the Young’s modulus (E1) and the in-plane Poisson ratio
(ν12), the ROM is able to provide accurate results, even for hybrid composites [7–11]. The
equations are a simple extension of those applied for unidirectional single-fiber composites.

For the other engineering constants, Banerjee [7] extended the semi-empirical models
proposed by Halpin [12].

The compliance matrix [S] for each fiber in its local coordinate system (1,2,3) was
calculated. Using transformation matrix [T], the equivalent matrix for each fiber in the
global coordinate system (x,y,z) was calculated [27]. The mechanical properties of equiv-
alent fibers were obtained. Using Chamis model for hybrid composites, the mechanical
properties of the whole lamina were calculated.

E1 = ∑n
i=1 Efi

iVfi + EmVm, E2 = E3 = Em

[
1 + 1.165·∑n

i=1 ηfiVfi

1−∑n
i=1 ηfiVfi

]
(28)
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ηfi =
Efi

Em − 1
Efi

i
Em + 1.165

(29)

G23 = Gm

[
1 + 0.9·∑n

i=1 ηfiVfi

1−∑n
i=1 ηfiVfi

]
, G13 = G12 = Gm

[
1 + 1.01·∑n

i=1 ηfiVfi

1−∑n
i=1 ηfiVfi

]
(30)

ζfi =
Gfi

i
Gm − 1

Gfi
i

Gm + 1.01
(31)

where subscripts m and fi designate the matrix and the fibers, respectively; E2 is the
transverse Young’s modulus, G12 is the in-plane shear modulus, V is the volume fraction,
and ξ is a parameter associated with the fiber geometry (for circular fibers, it is 1.165
and 1.01).

It is noted that the fiber volume fraction should be divided into a number of plies so
that their sum should be equal with the matrix volume fraction (the percentage of fiber
volume in the entire volume of a fiber-reinforced composite material) up to 100%.

2.2. Principal Globalization

Generally, a laminate does not consist only of unidirectional laminae because of
their low stiffness and strength properties in the transverse direction. Therefore, in most
laminates, some laminae are placed at an angle (Figure 4) It is thus necessary to develop the
stress–strain relationship for an angle lamina. The coordinate system is used for showing
an angle lamina. The axes in the 1–2 coordinate system are called the local axes or the
material axes. The direction 1 is parallel to the fibers, and the direction 2 is perpendicular
to the fibers. In some references, direction 1 is also called the longitudinal direction L, and
the direction 2 is called the transverse direction T. The axes in the x–y coordinate system
are called the global axes or the off-axes. The angle between the two axes is denoted by
angle θ.
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𝐺₂₃ = 𝐺ᵐ 1 + 0.9. ∑ 𝜂ᶠ �i�ᶠⁱ1 − ∑ 𝜂ᶠ �i�ᶠⁱ ,    𝐺₁₃ = 𝐺₁₂ = 𝐺ᵐ[1 + 1.01. ∑ 𝜂ᶠ �i�ᶠⁱ1 − ∑ 𝜂ᶠ �i�ᶠⁱ ] (10)

𝜁ᶠ =i 𝐺ᶠⁱi𝐺ᵐ  − 1𝐺ᶠⁱi𝐺ᵐ  + 1.01
 (11)

where subscripts m and fi designate the matrix and the fibers, respectively; E2 is the trans-
verse Young’s modulus, G12 is the in-plane shear modulus, V is the volume fraction, and 
ξ is a parameter associated with the fiber geometry (for circular fibers, it is 1.165 and 1.01). 
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The global and local stresses in an angle lamina are related to each other through the
angle of the lamina θ:  σx

σy

τxy

 = [T]·

 σ1

σ2

τ12

, (32)

where [T] is called the transformation matrix.
The mechanical properties of a typical unidirectional lamina are severely limited in

the transverse direction. If one stacks several unidirectional layers (Figure 5) this may
be an optimum laminate for unidirectional loads. However, for complex loading and
stiffness requirements, this would not be desirable. This problem can be overcome by
making a laminate with layers stacked at different angles for given loading and stiffness
requirements. This approach increases the cost and weight of the laminate, and thus, it
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is necessary to optimize the ply angles. Moreover, layers of different composite material
systems may be used to develop a more optimum laminate.
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The idea is simply to find the equivalent lamina (or fiber) in order to be able to have a
stack of laminae in the same direction. This equivalent can be found in two different ways
(Figure 6).

Algorithm:
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2.3. Thickness

Size effects influence not only the strength of individual fibers, but also the longitu-
dinal tensile strength and failure process of composite specimens and structures [28,29].
Most authors agree that the statistics of fiber strength are essential for establishing the
relationship between the composite longitudinal tensile strength and size; in addition, other
sources of size effects [30–35] are often considered as well. Size effects pose a challenge for
the design of large composite structures based on experimental data measured in small
coupons, and predictive models are therefore of utmost importance. This section suggests
a generalized method for equivalence in thickness of laminate composites (Figure 7).
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Algorithm:
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2.3.1. GCD of Plies

This idea is simply based on finding the GCD for the thicknesses in composite ma-
terials in order to unify the thicknesses provided. The GCD with two or more integers,
which are not all zero, is the largest positive integer that divides each of the integers. By
calculating the GCD, the number of plies is equal to the initial thickness, and thus, we
replaced the initial thickness with a number of plies with a uniform thickness, even if the
composite materials have different types of fibers or matrices.

2.3.2. Stress–Strain Relation (Hook’s Law Method)

A mechanical structure takes external forces, which act upon a body as surface forces
(for example, bending a stick) and body forces (for example, the weight of a standing
vertical telephone pole on itself). These forces result in internal forces inside the body.
Knowledge of the internal forces at all points in the body is essential because these forces
need to be less than the strength of the material used in the structure. Stress, which is
defined as the intensity of the load per unit area, determines this knowledge because the
strengths of a material are intrinsically known in terms of stress. The determination of
stress distributions of beams in necessary for determining the level of performance for
the component. In particular, stress-based failure theories require determination of the
maximum combined stresses in which the complete stress state must be either measured or
calculated. Consider a bar of cross-section A and length L (Figure 8). A uniform tensile load
P is applied to the two ends of the rod; by finding the state of stress, and strain energy per
unit volume of the body. Assume that the rod is made of a homogeneous isotropic material
of Young’s modulus, E. Normal Stress: Having derived the proportionality relation for
strain, εx, in the x-direction, the variation of stress, σx
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Using generalized Hook’s law: ε11

ε22

Y12

 =


1

E1

−v12
E2

0
−v12

E1
1

E2
0

0 0 1
G12

·
 σ11

σ22

τ12

 (33)

ε11 =
σ11

E1
− v12·σ22

E2
(34)

ε22 = −v12·σ11

E1
+

σ22

E2
(35)

Y12 =
τ12

G12
(36)

Since the whole idea is to find equivalent

ε11(eq) =
σ11(eq)
E1(eq)

− ν12·σ22(eq)
E2(eq)

(37)

ε22(eq) = −ν12·σ11(eq)
E1(eq)

+
σ22(eq)
E2(eq)

(38)

Y12(eq) =
τ12(eq)
G12(eq)

(39)

where:
σ11 =

6FL
bh2

(40)

σ22 =
6Fb
Lh2

(41)

τ12 =
F
bh

(42)

Since
ε11 = ε11(eq), ε22 = ε22(eq),Y12 =Y12(eq) (43)

σ11

E1
− v12·σ22

E2
=

σ11(eq)
E1(eq)

− v12·σ22(eq)
E2(eq)

(44)

− v12·σ11

E1
+

σ22

E2
= −v12·σ11(eq)

E1(eq)
+

σ22(eq)
E2(eq)

(45)

τ12

G12
=

τ12(eq)
G12(eq)

(46)

And From Equations (38)–(43), we have:

L
b
× 1

h2(eq)·E11(eq)
−v21·b

L
× 1

h2(eq)·E22(eq)
=

L
b
× 1

h2·E11
−v21·b

L
× 1

h2·E22
(47)

− v21·L
b
× 1

h2(eq)·E11(eq)
+

b
L
× 1

h2(eq)·E22(eq)
= −v21·L

b
× 1

h2·E11
+

b
L
× 1

h2·E22
(48)

Assuming that:

α =
L
b
× 1

h2·E11
− ν21·b

L
× 1

h2·E22
(49)

β = −v21·L
b
× 1

h2·E11
+

b
L
× 1

h2·E22
(50)
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Therefore, the solution of Equations (44)–(46) is:

1
E11(eq)

= h2(eq)·( αb(b− v221(L− b)) + v21βb2
bL− v221L2

)
(51)

1
E22(eq)

= h2(eq)·
(

v21·α + β
b
L − v221

)
(52)

G12(eq) =
h·G12

h(eq)
(53)

3. Materials

In order to verify the applicability of this analytical model based on the equivalence
in thickness, a model with two different ply is used in this work. A comparison between
the results of present modeling, experimental data and previously developed multi-scale
modeling. Four different examples are generated. As case studies, different mechanical
properties are considered and the results are extracted.

3.1. UD—Homogenization

In order to verify the applicability of the analytical models, three types of examples
were chosen from the specimens studied by Toledo and Menezes and their co-workers [32]
to calculate the engineering elastic constants of laminate composites.

The laminates studied in this section are the following:

1. Glass/epoxy [0/0] laminate;
2. Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy [0/90]s laminate;
3. Silenka E-Glass 1200 tex/MY750/HY917/DY063 epoxy [+45/−45]s laminate;
4. E-Glass 21xK43 Gevetex/LY556/HT907/DY063 [+90/+30/−30]s laminate.

Elastic properties of fibers and matrices are shown in [32,33].

3.2. Principal Globalization

A three-ply [0/90]s graphite/epoxy laminate with elastic properties as shown in
Tables 1 and 2:

Table 1. Elastic properties of fibers.

Fibers (GPa)

E-Glass
Ef

11 = Ef
22 = 72.4; Gf

12 = 30.2; νf
23 = 0.2

Silenka E-Glass 1200 tex
Ef

11 = Ef
22 = 74; Gf

12 = 30.2; νf
23 = 0.2

E-Glass 21xK43 Gevetex
Ef

11 = Ef
22 = 80; Gf

12 = 30.2; νf
23 = 0.2

Table 2. Elastic properties of matrices.

Matrices

Epoxy
Em = 2.76; Gm = 1.567; νm = 0.35

MY750/HY917/DY063 epoxy
Em = 3.35; Gm = 1.24; νm = 0.35

LY556/HT907/DY063
Em = 3.35; Gm = 1.24; νm = 0.35
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3.3. Equivalence in Thickness

The elastic properties of the materials are derived from Tables 3 and 4 [36].

Table 3. Elastic properties of fibers and matrices.

Graphite/Epoxy Laminate Properties

Vf = 0.7
E1 = 181

E2 = E3 = 10.3
G12 = G13 = 7.17

G23 = 5.79
ν12 = ν13 = 0.28

Table 4. Elastic properties of fibers and matrices.

Property E-Glass/Epoxy Laminate Carbon Fiber/Epoxy Laminate

Vf 0.6 0.6
E1 45.6 126

E2 = E3 16.2 11
G12 = G13 5.83 6.6

G23 5.79 3.93
ν12 = ν13 0.278 0.28
ν23 0.4 0.4

4. Results and Discussion

With the purpose of validating the developed modeling technique, the results were
compared with experimental data published in open literature. A comparison between
the results of present modeling, experimental data, and previously developed multi-scale
modeling was conducted. As case studies, different mechanical properties were considered,
and the results are shown in Tables 5–11, each of which shows a clear comparison between
the experimental results and the presented algorithm.

Table 5. Ex Young’s modulus comparison.

Type of Composite Orientation Experimental Norm 0 Norm ∞ Norm Cart. Norm 3 Norm 4 Hybrid Method

Glass/epoxy [0/0] 56 55.14 55.14 55.14 55.14 32.39 50

E-Glass 1200 tex
MY750/HY917/DY063 epoxy [0/90]s 29.2 12.564 45.74 29.152 29.152 ± 16.58i 24.14 31.19

E-Glass 1200 tex
MY750/HY917/DY063 epoxy [+45/−45]s 14.4 12.72 12.72 12.72 12.72 7.471 16.511

E-Glass/LY556/HT907/DY063 [+90/+30/−30]s 27.4 12.52 29.12 28.8766 28.8766 ± 13.085i 21.71 30.633

Table 6. Ey Young’s modulus comparison.

Type of Composite Orientation Experimental Norm 0 Norm ∞ Norm Cart. Norm 3 Norm 4 Hybrid Method

Glass/epoxy [0/0] 15 18.18 18.18 18.18 18.18 10.679 13

E-Glass 1200 tex
MY750/HY917/DY063 epoxy [0/90]s 17.2 12.86 21.673 17.2665 17.2 ± 4.4064i 11.155 21.476

E-Glass 1200 tex
MY750/HY917/DY063 epoxy [+45/−45]s 17.1 18.67 18.67 18.67 18.67 10.966 21.281

E-Glass/LY556/HT907/DY063 [+90/+30/−30]s 22.3 12.55 39.154 24.401 24.401 ± 11.05i 18.623 27.374

For example, Tables 5–11 show the comparison of longitudinal and transversal Young’s
moduli and shear modulus between four different materials and fibers with different
orientations and the two methods suggested in the UD-homogenization section of the K-PY
algorithm, as well as a comparison implied between the two suggested methods, which
are the 5 norms and the hybrid method.
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Table 7. Gxy Shear modulus comparison.

Type of Composite Orientation Experimental Norm 0 Norm ∞ Norm Cart. Norm 3 Norm 4 Hybrid Method

Glass/epoxy [0/0] 3 2.57 2.57 2.57 2.57 1.5 5.5

E-Glass 1200 tex
MY750/HY917/DY063 epoxy [0/90]s 5.83 4.832 6.464 5.648 5.648 ± 0.816i 3.428 3.7876

E-Glass 1200 tex
MY750/HY917/DY063 epoxy [+45/−45]s 10.6 7.047 7.047 7.047 7.047 4.14 5.6186

E-Glass/LY556/HT907/DY063 [+90/+30/−30]s 5.79 5 6.43 5.66 5.66 ± 0.588i 3.383 3.924

Table 8. Engineering constants comparison.

Engineering Constants (GPa) Kaw Fiber Method PLY Method

Ex 124.5 124.728 126.828

Ey 67.43 68.27 69.25

Gxy 7.17 7.55 7.64

Table 9. Ex Young’s modulus comparison.

Type of Composite Thickness (mm) CLT Experimental GCD Method Hook’s Law Method

G–G–G–G–G–G 0.05–0.03 46.875 46.54 44.1

C–C–C–C–C–C 0.05–0.03 126.857 127.104 122.458

G–G–C–C–G–G 0.05–0.03 65.346 73.39 61.56

C–C–G–G–C–C 0.05–0.03 108.42 100.25 101.75

Table 10. Ey Young’s modulus comparison.

Type of Composite Thickness (mm) CLT Experimental GCD Method Hook’s Law Method

G–G–G–G–G–G 0.05–0.03 16.658 18.2 17.674

C–C–C–C–C–C 0.05–0.03 11.07 10.29 11.358

G–G–C–C–G–G 0.05–0.03 15.369 15.563 15.90

C–C–G–G–C–C 0.05–0.03 12.365 12.92 12.983

Table 11. Gxy Shear modulus comparison.

Type of Composite Thickness (mm) CLT Experimental GCD Method Hook’s Law Method

G–G–G–G–G–G 0.05–0.03 5.83 5.89 6.72

C–C–C–C–C–C 0.05–0.03 6.6 6.81 7.61

G–G–C–C–G–G 0.05–0.03 6 6.19 7.55

C–C–G–G–C–C 0.05–0.03 6.423 6.5 7.63

On the other hand, Table 8 shows a clear comparison for the section of principal
globalization and compares the results not only with experimental results with the litera-
ture but also those between the two suggested algorithms, i.e., the fiber method and the
PLY method.

Finally, Tables 9–11 show comparisons related to the thicknesses study methods with
the classical laminate theory and the two suggested methods by the author, i.e., the GCD
and the hook’s law method.

4.1. UD—Homogenization

For all case studies, the fiber volume fraction was considered constant in all layers.
The obtained results are presented in Tables 5–7.
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As it was predicted, norm 0 shows lower results among the five presented models,
while norm ∞ was the highest. The Cartesian norm was the most accurate between all
presented methods due to its direct relation to Chamis model, as discussed earlier. Norm 3
is not dependable, since its solution is always imaginary at ply number that exceeds two
due to the Cauchy-Schwarz inequality [19], but it is notable that the real part is similar to
the Cartesian norm because it is a second-order equation. Norm 4 and the hybrid method
were not as efficient as the Cartesian norm.

It was observed that the Young’s modulus in direction 1 is the most accurate parameter
up to 0.1% (in comparison with that in the second experiment) for the longitudinal Young’s
modulus Ex, and that the maximum average error is shown for the Cartesian Norm model
with 4.55%. For the transverse Young’s modulus the percentage of error is much higher than
for the longitudinal Young’s modulus, with an average of 10.2% (the minimum percentage
of error was for the second experiment with 0.38%). In addition, the average percentage of
error for shear modulus in the Cartesian norm was 13.2% (with 2.24% as the lowest value
from experiment 4).

Moreover, the percentage of errors with the hybrid method was higher, so their results
are shown and not dependent on the ultimate path of the K-PY algorithm.

In addition to the high accuracy level of the current modeling technique, the very
short runtime required of the modeling renders the developed multi-scale modeling as a
cost-effective computational tool for estimating the Young’s moduli of laminate composites.

4.2. Principal Globalization

Since the Cartesian norm was the most accurate among all presented methods, a clear
comparison between the experimental values presented by Kaw [26] and the predicted
results from the K-PY Equivalence model was implemented.

As shown in Table 8, the comparison was focused on Young’s modulus Ex, Ey and
Shear modulus Gxy. The fiber method present more accurate and precise values with the
percentages of error varied from 0.128% for longitudinal Young’s modulus Ex, 1.23% for
transversal Young’s modulus Ey, and 5% for Shear modulus Gxy, while the PLY method
shows higher percentages of errors, such as 2.6% for Ex, 2.62% for Ey, and 6.15% for Gxy.

4.3. Equivalence in Thickness

The obtained results are presented in Tables 9–11.
Tables 9–11 give a clear comparison between the experimental values and the predicted

results from the present K-PY Equivalence in thickness model in both GCD and Hook’s law
methods. The comparison was focused on Young’s moduli Ex, Ey, and shear modulus Gxy.
From Tables 9 and 10, good agreement was obtained between the predicted results and
the available experimental values of the GCD method. The relative errors for the Young’s
moduli were 5.18% and 6.02%, respectively, while for Hook’s law method they were around
5.52% and 4.03%, respectively. Moreover, the relative error for shear modulus Gxy was 2.1%
for the GCD method, while for Hook’s law method it was around 18.7%. As illustrated in
Tables 9–11, as for the comparison of Young’s modulus, it can be seen that the result were
greater than the experimental values by about 5–6% for the GCD method while for Hook’s
law method it was greater than 4–5%. Similarly, the result for shear modulus Gxy was
2.1% for the GCD method while for Hook’s law method it was greater than18%. From the
aforementioned analysis, the contribution of K-PY Equivalence in thickness model in the
GCD method can be taken into account for precisely predicting the elastic properties. The
results showed that the present analytical model based on finding equivalent and with the
application of thickness uniformity can be used to effectively evaluate the elastic properties
for laminate composites.

5. Conclusions

The constitutive models presented in this paper are able to reproduce the behavior of
laminated composites formed by fiber-reinforced laminae with different orientations or
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different types of fibers. The suggested hypotheses are the simplest that can be applied to
isotropic fibers. As it was shown in the methodology section, applying the algorithm is
easy and simple. Other models were also presented to discuss the equivalence of fibers or
ply from the perspective of angle or thickness.

Good agreement was observed among numerical results, with smaller differences in
the transversal strains, as shown in the results section that the Young’s modulus in direction
1 was the most accurate parameter up to 0.1% (in comparison with that from the second
experiment) for the longitudinal Young’s modulus Ex and that the maximum average error
is shown for the Cartesian norm model with 4.55% but with an average percentage of error
of transversal strains of 10.2% (the minimum percentage of error was 0.38% for the second
experiment); this can be due basically to the lack of precision in the mechanical properties
of the components, fundamentally of the fibers, used as input data.

In general, application examples and comparisons with experimental results showed
that the models are able to properly reproduce the mechanical behaviors of laminae and
composite laminates. The models also describe the failure of the composite, taking into
account what happens in each component. It also allows identifying the failure mode of the
composite, produced by the failure of one or more of its components. It is able to reproduce
complex failure modes that change from the matrix to the fibers as shown for equivalence
in thicknesses and orientation where the percentages of errors were only up to 2% and less
from results section in all predicted Young’s and shear moduli, since only in equivalence
in thicknesses the highest value of error was 5% for Gxy, depending on the type of stress
state. The model works better for some types of laminates, and further analysis and model
calibration are needed.

The models were covered in the paper, based directly on Chamis model with an
objective function for optimization and hybrid-based model that discuss the equivalence
of fiber in angle. The equivalence in orientation and in thickness was also discussed in
this paper, and a new Generalization model was presented. The framework presented is
potentially valid for other fiber conditions such as fiber volume fraction, but these cases
would require further development.

Ultimately, it is concluded that the most accurate path to predict and reproduce the be-
havior of laminated composites in the orientation case is to apply the rotation/equivalence
on fiber and then to apply K-PY model using the Objectif function with the Cartesian norm.
While for equivalence in thickness, it was concluded that the GCD method is the most
accurate method to use. As shown in the results, all values from Tables 5–11 had relatively
low percentages of error, differing from 0.128% as shown in Table 8. The percentage is
related to the lack of the exact and precise database structure of the used material, but it
does show a great capability to use the algorithm to find the ultimate and optimal solution.
This algorithm (Figure 9) is easily adaptable to laminates with periodicity, such as multi-
angle lay-up composites. This algorithm allows researchers and end users to calculate the
stiffness and compliance matrix of any composite material, with any form, orientation, or
thickness, saving so much time and cost while finding the optimal solution.

Optimal Path Algorithm:
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