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Abstract: Advances in the field of processing and characterization of material behaviors are driving
innovations in materials design at a nanoscale. Thus, it is demanding to develop physics-based
computational methods that can advance the understanding of material Multiphysics behaviors from
a bottom-up manner at a higher level of precision. Traditional computational modeling techniques
such as finite element analysis (FE) and molecular dynamics (MD) fail to fully explain experimental
observations at the nanoscale because of the inherent nature of each method. Concurrently coupled
atomic to the continuum (AtC) multi-scale material models have the potential to meet the needs of
nano-scale engineering. With the goal of representing atomistic details without explicitly treating
every atom, the AtC coupling provides a framework to ensure that full atomistic detail is retained in
regions of the problem while continuum assumptions reduce the computational demand. This review
is intended to provide an on-demand review of the AtC methods for simulating thermo-mechanical
behavior. Emphasis is given to the fundamental concepts necessary to understand several coupling
methods that have been developed. Three methods that couple mechanical behavior, three methods
that couple thermal behavior, and three methods that couple thermo-mechanical behavior is reviewed
to provide an evolutionary perspective of the thermo-mechanical coupling methods.

Keywords: atomic to continuum coupling; concurrent coupling; thermal coupling; mechanical
coupling; thermomechanical coupling

1. Introduction

Multi-scale material models generally refer to models that capture essential physics
from disparate time and length scales and relate them. This coupled model can then
result in simulations that explain and predict material properties and performances
that cannot be captured in any single regime of the simulation. Multiscale methods en-
able computational material methods to challenge many of the fundamental limitations
of continuum mechanics with larger atomistic simulations and sophisticated hybrid
atomistic-continuum methods. One class of these multi-scale methods specializes in
bridging between the atomic scale (angstrom) and the continuum scale (sub-micrometer).
In this study, we focus on relating discrete atomic properties to their corresponding
continuous property in the continuum formulation. Lower-scale models such as molec-
ular dynamics (MD) and density functional theory (DFT) provide a relatively more
accurate model of materials at high computational costs [1]. Higher scale constitutive
models such as finite element analysis (FEA) or the phase field model (PFM) can effi-
ciently model engineering scale structures and devices at relatively low computational
costs [1]. However, these models must compromise accuracy when used to model a
phenomenon occurring at smaller length scales because these methods assume homo-
geneity of material properties. Multi-scale models hold the promise of leveraging the
best of both scales by combining the two used and coupled homogenization methods.

CivilEng 2022, 3, 1013–1038. https://doi.org/10.3390/civileng3040057 https://www.mdpi.com/journal/civileng

https://doi.org/10.3390/civileng3040057
https://doi.org/10.3390/civileng3040057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/civileng
https://www.mdpi.com
https://orcid.org/0000-0003-2330-4237
https://orcid.org/0000-0002-6697-0777
https://doi.org/10.3390/civileng3040057
https://www.mdpi.com/journal/civileng
https://www.mdpi.com/article/10.3390/civileng3040057?type=check_update&version=2


CivilEng 2022, 3 1014

Apart from providing the ability to simulate larger length scales, multi-scale models
are also useful in providing the framework for solving an atomic scale problem using
continuum framework methods such as initial and boundary value problems [2]. Recent
advances in characterization tools and processing methods have significantly increased
our understanding of materials at the nanoscale, and this has led to the development
of materials and devices engineered at that scale. This has, in part, driven the recent
interest in multi-scale modeling.

An application area that can benefit from multi-scale models deals with explor-
ing the structure–property relation in materials. For example, indentation tests are a
common experimental technique used to determine the mechanical strength of mate-
rials. It is known that the continuum approximations of yield strength based on the
Hall-Petch equation breakdown for grain sizes less than around 20 nm [3] and using MD
to simulate even nano-indentation is prohibitively expensive, computationally. Miller
et al. [4] recently used the quasi-continuum(QC) method to study dislocation nucleation
in an fcc lattice during nanoindentation. The study revealed that the nucleus of the
dislocation has a finite size that is linearly dependent only on the indent size and that
the nucleation criteria need to consider the non-local nature of the atomic scale. An-
other application area that is well suited for multi-scale modeling is the study of the
property and performance of engineered nano-scale materials, such as carbon nanotubes
(CNT) and graphene. Continuum theory can be insufficient for studies involving a
localized deformation causing dislocations or fractures since the continuum formula-
tion assumes a homogeneous deformation. On the other hand, the MD approach is
impractical when the application involves using CNTs in conjunction with other mate-
rials or devices which are larger and beyond the reach of MD. Qian et al. [5] used the
bridging scale decomposition (BSD) method to study the post-bucking analysis of CNTs,
where they used mesh-free approximations to represent the curved surfaces in the coarse
scale. The coarse scale was used to impose essential boundary conditions, while MD
provided fine-scale interatomic interactions. Nano-engineered devices are yet another
application area that is an obvious target for multi-scale models given the small size
scale inaccessible by continuum mechanics and complex geometries, which are hard to
realize using MD alone. Templeton et al. [2] used spatially varying thermostats on a
method based on BSD to emulate a nanodevice subjected to laser heating. The device
consisted of a block of material with elastic properties of gold and a heat sink made of
graphene-like material. This method utilized traditional FE boundary conditions, such
as Dirichlet and Neumann boundary conditions to prescribe the temperature gradient
and volumetric heat source with a Gaussian profile (laser heating), respectively, to the
MD ensemble. Applying complex boundary conditions and initial conditions may be
trivial for FE problems, but that is not the case for MD simulation, even though it is
not immediately obvious. Multi-scale methods are making it easier to bridge this gap.
For example, Templeton et al. [2] demonstrated the ability to prescribe heat flux to an
FE-MD coupled system in arbitrary directions. This ability allowed them to estimate
the anisotropic thermal conductivity of an atomic lattice with defects in equilibrium or
non-equilibrium settings.

There are two distinct and important tasks in computational materials science research.
The first involves the design and development of mathematical models that capture the
essential physics required to explain material behavior. The second task is a simulation
which refers to solving the equations that characterize the model for a particular physical
system. The challenges of model development include developing insights into the physics
of the system and interrelationships between them, whereas setting up simulations requires
knowledge of numerical methods suitable for solving the governing equations in question,
leveraging the computational power of modern supercomputers, and interpreting large
amounts of data generated by the simulation.

The primary interest of this review is the former task of building material models.
The fundamental law that describes material deformation behavior is Hooke’s law and
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is useful for describing elasticity in materials undergoing small deformation and being
subjected to low loads (less than the yield stress). However, practical applications
require more complex constitutive laws to be considered to accurately model material
behaviors. For example, when a material exhibits different properties along different
orientations, it may be necessary to consider using the Anisotropic linear elasticity
model [6] instead of a linear isotropic model. An elastic perfectly plastic solid model [7,8]
may be apt if the problem considers loads that exceed the yield stress, and the material
being considered is a metal where it exhibits elastic behavior when loaded below the
yield stress and deforms at constant stress beyond the yield stress. Such models use
constitutive material parameters calculated from experiments as a dynamic input that
depends on loading factors, such as pressure, moisture, and temperature. There are
yet other models which require the explicit consideration of atomic-scale structures
in the nanoscale because the material phase consists of nano-sized grains or is highly
dependent on the dislocation dynamics or the material in the problem being considered
is a single crystal. Such models include crystal plasticity [9] and discrete dislocation
plasticity models [10] and often require the experimental values obtained from complex
and expensive characterization tools. Other important models include models that
describe interfaces between solids, models that describe a brittle fracture, fatigue crack
growth, and stress corrosion cracking [11]. These models, which require the implicit
consideration of atomic scale material structure, are, in general, more difficult to calibrate
compared to the previous category because of the size scale involved and the limitations
caused by the characterization techniques available.

An alternative approach is to replace the traditional stress-strain laws with direct
calculations of stress-strain behavior using atomic scale simulations such as MD and
molecular statics (MS). Typically, the atomic model is considered only in relatively small
regions of the domain where its usage is imminent. The high computational cost involved
in keeping track of a large number of degrees of freedom is the reason for limiting the
spatial extent of the atomistic model. While in some cases, it may be advantageous to be
able to model large spatial regions with atomistic refinement, in most cases, it is possible
to assume homogeneous properties everywhere except in small regions with localized
behavior that are different from the rest due to the atomic structure or physical loading
conditions. For example, the mechanical properties of materials undergoing fracture can
be assumed to be homogeneous everywhere except near the crack tip and the surfaces.
Material models that mix the atomic and continuum models in the problem domain have
naturally emerged from this nature of most physical material problems and are generally
known as multi-scale models. A classic example of such a multi-scale model is the MAAD
(macroscopic, atomistic, ab initio dynamics) method developed by Abraham et al. [12] to
model the dynamic fracture of silicon.

This review is intended to provide a guideline for researchers beginning to explore
this topic. The focus of this review is on concurrently coupling between MD and FEA.
Other concurrent coupling hierarchies include coupling between DFT and MD [13,14],
PFM, and FEA [15,16]. Typically, multi-scale modeling methods are categorized into
two types: sequential and concurrent. Sequential methods, sometimes referred to as
“Hierarchical” in the literature, are methods where the fine scale is simulated first, and
results from it, usually constitutive parameters, are then fed as the input for the coarse
scale. For example, Williamson et al. [15] calculated material properties such as thermal
conductivity from molecular dynamics simulation and supplied it as the input for the
continuum scale modeling of nuclear fuel irradiation effects to compensate for unavailable
experimental data. On the other hand, in the concurrent methods, even though results
from one scale may feed into another scale of simulation, this information passing happens
at each time step and this information being passed is not necessarily constitutive of the
parameters. For example, in the concurrent coupling of thermal transport developed by
Templeton et al. [2], temperature, the primary variable, is solved for its exchange between
the scales. The bridging scale decomposition (BSD) method [17] and the quasicontinuum
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method [18] are typical examples of concurrent coupling methods. Concurrent methods
can be further classified based on how the interface region between the atomistic domain
and continuum domain is defined. Some methods [19] have a “handshake” region which
is neither fully atomistic nor fully continuum in nature and provides a way to gradually
transition between the atomistic and continuum models. There are other methods [17,18]
that do not have a “handshake” region between the different models. Another feature that
can easily distinguish the different methods is the coupling boundary condition which refers
to whether the boundary atoms and finite element nodes are required to be coincident
or not. These conditions are also referred [20] to as “strong compatibility” and “weak
compatibility”, respectively. The weak compatibility condition is procedurally simpler due
to the reduced requirements for mesh refinement. Figure 1 is a pictorial depiction of the
classification of multi-scale methods.
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In typical multi-scale models, the coarse scale simulation is used in much of the prob-
lem domain. The designer of the simulation should carefully select the regions which
should be simulated at a fine scale. This decision about the selection of the multi-scale
boundary is one of the primary disadvantages of this method. However, some methods
have overcome this issue by dynamically evolving the extent of the coupled region based
on the variations in the state variables. For example, the QC method performs adaptive
mesh refinement to achieve an atomic resolution in regions with a highly non-uniform
deformation, such as dislocation cores and crystal boundaries. While some material phe-
nomena that require multi-scale consideration are global in nature, others are applicable
only in localized regions of the domain. Weinan [21] refers to this classification as type
A and type B for the local and global problems, respectively. It is not difficult to see that
some methods, such as QC, are more suitable for type B problems than other methods,
such as the BSD method. Another important aspect of multi-scale modeling methods is
how the scales are coupled temporally and not just spatially. The former is, in general, a
more challenging task.

Given the scope of this paper, a good understanding of the fundamentals of MD
and solid mechanics is important. A brief introduction to concepts related to MD is
given here, and it should be considered as a list of pointers to topics that are relevant to
discussions related to coupling MD with FE. The main goal of an MD simulation is to
track the trajectories of a group of point particles representative of an ensemble of atoms
while maintaining certain statistical properties which make the ensemble relevant to the
calculation of thermodynamical properties. The trajectories of these particles are governed
by Newton’s second law of motion (Equation (1)).

f = m
..
r (1)

f = −∇U (2)

The force f is a known quantity given by the inter-atomic potential functions (Equation (2))
obtained either from quantum mechanical calculations, experimental data, or a combination
of the two. The mass of the atom m is also known, leaving the position r as the only
unknown quantity. Several time integration methods are available to solve the position
of the particle as time progresses. Some of the popular methods are velocity-verlet [22],
predictor-corrector [23], and r-RESPA [24] methods. Some qualities that differentiate the
time integrators are their ability to explicitly include the velocity term as seen in the
velocity-verlet equation (Equation (3)), the ability to handle noise in the force, and the
ability to handle multiple time step dynamics. For example, the velocity-verlet method is
better suited for ab-initio MD than the predictor-corrector method since the ab-initio MD
experience has relatively more noise in the force than classical MD, which uses smoother
empirical potential functions. Multiple time step dynamics are essential for multi-species
ensembles where different molecules have different characteristic vibration frequencies,
and therefore, a single time stepping scheme would be computationally wasteful since the
lower frequency molecules do not need to be tracked at the same rate as that of the higher
frequency molecules.

r(t + ∆t) = r(t) + v(t)∆t +
(

1
2

)
a(t)∆t2 (3)

The subtle point to be noted in Equation (1) is that it is applicable for systems with
only conservative forces acting on it. Mechanical forces are classified as internal, external,
conservative, and non-conservative. The electrostatic force between a pair of monoatomic
ions is considered as conservative because the force is only dependent on the instantaneous
separation distance and not the atomic velocities. Forces, such as mechanical friction and
viscous friction in gases and liquids, are considered non-conservative since the current
magnitude of the force may depend on instantaneous velocities of atomic motion. When
dealing with a non-conservative system, similar to a dissipative system where a damping
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force exerted on a particle is proportional to its instantaneous velocity with the opposite
sign, Newton’s second law will take the form shown in Equation (4), where γ is the
damping constant.

m
..
r = f−mγ

.
r (4)

Several practical issues are encountered while running MD simulations which is partly
the motivation for coupling MD with continuum methods. Particularly, two issues are
important to the discussions in this article. The first is the periodic boundary condition that
is widely used in MD simulations to assume the infinite spatial extent of the material, and
the second is related to the methods used to simulate NEMD using the concept of thermal
exchange with an external heat bath [25].

The organization of the rest of this paper is outlined here. Section two describes a brief
review of the important methods that have been devised to interpret atomic quantities in the
continuum language. Section three reviews the coupling methods specifically implemented
for mechanical deformation behavior, and section four reviews methods that couple thermal
behavior. In section five, some of the existing methods for coupling thermo-mechanical
physics in a multi-scale context are examined, and section six presents some conclusive
thoughts about the methods reviewed.

2. Coarse-Graining Methods

In the continuum formulation, quantities are given by continuous functions that can be
evaluated at any point in space. However, this is not the case with the atomic representation
in which properties are defined only at the atomic position, and these properties need not
be a function of just the single atom being considered. Hence the atomic representation
is non-local in nature. In other words, atomic properties at a given point in space depend
on their neighboring spaces, unlike the continuum representation, where properties are
defined as continuous functions which can be evaluated at any point in space locally.
This section describes some of the methods developed to address the need for translating
non-local atomic properties to continuum representations.

2.1. Virial Theorem (VT)

The virial theorem (VT) was developed by Clausius [26] and extended by Maxwell [27]
to define the virial stress as a tensorial quantity. The virial stress is basically the Cauchy
stress in the language of atomic quantities. VT defines the isotropic pressure P on an
ensemble of N atoms enclosing a volume V as shown in Equation (5), where the first term
involves temperature T and the second term represents force due to the potential energy
(ϕ) between two atoms α and β.

P =
1
V

(
NkBT − 1

3

〈
∑
α

∑
β

∂ϕαβ

∂rαβ
.rαβ

〉
.

)
(5)

Here, both terms on the right-hand side imply spatial and temporal averaging.
T implicitly implies temporal averaging, and the angled brackets on the second term
explicitly imply temporal averaging. It is then necessary to perform this averaging over a
subset of the ensemble, especially when the property is a field. These constraints restrict
this method to be applied to the material models, which assume homogeneity and are in
thermodynamic equilibrium. It has been shown that when applied to inhomogeneous and
non-equilibrium conditions, the virial stress does produce errors [28,29]. Practical issues for
MD simulation arise while calculating point-wise properties from such sub-ensembles, and
they have been identified by Webb et al. [30]. However, due to its simplicity, it is widely
used in MD studies for calculating pressure and virial stress.
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2.2. Irving and Kirkwood Method (IK)

Irving and Kirkwood [31] presented one of the first efforts to interpret continuum
scale quantities from microscopic quantities for non-equilibrium systems. They derived
the equations of hydrodynamics from non-equilibrium classical statistical mechanics
theory and defined expressions for density, velocity, and specific internal energy, the
three independent variables in hydrodynamics using a probability density function.
From these definitions, heat flux and stress tensor expressions were obtained, such
that the balance laws of the continuum mechanics were satisfied. It is important to
note that the densities obtained are pointwise functions which are phase averages and
not macroscopic observables or continuum fields which require spatial and temporal
averaging. This distinction has been clearly identified and emphasized recently by
Admal et al. [32]. Obtaining these pointwise fields requires knowledge of the probability
distribution function in phase space. However, in MD simulations, due to its purely
deterministic nature, these probability density functions reduce to a Dirac delta function,
and hence the pointwise fields are localized to particle positions. The Irving-Kirkwood
method has three potential drawbacks. Firstly, the use of the probability distribution
function meant that the method was stochastic in nature and led to practical difficulties
due to the lack of knowledge of the probability distribution function. Secondly, this
method used a series expansion of the Dirac delta distribution function, which was
identified as mathematically non-rigorous by Walter Noll [33]. Lastly, the specific
internal energy density derived in the Irving-Kirkwood method was shown [34] to be
plausible only for identical particles interacting through pair potentials.

2.3. Hardy Method (HM)

Along the same lines as the basic idea introduced by VT and the Irving-Kirkwood
method that discrete atomic properties can be related to continuous point-wise functions in
the continuum formulation, the Hardy approach [35–37] is a notable method developed
to model the mechanical stress introduced by shock waves simulated in MD simulation.
The main contributions of the Hardy method were the introduction of a discrete and finite-
ranged localization function which replaced the Dirac delta function in the Irving-Kirkwood
method. Such functions, which provide a finite range, are also referred to as functions that
provide compact support. It is a non-negative function that distributes the properties of an
atom and allows all atoms to contribute to a continuum property evaluated at a position
and time. Consider X as the position at which the continuum property is evaluated and xα

as the position of an atom α, then the localization function peaks at xα = X and tends to
zero as the distance between them becomes very large. The Hardy stress derived is shown
in Equation (6). Here xαβ = xα − xβ, Fαβ represents the interatomic force between the
particles α and β, the bond function Bαβ(x) defined in Equation (8) can be interpreted as the
percent of the bond between atoms α and β that resides in the characteristic volume around
the material point x. The localization function ψ given in Equation (9) can be interpreted as
the percent of atom α that resides in the characteristic volume. In other words, the bond
function accounts for the partial contribution of an atomic bond to a characteristic volume
being considered. It is important to note that the kinetic term uses a velocity (uα) relative
to the continuum spatial point to access a kinetic contribution to the stress tensor instead of
using an absolute atomic velocity. The decomposition of the absolute atomic velocity vα

into the continuum velocity v(x, t) and a relative velocity uα(x, t), according to Hardy, is
given in Equation (7). Such considerations make it different from virial stress, even though
it looks very similar.

σ(x, t) = −
{

1
2

N
∑

α=1

N
∑

β 6=α

xαβ ⊗ FαβBαβ(x)

+
N
∑

α=1
mαuα ⊗ uαψ(xα − x)

} (6)
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vα = v(x, t) + uα(x, t) (7)

ψ(xα − x)−ψ
(

xβ − x
)
= −xαβ.∂xBαβ(x) (8)∫ ∫ ∫

R3
ψ(xα − x)d3r = 1 (9)

Hardy’s method makes assumptions of force and potential energy, which are simple
and are clearly valid only for simple pair potentials. For example, the potential energy
of an atom was assumed to be a function of the distance between itself and the other
atoms individually. Though this assumption agrees with pair potentials, such as Lennard
Jones and the embedded atom model (EAM), it is invalid for 3-body potentials such as the
Stillinger–Weber potential commonly used for modeling silicon. This has been identified
by Webb et al. [30] and Zimmerman et al. [38]. Zimmerman et al. compared VT stress
with Hardy stress and found that Hardy provides an equal to or more accurate definition
of the Cauchy stress in an atomic system. They also found that the fluctuations in Hardy
stress reduce in magnitude with the use of a smooth, continuous localization function with
compact support. Zimmerman et al. [39] showed in another work that the problem of
separating the potential and kinetic terms in the virial stress can be avoided by using a
formulation similar to the Hardy method in the Lagrangian or material frame instead of
the Eulerian or spatial frame. It was shown that the derived first Piola–Kirchhoff stress is
consistent with the Cauchy stress calculated using the Hardy method.

2.4. Atomic Kinetic Temperature

In the MD simulation of classical systems, the simplistic definition of the temperature
of an ensemble of N atoms in the thermodynamic equilibrium refers to the atomic kinetic
temperature, which is given by Equation (10) where mα is the mass of the atom α, v is the
velocity, and kB is the Boltzmann’s constant.

T(t) =
1

3NkB

N

∑
α=1

mα(vα)2 (10)

This temperature can be thought of as the vibrational energy of atoms. This notion
holds good for systems where the atoms vibrate with a narrow vibrational spectrum. For
example, a solid in equilibrium with a heat bath has atoms that vibrate at frequencies
that are characteristic of the equilibrium thermodynamic temperature. However, if this
solid is subjected to mechanical deformation, the atoms undergo vibrations of lower
frequencies that are typical of the deformation motion, and then the simplistic defini-
tion of the temperature becomes insufficient. In other words, when a system is not in
thermodynamic equilibrium, the kinetic temperature is not valid. The correct definition
of non-equilibrium temperature is an area of active research. Some other definitions of
temperature include the Metropolis Monte Carlo (MC) temperature, Rugh’s tempera-
ture, and configurational temperature. A good discussion on this topic is provided by
Powles et al. [40].

2.5. Hardy Temperature (HT)

A very similar measure of temperature was derived by Hardy et al. [37], as shown in
Equation (11), where relative velocity (uα) was used instead of absolute atomic velocities.
The decomposition of the absolute atomic velocity is shown in Equation (7), and the
localization function ψ, also known as the bond function, is given in Equation (8).

T(x, t) =
1

3kB

∑N
α=1 mα(uα)2

ψ(xα − x)

∑N
α=1ψ(xα − x)

(11)

Webb et al. [30] observed that this method underestimated temperature relative to
the temperature measured using the discrete method (Equation (10)) when the spatial
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averaging sphere radius was small (Ra = 0.5 nm) but agreed with the discrete method,
which had a sufficiently large spatial averaging (Ra & 1.5 nm). Based on this observation,
they concluded that it was best to use the Hardy method for interpreting stress and not
temperature. However, it must be noted that the temperature equation was not rigorously
derived by Hardy, as it was for the Hardy stress and heat flux, and this was noted by
Webb et al. Another important observation by Webb et al. was that both discrete and
Hardy methods for measuring heat flux in an atomic ensemble demanded larger degrees
of temporal averaging (ta & 100 ps) to obtain fewer fluctuating values compared to the
measurements of stress and temperature. This result was attributed to the inherent nature
of these properties.

2.6. Equivalent Continuum (EC)

A purely mechanical theory derived by Zhou [41] that defines work-conjugate stress
and deformation fields from non-local MD system. The discrete particle systems considered
exhibit micropolar interatomic interactions which involve both central interatomic forces
and interatomic moments. The equivalence of the continuum to discrete atomic systems
includes preservation of momenta, conservation of work rates, and conservation of mass.
The equivalence holds for the entire system and for volume elements defined by any subset
of particles in the system. EC provides an explicit account of arbitrary atom arrangement,
admitting applications to both crystalline and amorphous structures.

3. Downscaling Methods
Thermostats

Classical MD simulations produce a system whose total energy is constant, in other
words, an isolated system. This type of ensemble is also known as a microcanonical or
an NVE ensemble. However, most physical systems are kept at a constant temperature
during experiments, and hence, it is convenient to be able to maintain the MD ensemble at
a constant temperature rather than constant energy for comparison with experiments. Such
an ensemble is known as the canonical or NVT ensemble. Several classes of thermostats
have been developed over the years to tackle the problem of maintaining the desired
temperature in a system of particles, and these thermostats are, in general, referred to
as isokinetic thermostats. Some useful qualities of thermostats, in general, include time
reversibility, the ability to achieve the Maxwell–Boltzmann distribution of velocity, the
flexibility to prescribe the type of temperature and be able to promote heat flow. Figure 2
shows the three major classes of thermostats and examples for each class.
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The velocity rescaling [42] thermostat is, in general, the least accurate since it lacks the
ability to produce the thermal fluctuations typical of the canonical ensemble. However, this
thermostat is quite efficient and, hence, is used mostly to perform the equilibration of an
MD ensemble before the actual production simulation is performed. The Langevin [43] and
Nose’ Hoover [44] thermostats are able to reproduce the canonical ensemble, and these two
types of thermostats are also referred to as Gaussian thermostats or Gaussian isokinetic
thermostats because the equations of motion for these thermostats can be derived from
Gauss’ principle of least constraint [45]. The equations of motion for the atoms subjected to
the Langevin and Nose’ Hoover thermostat are shown in Equations (12) and (13), respec-
tively. Here the γ is similar to the damping coefficient seen in Equation (4) and G(t) in
Equation (13) is the stochastic component. The Nose’ Hoover thermostat is time-reversible,
but the Langevin thermostat is not time reversible and can produce non-physical dynamics
when velocities or positions become discontinuous in the phase space. This discontinuity
in phase space happens because the additional momentum applied to the random atoms is
chosen randomly from a Maxwell–Boltzmann distribution for the desired temperature.

mα..
rα = fα −mαγ

.
rα (12)

mα..
rα = fα −mαγ

.
rα + Gα(t) (13)

Unlike the continuum interpretation of stress where the atomic positions were
sufficient, temperature and heat flux expressions are inherently associated with atomic
motions and, therefore, need to consider the temporal variation and averages. As
pointed out by Webb et al. [30], the two critical parameters that need to be configured for
measuring the temperature of an atomic ensemble are spatial and temporal averaging.
For temporal averaging, they identified that the sampling frequency and total analysis
time were important quantities to be considered. Keeping the sampling frequency fixed
at a conservatively high value of once every ten-time steps (the typical time step in MD
is 1 fs), they studied the effect of the total analysis time and spatial resolution on the
fluctuation in temperature measured using Equation (10). It was observed that a higher
spatial resolution lowered the demand on the temporal resolution and vice versa. As a
general guideline based on the specific MD simulation they used, it was found that a
good balance of spatial and temporal resolution values was from 1 nm to 1.5 nm for the
sampling sphere radius and from 5 ps to 10 ps for the total analysis time (ta). However, no
quantitative relationship between spatial and temporal resolution was derived. With the
recent progress using machine learning methods, a unified thermodynamics-informed
neural network has been developed to accelerate conventional iterative flash calculation
schemes [46]. The thermodynamics-informed neural network provides a fast, accurate,
and robust approach to calculating the phase equilibrium properties for unconventional
reservoirs [47].

4. Mechanical Coupling Methods
4.1. Quasicontinuum Method (QC)

The QC method, originally developed by Tadmor et al. [18,48], can be simply
thought of as an atomistic-based continuum method, hence the name Quasicontinuum.
This method takes advantage of the fact that the material parameters that characterize
the constitutive relation between the stress and strain used in FEA are, in many cases,
the direct result of microscopic processes at the atomic scale. The QC method draws the
constitutive input directly from atomistic calculations instead of using experimentally
derived parameters. These constitutive parameters are input into the FEA model at
quadrature points within the element. The strain energy density is calculated at the
quadrature point by first selecting a representative atom or rep atom, which is sur-
rounded by a small collection of atoms referred to as a crystallite with a radius Rc. In
its simplest form, the relation between the continuum scale stress-energy density and
the deformed crystallite is based on the Cauchy–Born rule (CB). The distribution of the
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stress-energy within the rest of the element from the quadrature point is performed
using interpolation functions. The deformation of the crystallite is driven by the local
continuum deformation field evaluated at the quadrature point. The deformation is first
applied to the basis vectors, and the crystal structure is reconstructed from the deformed
basis. In the case where the crystallites do not overlap, the atoms in it only experience
homogeneous deformation and can be thought of as an infinite crystal undergoing uni-
form deformation. This is referred to as the local QC formulation. Even though this
assumption is elegant and perfectly suited for the definition of Cauchy stress, the defor-
mation field is local in nature and is not representative of actual atomic systems. The
local QC formulation is not capable of modeling inhomogeneous deformation processes,
such as stacking faults, free surfaces, or grain boundaries. To enable non-local behavior,
a non-local QC formulation has also been developed in which the element size can be
smaller than the representative crystallite radius Rc, such as that of atoms in a crystallite
experience, the influence of nearby crystallites as shown in Figure 3.
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Figure 3. Illustration of non-local QC formulation with overlapping crystallites. Reproduced with
permission from [49].

The atoms are assigned to a crystallite based on the closest rep atom, and if an
atom is equidistant from two rep atoms, the assignment is random. The size of the
crystallite on the atomic scale and the density of rep atoms in the continuum scale are
two parameters that can be controlled in such a way that when the deformation gradient
is steep, the mesh can be refined to the limit where the nodal degrees of freedom equal
the atomic degrees of freedom. On the other hand, when in regions where the fields
vary slowly, the mesh can be coarsened since it is unnecessary to track all the atomic
degrees of freedom. A full three-dimensional version of the QC method was presented
by Ortiz et al. [49]. The original QC method is also known as the “cold” QC because
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molecular statics calculations at zero Kelvin are performed at the atomic scale. The finite
temperature QC method, also known as “hot” QC, was subsequently developed and
several authors have contributed to this idea, thereafter [50–52]. Furthermore, “hot”
QC “dynamic” methods have been developed where the atomic and continuum regions
evolve dynamically and in tandem [53]. This method was found to be computationally
more efficient. One of the drawbacks of the QC method is the problem of spurious
wave reflections at the atomic/continuum boundary where high-frequency phonons
either generate due to thermal motion or by other atomic-scale phenomena can move
freely through the atomic scale but cannot be represented in the shape functions in the
continuum formulation. When such phonons reach the boundary of the atomic scale, it
reflects back into the atomic region, causing unphysical heating in the atomic region. A
solution for this problem, as identified by Tadmor et al. [53], is the use of the generalized
Langevin equation (GLE) [54]. The GLE uses a kernel function integrated over time to
represent the interaction between the boundary atoms and the missing atoms in the
continuum region. However, this integral is extremely complicated except in very simple
systems. The solution to this integral via numerical and analytical approximations
is an active area of study [21,54–57]. It is interesting to note that Mathew et al. [57]
used this method to produce a thermomechanical coupling scheme where the phonons
were separated into the short wave and long wave and propagated into the continuum
as heat flux and mechanical deformation, respectively. The other drawback of the
QC method has been its lack of applicability to non-equilibrium molecular dynamics
(NEMD) problems. Tadmor et al. [53] identify this as an improvement area and suggests
that it is important to have a strong footing in the equilibrium molecular dynamics
modeling first.

4.2. Bridging Scale Decomposition Method (BSD)

A recently developed multi-scale model that is shown to model NEMD processes is the
bridging scale decomposition (BSD) method proposed by Wagner and Liu [5,17,58]. This
method is conceptually very different from other partitioned domain methods because the
continuum representation exists everywhere, whereas the atomic representation only exists
in certain regions. The key idea here is the use of a coarse-scale, fine-scale decomposition
of the displacement field. This decomposition is performed using a projection operation
which, in essence, splits the total displacement field (u) into a fine (u′) and coarse scale (ū)
component, as shown in Equation (14).

u = ū + u′ (14)

Note that the total displacement taken as the atomic displacement is obtained from
MD simulation in this study, even though, in principle, this can be from DFT simulations.
It is important to note here that the decomposed fine and coarse-scales are exclusive to
each other. The projection of the fine-scale displacement field onto a coarse-scale shape
function will be zero, and the coarse-scale component does not contain the fine-scale
component, which is not representable anyway in coarse-scale shape functions. The
projection operator P is chosen such that it minimizes the mass-weighted least square error
associated with projecting the MD displacement q onto a finite-dimensional basis as seen
in Equation (15), where the subscript α is given for the discrete atomic quantities, such
as mass and displacement and the subscript I denotes the quantities associated with the
node I. wI represents a temporary nodal degree of freedom and Nα

I represents the shape
function of node I evaluated at the location of the atom.

Error = ∑
α

mα

(
qα −∑

I
Nα

I wI

)
(15)

P = NM−1NTMA (16)
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MA =

(
m1 0
0 m2

)
(17)

M = NTMAN (18)

The projection operator P is defined as shown in Equation (16), where MA is the
diagonal MD mass matrix of the form shown in Equation (17) and M refers to the FE mass
matrix defined as shown in Equation (18). A complimentary projector Q was also defined
as shown in Equation (19), such that the atomic displacement can be obtained from nodal
displacement as shown.

Q = I−NM−1NTMA (19)

The fine-scale displacement u′ is rewritten as shown in Equation (20), and the total dis-
placement (Equation (14)) can be rewritten as shown in Equation (21). The term containing
the projection operator is referred to as the “bridging scale”.

u′ = q− Pq (20)

u = ū + q− Pq (21)

MA
..
q = f (22)

M
..
d = NTf(u) (23)

Equations (22) and (23) form the coupled multi-scale equations of motion. In Equation (22),
the MD displacements q are obtained from standard MD solvers, and the MD internal force
f is found by minimizing potential energy functions in MD, and the nodal displacement
d is obtained by solving Equation (23), where the other terms are known. The coupling
between the two equations here is through the coarse scale force NTf(u) obtained from the
MD internal force f.

In the regions where the coarse scale mesh element is fully filled with atoms, as shown
in the top part of Figure 4, the coarse scale force is obtained by interpolating the MD force.
In the case where the coarse scale mesh element is not fully filled with atoms, as shown
in the bottom part of Figure 4, an approximation must be made for the force otherwise
determined from MD potential functions. Two methods are discussed in the BSD method to
achieve this. The first method uses the Cauchy–Born rule to obtain the coarse scale internal
force as shown in Equation (24), where P is the first Piola–Kirchoff stress and wq is the
weight function associated with the quadrature point Xq. The second method adopted by
Qian et al. [5] directly applies the MD potential to each coarse scale quadrature point, as
shown in Equation (25). (

NTf
)

I
= −∑

q

∂NI

∂X
(
Xq
)
P
(
Xq
)
wq (24)

(NTf)I ≈ −∑
α

∑
α 6=β

wα

∂Φα

(
rαβ

)
∂rαβ

∑
I

(
NI(Xα)−NI

(
Xβ

))
(25)

In Equation (25) ≈ denotes the usage of a reduced set of atomic positions α as quadra-
ture points with corresponding weighting functions wα, instead of using all the atomic
positions as quadrature points. Φ represents the inter-atomic potential energy of the bond
between two coarse-scale quadrature points α and β. In both cases, the idea is to use
the same MD potential function as an approximation of forces between the coarse scale
quadrature points. In the former method, which uses the Cauchy–Born rule, the potential
energy density is used to calculate the continuum scale property, and deformation gradient
F. However, in the latter method, the MD potential function is directly applied on the
coarse scale quadrature points.
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The use of GLE to avoid the spurious reflection at the multi-scale boundary and to
allow the FE degrees of freedom to affect the boundary atoms through the modified MD
equations of motion are important features of the BSD method. At the boundary of the
MD region, a region without the actual atomic degrees of freedom is defined such that it
mathematically accounts for the boundary forces experienced by the boundary atoms in
the MD region by employing a GLE to avoid wave reflections. In practice, the equation of
motion for atoms in the MD region is modified to include the mathematically accounted for
degrees of freedom. These effects are divided into two components, namely the time history
kernel (θ(t)), which mimics the collective behavior of the mathematically accounted-for
atomic degrees of freedom, and the random force R(t), which accounts for the energy
exchange caused due to the difference in temperature between the MD region and the GLE
region. These terms appear on the right-hand side of Equation (22) as a modified MD force.
For a harmonic solid, an analytical solution for the θ can be evaluated. Numerical methods
for evaluating θ(t) applicable for general lattices has been developed by Wagner et al. [55]
and Karpov et al. [59]
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An important feature to be noted about this method is that there is no handshake region
used, eliminating the need for the one-to-one mapping of atoms and nodes as required in
other methods, such as the QC method and the bridging domain (BD) method [19]. Due
to the fact that the coarse scale is not meshed down to the atomic-scale as it is in other
dynamic multi-scale methods such as CGDM and MAAD [12], the coarse scale simulation’s
time-step size does not need to be in the order of the fine scale simulation’s time-step size.
This feature reduces the waste in computational resources encountered when the coarse-
scale simulation must be otherwise performed at the fine scale time-step size. Templeton
et al. [2] demonstrated the application of the BSD method to model heat transport in NEMD
simulation, where fixed temperature and fixed flux boundary conditions can be applied to
MD simulation as it has been conducted on traditional FEA models.

4.3. Virtual Internal Bond (VIB)

Virtual internal bond (VIB) [60] is a two-scale constitutive theory to model bond break-
ing behavior where the micro-fracture criterion is directly built into the macro-constitutive
relation through the micro-bond potential. Unlike conventional continuum mechanics, the
VIB theory assumes that on the microscale, a solid consists of randomly distributed material
particles. These material particles interact via virtual internal bonds. Within the framework
of the hyperelasticity theory, the macro-constitutive relation is directly derived from the
micro-bond potential. The micro-bond potential governs the macro-mechanical properties
of the material. Since the stress–strain relationship of the VIB contains the micro-fracture
mechanism, the VIB presents many advantages for simulating fracture propagation.

5. Thermal Coupling Methods
5.1. BSD Uni-Directional Temperature Coupling (BUTC)

Another method [61] that was demonstrated for representing the atomic temperature
as a field in the continuum scale used the projection matrix developed in the BSD method.
This method was developed so that the temperature field in the continuum region where
the MD solution was unavailable could also be solved using a lattice evolution function.
The bridging scale projection matrix is used to project the temperature of each atom given
by Equation (26) onto the continuum temperature field vector T as shown in Equation (27),
where g is the column matrix of atomic velocity squares as such that the components of the
velocity related by gi = v2

i . MA are the diagonal matrix of atomic masses.

Tα =
mα

kB
v2
α (26)

T = P
(

1
kB

MAg
)

(27)

This method then approximates the temperature of atom α using the FE shape function
according to Equation (28), where θ are the nodal temperatures and Nα

I is the shape
function of node I evaluated at α.

Tα = Nα
I θ (28)

Equation (29) is obtained by multiplying both sides of Equation (27) with NTMA and
replacing T and P with Equation (28) and Equation (16) respectively. This equation can
be simplified using the equation for the FE mass matrix (Equation (18)) and written in an
index notation similar to Equation (30) where subscripts I and J indicate FE nodal values
and the summation is over all atoms of α.
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NTMANθ =
1

kB
NTMANM−1NTMA(MAg) (29)

MIJθJ =
1

kB
∑
α

NI(Xα)m2
αv2

α (30)

It is important to note here that the continuum scale nodal temperatures are obtained
by using only the atomic masses and velocities from the atomic scale, and the FE shape
functions from the continuum scale. The direct implication of this simplicity is that this
method can be easily integrated into generic MD and FEA codes.

Though this solution works well when the FE element is filled with atoms, it is
necessary to be able to find the nodal temperatures when the atoms do not completely fill
the FE elements. Park et al. [61] extended the idea of using multi-scale boundary conditions
using GLEs [55,59] to account for the missing atoms. In the prior work with multi-scale
boundary conditions using GLEs, the effect of the missing atoms was manifested as an
additional force on the boundary MD atom only. However, in this implementation, the
effect of the missing atoms is propagated to the entire space. Park et al. derived expressions
for the evolution function wn(t) (Equations (31) and (32)), which can be used to obtain the
velocity of arbitrary atoms (vn(t)) outside the MD region at time t as shown in Equation (33).

wn(t) = 2n
J2n(2ωt)

t
(31)

.
wn(t) = −

2n
t2 J2n(2ωt) +

2nω
t

(J2n−1(2ωt)− J2n+1(2ωt)) (32)

vn(t) =
∫ t

0

.
wn(t− τ)u0(τ)dτ (33)

To arrive at this relation, the first assumption made by Park et al. was a 1D chain of
atoms interacting via a quadratic (harmonic) potential function characterized by a spring

constant k. The term ω appearing in the evolution function is related to k as ω = ( k
m )

1
2

where m is the mass of each atom. A linear equation of motion describing the 1D atom
motions is modified using a Laplace transform and a discrete Fourier transform while
assuming that the initial velocity and displacement are zero. The J2n here is a Bessel
function that appears in the solution of an inverse Laplace transform. u0(τ) denotes
the displacement of the boundary MD atom at the time interval τ. The implication of
this method is that with the ability to calculate the MD velocity anywhere in space, the
continuum temperature can be obtained using the projection matrix anywhere outside
the MD region. However, the validity of this method in higher dimensions and for more
complex inter-atomic potential functions governing the atomic motion in typical MD
simulations is not clearly shown. It must also be noted that the temperature equation
by itself is only useful in inferring the macroscopic temperature from the underlying
microscopic temperature. In other words, only up-scaling can be performed with this
equation, and downscaling cannot be performed. To perform downscaling from FE to
MD, it may be necessary to make use of the inverse projection matrix and couple the
temperature equation with the continuum scale heat equation in some way that the
temperature evolution in the coarse scale due to boundary conditions would affect the
fine-scale temperature and vice versa.
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5.2. BSD Bi-Directional Temperature Coupling (BBTC)

Some of these limitations were addressed by Wagner et al. [62]. The contributions
of this work can be summarized as the introduction of downscaling using the concept of
the lambda force, the modification of the upscaling procedure using row-sum lumping,
and the derivation of the coupled MD/FE heat equation. The downscaling is achieved
by the application of an additional drag force to the atoms in MD characterized by a
multiplication factor λ, which is basically a Lagrange multiplier and is defined at the nodes
and interpolated to individual atomic positions such that of λα which can be different for
each atom. The application of the additional drag force to atom α is shown in Equation (34),
where fmd

α is the standard MD force and fλ is the lambda force. The lambda force is given
in Equation (35). As stated earlier, λ is defined at the nodes and interpolated to the atom
locations as shown in Equation (36) using the FE interpolation function NIα for node I and
M which is the set of all nodes whose shape functions evaluate to a non-zero value at
the atom positions. In effect, they used the atoms as the quadrature points on which the
integral was evaluated on the MD region.

mα
.
vα = fmd

α + fλ (34)

fλ = −mα

2
λαvα (35)

λα(t) = ∑
I∈M

NIαλI(t) (36)

Another feature of this work is the approximation of the projection operation using a
row-sum lumping operation, such as that of the nodal temperature (θI), which becomes an
atom-to-node reduction operation as shown in Equation (37) rather than a true projection
(Equation (30)). A is the set of all the atoms in the MD region.

θI =
1

3kB
∑
α∈A

N̂Iαmαv2
α (37)

Here the coefficients N̂Iα are the scaled finite element shape functions as defined in
Equation (38).

N̂Iα ≡
NIα∇Vα

∑β∈ANIβ∇Vβ
(38)

A heat equation for coupling the MD and FE solutions (Equation (40)) was de-
rived, assuming the energy conservation principle (Equation (39)) to solve the change
in the nodal temperature with respect to time. Here the first term on the right-hand
side describes the coupled region where the MD region and FE region coexist. In this
term, downscaling is incorporated through 1

2 fλα. It is worth noticing that only half of
the lambda force (fλα) is applied on the atoms and that stems from the fact that the
continuum solution solves for the total energy (kinetic and potential energy) embedded
in the equipartition assumption of the Dulong–Petit law, whereas the MD solution for
temperature only accounts for the kinetic energy and not the potential energy. The
second and third terms on the right-hand side represent the solution in the FE region
where an atomic description is absent, and these terms are the conduction terms and flux
boundary condition terms, respectively, as they would routinely appear in FE problems.
Here N is a set of all the nodes.

.
E

tot
=

.
E

md
+

.
E

fem
= 0 (39)
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∑
J∈N

(∫
Ω NINJdV

) .
θI

= ∑
α∈A

(
2

3kB
NIαvα.

(
fmd
α + 1

2 fλ
α

)
+ ∑

J∈N

(
∇NI. κ

ρcp
∇NJ

)
|αθJ

)
∆Vα

− ∑
J∈N

(∫
Ω

(
∇NI. κ

ρcp
∇NJdV

))
θJ

−
∫

Γq
NI

qn
ρcp

dA

(40)

The nodal temperatures obtained using Equations (34) and (40), however, do not
include the temporal averaging discussed by Park et al. [61]. Wagner et al. [62] noticed
undesirable fluctuations in the nodal temperature in the overlapped region, and it was
incompatible with the smoothly varying temperature field in the FE-only region. A time-
filtered version of the coupled heat equation was also developed by Wagner et al., which
is not discussed here. Wagner et al. emphasizes that continuum formulations for heat
transport, other than the Fourier heat law used here, may be used depending on the
problem being explored, and a necessary theory or experiment should be used to ascertain
the validity of the continuum heat law. This method does not provide an a priori way to
determine the validity of the continuum heat law used. It is also noted that this method
does not exclude the possibility of wave reflection at the multi-scale boundary since the
implementation did not include the techniques used for eliminating such effects [17,55,63].
However, it is noted that the high-frequency waves accounting for the thermal energy are
transported out into the continuum through the temperature coupling and that the lower-
frequency waves, which account for the mechanical displacements are indistinguishable
from the surrounding waves/phonons at the finite temperatures in which the study was
performed. Even though a proper treatment of the multi-scale boundary condition was
not performed, a layer of stationary atoms called “ghost” atoms was employed in the
continuum region adjacent to the boundary atoms in the MD region so that the boundary
atoms in the MD region did not experience surface effects. The “ghost” atoms are stationary
because they are not included in the MD ensemble and are only used for computing the
forces on the boundary atoms within the MD region.

5.3. BSD Spatially-Varying Thermostats (BST)

It was identified by Templeton et al. [2] that the method developed by Wagner et al. [62]
was missing the ability to control the MD temperature based directly on the FE temperature
or flux boundary condition. This inability was basically due to the lack of suitable ther-
mostats that were used for the MD simulation. In this work, Gaussian isokinetic-based
thermostats were chosen because they can be easily derived in non-equilibrium settings
for which this multi-scale coupling method was suited. They also observed that the
method used by Wagner et al. applies a thermostat force to every atom irrespective of
the consistency of the temperature between the nodes and the atomic temperature of
the surrounding MD region. An important contribution of this work is the introduction
of spatially varying thermostats by coupling MD with FE description. This method
allows for imposing Dirichlet and Neumann boundary conditions and heat source/sink
in the MD simulations with complex geometries, which are otherwise very difficult to
achieve in classic MD. The FE shape functions enable thermostats to provide decay rates
of arbitrary smoothness along the complex geometry limited by the order of the shape
functions used.
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6. Thermomechanical Coupling Methods

Establishing a clear relationship between thermal and mechanical behaviors in a
multi-scale context has been of interest to many researchers, given its applicability to many
physical phenomena. A general strategy to achieve this coupling has been to decompose
the atomic motion into high-frequency oscillations caused by thermal energy and low-
frequency motion caused by structural deformation. It is important to note that the key is
the frequency of motion and not the velocity of the atomic motion.

6.1. Thermo-Mechanical Equivalent Continuum Theory (TMEC)

In the TMEC theory developed by Zhou et al. [64], the atomic velocity is decom-
posed into a relatively high-frequency thermal oscillation part and a low-frequency
structural deformation part. The thermal oscillations have been identified in the fre-
quency range of 0.5–50 THz [65], and the low-frequency vibrations are selected based
on a pre-determined cutoff frequency determined on a case-by-case basis. The actual
separation is achieved through a Fourier analysis. Zhou noted that the atomic motion
caused by shock waves with frequencies as high as 2 Ghz does not pose a challenge to
the separation from thermal motion. However, frequencies as high as 1 THz caused by
laser-induced processes have been identified as a potential problem along with other
deformations which may be intimately related to the thermal motion of atoms. An
important development of the TMEC theory with regard to the coupling of thermal
and mechanical processes is the development of the inertial forces term that appears
in both the structural deformation equation and the heat equation. In the structural
deformation equation, the inertial force induced by the thermal oscillations acts like an
invisible external force. In the heat equation, the inertial force induced by the structural
deformation acts like a heat source.

6.2. Filter and Restitution Method (FR)

The idea of separating the phonon spectrum into a thermal part and a deformation
part was explored by Mathew et al. [57] to couple thermal and mechanical behaviors
from an atomic to the continuum scale. The simulation domain was divided into a
fully atomic region (A) and a continuum region (C), separated by an interface region
(I). The interface region is subdivided into the “filter and restitution” region (R + F),
and in two regions A(C) and C(A) the mechanical coupling was performed by imposing
multi-scale boundary conditions. The R + F region takes care of separating and blocking
out the high-frequency part of the phonon spectrum from entering the continuum region
through the “filtering” process (F). This is conducted through a frequency-dependent
damping term in the GLE, which describes the motion of atoms in this region. This
damping function uses a memory kernel G. This idea has been explored earlier in the
BSD method [25,59] and is also known as the lattice dynamics Green’s function in solid-
state physics. The “restitution” process (R) serves the purpose of returning energy to
the A region to maintain energy conservation. The R process also serves the purpose of
heat flux coupling between the A region and the thermal component of C. The R process
is achieved through a random force term in the GLE. This random force is non-zero in
R + F and zero elsewhere and also uses the Wiener–Khinchin theorem [66] to return the
energy extracted by the F process into the phonon modes from which it was extracted.
However, the exact details of how the force is augmented based on the position within
the R + F region is not clear. The mechanical coupling is performed by imposing the
displacement of the continuum nodes based on minimizing the least squared difference
between the atomic and continuum displacement. This method can be thought of as a
BSD method derivative. This method was demonstrated for 1D problems in thermal
equilibrium and in non-equilibrium.
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6.3. Atom-Continuum Coupled Model (ACC)

The recently developed atom-continuum coupled model (ACC) [67] that couples
thermo-mechanical behavior in micro-nano scales uses a time averaging scheme to approx-
imate the separation of thermal vibration parts of the phonon spectrum from the structural
deformation part instead of using the Fourier transform approach [64] or the memory
kernel approach [57]. This idea assumes that in the absence of mechanical deformation and
under equilibrium temperature conditions, atoms vibrating about an equilibrium position
are reduced to stationary atoms when the displacements are time averaged over time scales
larger than the thermal vibration frequencies. Then, the atomic motion observed with
time averaging is classified as the structural deformation motion. This method uses a
representative volume element (RVE) similar to the approach used in the QC method. In
some ways, this method can be considered a QC method derivative. Surface effects are
avoided using an extended representative volume element (ERVE), an approach that can
be compared to the “ghost atoms” [2]. However, there is no clear indication about handling
spurious reflections at the multi-scale boundary. This method also uses a 1D problem to
demonstrate thermo-mechanical coupling.

6.4. Wavelet-Based Denoising (WBD)

The idea of considering the problem of the thermomechanical decomposition of atomic
velocity as a denoising problem in signal processing was introduced by To et al. [68]. They
compared a wavelet-based method with a Fourier-based method called the Weiner method
and moved average methods for denoising spatial velocity data. The smooth, noiseless
velocity data were obtained from four test signals as well as a snapshot of an MD simulation
of crack propagation taken at 1 ns. Both the analytical data and MD velocity data were
corrupted by thermal velocity data obtained from MD simulations where the velocities
followed the Maxwell–Boltzmann distribution for prescribed temperatures.

6.5. Finite Temperatures Using Spatial Filters (SF)

The problem of the spurious wave reflection in the AtC methods has been a barrier
for finite temperature simulations. The application of the coupling methods to handle
non-equilibrium processes, such as heat conduction, is limited. The idea of using spatial
filters (SF) with least square minimization as a new scale transfer operator was proposed
by Ramisetti, et al. [69] for thermos-mechanical problems to couple MD with FE at finite
temperatures. The mismatch in the dispersion relations between the continuum and
atomistic models leads to unwanted mesh vibrations, which are illustrated using a standard
least square coupling formulation. This method was developed to use selective spatial
filters for damping the wavelength modes for coupling atomistic and continuum models
at finite temperatures. The restitution force from the generalized Langevin equation
was modified to perform a two-way thermal coupling between the two models. The
application of the proposed method has been validated by a high-velocity impact test in
two-dimensional space.

6.6. Extended Irving-Kirkwood Statistical Mechanical (EIK)

The extended Irving–Kirkwood (EIK) method was introduced by Chen et al. [70]
for the modeling and simulation of crystalline methods. The formulation extends the
Irving–Kirkwood statistical mechanical procedure for deriving transport equations and
fluxes for homogenized molecular systems to that for polyatomic crystalline materials by
employing a concurrent two-level description of the structure and dynamics of the crystals.
A multiscale representation of conservation laws was formulated as a direct consequence
of Newton’s second law in terms of the instantaneous expressions of unit cell-averaged
quantities using the mathematical theory of distributions. Conservation equations were
derived in terms of the instantaneous expressions of cell-averaged quantities using the
mathematical theory of distributions. Fluxes can be then obtained to quantify the flow of
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conserved quantities across the lattice cells as well as those that flow back and forth within
the cells, as direct consequences of the local density definition and Newton’s second law.

7. Conclusive Remarks

The richness and diversity of this subject make it a non-trivial task to review the
relevant literature. This review is intended to provide a guideline for researchers begin-
ning to explore AtC methods from their original motivations and formulation to recent
improvements. Table A1 (Appendix A). summarizes the AtC methods reviewed in this
article. Molecular dynamics, solid mechanics, numerical methods, and materials science
have been identified as the knowledge areas where competency is necessary to make
appreciable contributions in multi-scale modeling. Even though several reviews and
textbooks that cover these topics and some concepts in mechanics, such as the virial
theorem (VT) and Cauchy–Born rule, and mathematical tools, such as Gaussian ther-
mostats and the generalized Langevin equation, show up frequently in the literature and
the importance of understanding the fundamental idea behind such specialized topics
cannot be disregarded. The motivation for multi-scale modeling through examples of
applications is first introduced, and then the taxonomy of the methods is presented. This
review has also attempted to portray the gradual evolution of the multi-scale coupling
methods from the simple idea of the interpretation of atomic scale quantities in the
continuum sense [26] to highly advanced mechanisms for concurrently mapping the
atomic and continuum scale quantities onto each other [17,18]. Earlier methods focused
on capturing the non-local nature of the atomic scale properties and accurately mapping
to a local form typical of the continuum formulation. The focus then shifted to avoiding
spurious reflections in the multi-scale boundary. The current focus now seems to be
shifting towards the application of the already mature multi-scale techniques to material
problems where multi-physics treatments become necessary. Eight methods that couple
material deformation, four methods that couple thermal behavior, and three methods
that couple thermo-mechanical behavior have been reviewed. An introductory section is
presented for each class of methods, where key concepts that are common to all methods
are identified and discussed. The key contribution of each method is presented in a
concise manner in Table A1. An attempt to capture the evolution history is given in
Figure 5. It must be noted that some methods have been assigned a name and acronym
for the sake of convenience and may not capture the full identity of the original method.
Hence, a reference to the papers is also provided in Table A. In Figure 5, some methods
are related to other methods, using dotted lines to represent the obvious connection
between the methodologies even if the relationship is not explicitly stated in the derived
method. For example, the FR method has many characteristic features of the BSD method
and has extended the ideas originally developed in the TMEC method.

However, this is by no means an exhaustive account of the developments in this
field. Several reviews [21,71–75] have captured the sheer amount of ongoing research
in this nascent field and have identified the application areas and challenges that lay
ahead [1,76,77]. The current multi-scale methods for coupling thermal and mechanical
phenomena have matured enough to provide a solid basis for building robust multi-scale,
multi-physics models which have the potential to solve thermo-mechanical problems in
several disciplines that are yet to be elucidated.
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Appendix A. Tables

Table A1. Summary of the AtC methods reviewed in this article.

Method Features

VT [26]
Introduced the ability to map discrete atomic quantities to a continuum
representation of stress as a point-wise function using summation over
sub ensembles.

CB Introduced a method to map uniform deformation at macroscale to atomic
lattice deformation.

IK [31] Summation over sub ensembles in VT is replaced by density of atomic
functions in conjunction with a Dirac delta function as the localization function.

EC [41] A purely mechanical theory which defines work-conjugate stress and
deformation fields from non-local MD system.

HM [35] Introduced localization functions with finite range (compact support)
instead of using just the Dirac delta function as in IK.

QC [18] Introduced the idea of deriving constitutive parameter for FE nodes (rep
atoms) from a small set of atoms (crystallite) based on CB.

BSD [17]
Introduced the idea of decomposing total displacement can be MD
displacement) into coarse and fine scale components which can and cannot
be projected to FE shape functions respectively.

VIB [60]
Introduced the idea of filling continuum with virtual material points
which are not atoms but obey a pseudo potential energy function based on
experimental data.

HT [30] Uses the relative atomic velocity derived in Hardy method to define a
weighted average temperature.

BUTC [61] Uses the projection matrix derived in BSD to project atomic temperature to
FE shape functions, i.e., up-scaling only.

BBTC [62] Extended BUTC by implemented down-scaling and introduced row-sum
lumping as an approximation for the projection method used in BUTC and BSD.

BST [2]
Introduced the ability to prescribe spatially varying initial conditions,
Neumann and Dirichlet boundary conditions to the MD-FE coupled
material model using Gaussian isokinetic thermostats.

TMEC [64]
Introduced the idea of decomposing atomic motion into high frequency
thermal motion and low frequency structural deformation motion using
Fourier analysis.

FS [57] Demonstrated 1D examples for thermo-mechanical coupling model
derived from BSD and TMEC methods.

ACC [67]
Demonstrated 1D examples for thermo-mechanical coupling model
derived from QC and TMEC methods but uses an averaging scheme to
approximate the Fourier analysis method used in TMEC.

SF [69]
Demonstrated 2D example of a high-velocity impact test using selective
spatial filters for damping the wavelength modes for coupling atomistic
and continuum models at finite temperatures.

EIK [70]
Demonstrated 2D examples of fluxes that can be then obtained to quantify
the flow of conserved quantities across the lattice cells as well as those that
flow back and forth within the cells.
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