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Abstract: In structural sizing optimization problems, the number of design variables typically used
is relatively small. The aim of this work is to facilitate the use of large numbers of design variables
in such problems, in order to enrich the set of available design options and offer the potential of
achieving lower-cost optimal designs. For this purpose, the concept of cascading is employed, which
allows an optimization problem to be tackled in a number of successive autonomous optimization
stages. In this context, several design variable configurations are constructed, in order to utilize a
different configuration at each cascade sizing optimization stage. Each new cascade stage is coupled
with the previous one by initializing the new stage using the finally attained optimum design of
the previous one. The first optimization stages of the cascade procedure make use of the coarsest
configurations with small numbers of design variables and serve the purpose of basic design space
exploration. The last stages exploit finer configurations with larger numbers of design variables
and aim at fine-tuning the achieved optimal solution. The effectiveness of this sizing optimization
approach is assessed using real-world aerospace and civil engineering design problems. Based on
the numerical results reported herein, the proposed cascade optimization approach proves to be an
effective tool for handling large numbers of design variables and the corresponding extensive design
spaces in the framework of structural sizing optimization applications.

Keywords: structural optimization; cascade optimization; discrete design space; discrete optimization;
real-world problems

1. Introduction

Structural sizing optimization typically aims at detecting the optimum cross-sectional
geometric properties of the structural components that minimize the cost (or material
weight/volume) of a structure subject to behavioral constraints (controlling mainly stresses
and displacements or drifts) as imposed by design codes. Relevant optimization formu-
lations refer to the weight minimization problem of truss and frame structures [1–7], the
life-cycle cost optimization problem [8], the problem of performance-based structural
design optimization [9–11], the environmentally driven structural design optimization
problem [12,13], etc.

The design variables of a sizing optimization problem are chosen to be parameters
defining the cross-sectional shapes and dimensions of structural components. For example,
sizing design variables may refer to the cross-sectional type and dimensions of truss and
frame members or the thickness of plates and shells. Such design variables are generally
discrete, rather than continuous, as fabrication limitations and typical market availability
allow cross-sectional shapes and dimensions to be chosen only among very specific options
contained in pre-assembled discrete sets.
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Structural sizing optimization is formulated in the present work as a single-objective
optimization task of the form:

minimize C(d)

subject to gj(d) ≥ 0, j = 1, 2, . . . , ng

di ∈ D, i = 1, 2, . . . , nd

(1)

In the above optimization formulation of Equation (1), d is the vector of design variables di
(i = 1, 2, . . . , nd), which may take values only from a given set D representing the available
design options for the cross-sections of the structural components. D is often referred to as
the “design space” or “search space” and is defined as a discrete set, in order to enforce only
discrete variations of cross-sectional dimensions. C(d) denotes the objective function to be
minimized (i.e., the structural cost or material weight, volume, etc.). gj(d) (j = 1, 2, . . . , ng)
express the behavioral constraint functions imposed, e.g., by design codes. The objective
and constraints of the above optimization problem are generally nonlinear functions of the
design variables and need to be evaluated for any candidate optimum design considered
by the optimization algorithm.

In sizing optimization, the components of the structure under consideration are usually
organized into groups, with all components in a group sharing the same design variable(s).
This linking of structural components leads to reduced numbers of design variables and,
therefore, to less complicated (more uniform) final structural designs, which are typically
preferred in engineering practice. Moreover, the avoidance of large numbers of design
variables facilitates the search for the optimum cost solution by the utilized optimizer,
since the design space has a more manageable size and is, therefore, more effectively
searchable. On the other hand, larger numbers of design variables provide the optimizer
with additional design options and can potentially lead to an optimum solution with
a better objective function value. This lower-cost final solution is typically associated
with significantly increased structural complexity due to less uniformity among the cross-
sectional geometries of the components.

Standard optimization schemes, mainly the derivative-free ones (i.e., various meta-
heuristic algorithms [6]), are most likely to become confused and ineffective when con-
fronted with huge design spaces resulting from large numbers of design variables. In
addition, a principal challenge in optimization practice is to optimize a system in the
absence of an analytical model describing its behavior. This situation is referred to as

“black-box optimization” and is frequently encountered in engineering practice where it is not
possible to calculate the derivatives, neither of the objective function, nor of the constraints.
In such situations, gradient-based algorithms (i.e., mathematical programming algorithms,
etc.) cannot be used, although they might be able to handle problems with large numbers
of design variables under certain circumstances [14]. Thus, the optimum cost solution
may be hardly detectable within the vast number of design options contained in a huge
design space. Consequently, the choice made for the number of design variables in sizing
optimization reflects the trade-off between the use of more material and the need for the
symmetry and uniformity of structures due not only to practical considerations, but also to
computational ones.

Based on the necessity of avoiding the aforementioned computational problems en-
countered by optimizers when dealing with vast numbers of design options in structural
optimization applications, special attention is typically paid to constructing easily man-
ageable (and therefore, relatively small) design spaces. In an effort to relax this necessity,
a sizing optimization methodology was presented in [15], which possesses the capability
to effectively handle huge numbers of design options resulting from large databases of
available cross-sectional types and dimensions.

The present work adopts similar concepts to facilitate the use of large numbers of
design variables in structural sizing optimization applications. For this purpose, a series of
appropriate Design Variable Configurations (DVCs) is formed for the sizing optimization
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problem under consideration. First, the initial DVC is defined based on the desired large
number of design variables; this corresponds to the finest configuration of design options
for the sizing problem at hand. Then, various coarser versions of the initial fine DVC
are constructed by merging design variables within the initial DVC; thus, coarser DVCs
contain smaller numbers of design variables. Using the assembled series of DVCs, a
multi-DVC procedure is applied to explore the design space in the framework of cascade
sizing optimization: a number of autonomous optimization stages are performed, which
are coupled with the transfer of information between successive stages. Each step of the
cascade optimization procedure is performed with a different DVC. Specifically, the initial
optimization step starts with the coarsest DVC defined, while subsequent steps use finer
and finer DVCs until, finally, the initial (finest) DVC is processed. This multi-DVC cascade
computational procedure can be implemented using any optimization algorithm and proves
to be very effective in handling large numbers of design variables and corresponding design
spaces in the context of sizing optimization problems.

The remainder of this paper is organized as follows. Section 2 generally describes
the use of cascading in optimization computations. Section 3 discusses the dilemma of
using large or small numbers of design variables in sizing optimization. The proposed
multi-DVC cascade optimization procedure is described in Section 4, while numerical
results demonstrating the advantages it offers for the case of real-world aerospace and civil
engineering problems are presented in Section 5. The paper concludes with some final
remarks given in Section 6.

2. Cascade Structural Optimization

Cascade optimization has emerged as a remedy to the fact that there is no unique opti-
mization algorithm capable of effectively handling all existing optimization problems [16].
It has been introduced as a multi-stage procedure, which employs various optimizers in a
successive manner to solve an optimization problem [17]. Each autonomous optimization
stage of the cascade procedure starts from an initial design d0, which is either a “cold-start”
or a “hot-start”. The cold-start is a user-specified or randomly selected design, which defines
the starting solution d0 for the initial optimizer utilized in the first stage of the cascade
procedure. The starting solution of the first stage is referred to as a cold-start, because,
most often, it lies far from the region of the global optimum. After running the first-stage
optimizer, the optimal solution reached is used as the starting solution d0 for the second
cascade stage. This new starting solution is called a hot-start, because during the execution
of the initial optimizer, the achieved optimal solution is expected to have moved toward
the region of the global optimum. Then, each optimization stage of the cascade procedure
starts from the optimum solution achieved at the previous stage, i.e., each cascade stage
initiates from a hot-start and produces a new hot-start for the next stage. The flowchart of
Figure 1 graphically illustrates the cascade optimization procedure.

Set initial
design d0
(cold-start)

Design
optimization

Attained
optimum
design: di

i =1 STOP
?

YES

Set initial
design d0=di

(hot-start)

i = i +1
NO

Finally achieved
optimum design:

di

Figure 1. Flowchart of the cascade structural optimization procedure.

It is noted that the achieved optimal solution of a cascade stage may first be per-
turbed using a pseudo-random technique before being adopted as a hot-start for the next
cascade stage. When an evolutionary-population-based optimization method is utilized
in a cascade stage, its hot-start may be perturbed to produce the remaining members of
the initial population. In any case, irrespective of the optimization algorithm employed
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at each cascade stage, hot-starts provide the coupling of the autonomous optimization
computations performed at successive cascade stages.

The actual aim of cascading is to take advantage of the combined strength and the
differentiated computations of a number of optimizers executed in a successive manner.
This way, we can maximize the exploitation of the optimizers’ advantages and minimize the
influence of their disadvantages on the finally attained optimum solution. A trial-and-error
process can be followed for any particular optimization case considered, in order to select
the optimizer employed at each cascade stage, the exact cascade sequence, the number of
cascade stages, the way(s) the differentiation of the computations among cascade stages is
achieved, etc.

Although the basic concept of cascading assumes the utilization of a different opti-
mization algorithm at each cascade stage, the case of invoking the same optimizer at more
than one (or even at all) cascade stages should not be excluded. A number of cascading vari-
ations have been successfully implemented in structural optimization applications: various
gradient-based optimizers were utilized at the cascade stages in [17–20]; a gradient-based
optimizer and a response surface approach were integrated in the framework of a cascade
procedure in [21]; the same evolutionary optimizer was employed at all cascade stages
in [15,22]; both gradient-based and evolutionary optimizers were applied one after the
other in [23]; cascading was implemented also in a general-purpose design optimization
platform [24] and applied to real-world structural design optimization problems [12].

In the cascade structural optimization procedure implemented in the present work, all
cascade optimization stages are performed with the same derivative-free optimizer in a
way similar to that followed in [15]. Specifically, in the first numerical example of Section 5,
all cascade stages are executed using a discrete evolution strategies algorithm; in the second
numerical example, the cascade stages are executed using a discrete simulated annealing
algorithm. The differentiation of the search paths followed by these optimizers during
the cascade stages is ensured by changing the initial conditions of individual optimization
runs. For this purpose, we used at each cascade stage:

• A different initial solution vector d0 (each cascade stage initiates from its correspond-
ing hot-start except from the initial stage, which initiates from a random cold-start);

• A different seed for the random number generator of the non-deterministic optimiza-
tion process;

• A different design variable configuration (as described in Section 4).

It may happen that a particular cascade stage initiates from the same hot-start as the
previous stage. This is possible when the previous stage does not achieve any improvement
in the objective function value and yields its hot-start d0 as the best attained solution. If the
two cascade stages employ also the same design variable configuration, the differentiation
of the search paths is still guaranteed through the different initial seeds used for the random
number generator. Differentiated search paths can also be obtained by utilizing a different
database of cross-sectional geometries at each cascade stage [15]. The cascade procedure
may be continued until no improvement in terms of the objective function value is observed
after a user-defined number of optimization stages.

It should be finally mentioned that cascading induces the need for performing large
numbers of structural analyses during the successive optimization runs and is consequently
associated with high overall computing costs. Such demanding computations can be
executed in affordable processing times by drastically accelerating the optimization runs of
the cascade stages with the use of parallel processing, advanced solution techniques, and
metamodel-assisted predictions (e.g., using neural networks) [23,25].

3. The Dilemma of Using Large or Small Numbers of Design Variables

A detailed formulation of a structural sizing optimization problem would contain a
large number of design variables controlling all design decisions for the structural system
considered. Thus, assuming, e.g., a truss or frame structure, the design variables introduced
could correspond to the cross-sectional properties of each truss/frame member, i.e., separate
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design decisions for each member’s cross-section would be allowed. Thus, the optimizer
invoked to process such a sizing problem is given the possibility to really optimize the
objective function (i.e., to minimize the total cost of material required for all structural
components) by detecting the optimum solution within the vast amount of all possible
design options.

However, a large number of design variables does not only offer advantages to the
optimizer, it also introduces difficulties. Since the resulting design space becomes extensive,
its exploration is not a trivial task for any optimization algorithm. The huge number of
available design options typically confuses an optimizer, especially a non-deterministic one,
and radically decreases the potential of searching effectively for a high-quality solution. As
a result, the optimizer is most likely to become trapped in a purposeless search, which is
like shooting in the dark to hit a target. Such a process can deliver a final result of acceptable
quality only by chance. It may be so ineffective that it is unable even to roughly locate
the areas of appropriate design variable values. Thus, although, theoretically, the large
number of design variables may be advantageous for the structural optimization process,
its exploitability in practice is seriously questioned.

Another issue to consider is the complexity/non-uniformity introduced in the final
design when large numbers of design variables are utilized. A final design consisting of
many non-identical structural components is relatively complicated. As a result, a number
of disadvantages arise:

• An increase in construction/manufacturing cost should be expected, because a com-
plicated design is more difficult to implement and supervise compared to a simple
design consisting of many identical components.

• Manufacturing or ordering many non-identical components is most likely to be associ-
ated with additional cost compared to the same material weight/volume distributed
over fewer types of components.

• A complicated design is further exposed to human error, especially during the con-
struction/manufacturing phase.

Thus, assuming that the global optimum can be actually identified (or at least ap-
proached) when a large number of design variables is used, it has to be decided whether
the reduction in material weight/volume achieved compared to a smaller number of de-
sign variables compensates the disadvantage of increased complexity introduced in the
final design.

The achievable material weight/volume and the design complexity function as conflict-
ing criteria within a multi-criteria decision-making setting. The trade-off relation between
these two criteria can be theoretically described by a type of “Pareto front” curve, which is
conceptually illustrated in Figure 2. The points below the curve correspond to infeasible
designs. The points above the curve correspond to either infeasible or non-optimal feasible
designs. The points on the curve correspond to feasible optimal designs. Hence, the trade-
off curve of Figure 2 includes all possible “non-dominated” combinations of numbers of
design variables and corresponding best attainable objective function values. Any of these
combinations is “non-dominated” in the sense that there is no other combination having
both a smaller number of design variables and a lower attainable objective function value.
Thus, for any two points on the curve, one corresponds to a heavier and simpler design,
while the other corresponds to a lighter and more complicated design (Figure 2).

Few applications of structural optimization using large numbers of design variables
are reported in the literature. For example, structural optimization problems with up to
200 design variables were solved in [1,2,6,13]. Typically, the number of design variables
employed in structural optimization applications is much smaller. In order to avoid large
numbers of design variables, the components of the structure considered are usually
organized into groups, with all components in a group sharing the same design variable(s)
(e.g., [7,9,11,13,15]). This way, the resulting design space is more manageable and, therefore,
more effectively searchable. The grouping of members in order to introduce shared design
variables is based on the engineer’s experience and intuition and may involve a limited
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number of test structural analyses. This “manual” process obviously demands human
effort and costs time before even invoking the optimizer. A poor grouping may misguide
the optimizer and lead to suboptimal or even low-quality final designs.
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Figure 2. Conceptual graph of the trade-off relation between the number of design variables and the
best-attainable objective function value.

Since richer design options are offered by a more extensive search space, it is generally
expected that the globally optimum structural design obtained with a large number of
design variables will correspond to a lower objective function value compared to that
yielded by the global optimum based on a smaller number of design variables. Nevertheless,
in a practical application tackled with a standard optimizer, the global optimum is hardly
detectable and is most likely to remain “hidden” within a huge design space. Therefore,
a higher-quality optimization result could be anticipated with a rationally assembled
configuration employing not so many design variables.

4. Cascade Sizing Optimization Using a Series of Design Variable Configurations

In this work, the concept of cascading is adapted to the particular need of effectively
handling structural sizing optimization problems with large numbers of design variables.
More specifically, a cascade sizing optimization approach is proposed, which employs
a series of configurations (DVCs) for the design variables of the problem at hand. Each
stage of the cascade optimization procedure is performed with a different DVC. The initial
DVC C0 includes all design variables that can be defined for the sizing problem considered.
Hence, C0 is the finest possible configuration of design options for the particular problem
and includes the largest possible number of design variables nd(C0). Then, n coarser
versions C1, C2, . . . , Cn of C0 are produced by merging the design variables of C0. Typically,
each design variable in a coarser DVC is shared by more structural components than in a
finer DVC; therefore, the coarser DVC contains a smaller number of design variables than
the finer DVC. Thus, a set S of DVCs is assembled:

S = {C0, C1, C2, . . . , Cn}, (2)

with:
nd(C0) > nd(C1) > nd(C2) > · · · > nd(Cn), (3)

where nd(C1), nd(C2), . . . , nd(Cn) are the number of design variables for configurations
C1, C2, . . . , Cn, respectively. The set S contains n + 1 DVCs, with Cn being the coarsest
configuration and C0 the finest one.

The assembled set S of DVCs can be used to execute a multi-DVC cascade sizing opti-
mization procedure, in order to effectively explore the large design space associated with
the fine configuration C0. A general flowchart of this procedure is presented in Figure 3. In
order to facilitate the description of the procedure, without loss of generality, let us set n = 2
and S = {C0, C1, C2}, i.e., two coarser DVCs of the fine configuration C0 are constructed
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for a particular sizing optimization problem. The first optimization stage of the cascade
procedure uses the coarsest DVC available in S (C2) and initiates from a cold-start d0(C2),
which is a vector with nd(C2) randomly generated values for the design variables of C2. In
this initial stage, the implemented optimizer has to deal with the relatively small number
of design variables of the coarse configuration C2, which produces a manageable design
space and generally allows for a smooth and non-problematic optimization run. Next, the
optimum solution vector d1(C2) finally attained from the first cascade optimization stage
needs to be converted to a vector d1(C1) with nd(C1) values for the design variables of the
finer configuration C1. For this purpose, information on the design variable number(s) of
each member in configurations C2 and C1 is exploited. After this conversion, the obtained
vector d1(C1) is adopted as the hot-start d0(C1) to initiate a new cascade optimization
stage using configuration C1. The optimum solution vector d2(C1) finally attained from
the second cascade stage is converted to a vector d2(C0) of size nd(C0), which is set as
the hot-start d0(C0) for performing the final cascade optimization stage using the finest
configuration C0. The optimum solution vector d3(C0) finally attained at the third cascade
stage is the optimum solution achieved by the overall multi-DVC cascade sizing optimiza-
tion procedure. Note that the subscript d denotes the current cascade stage (except for
subscript “0”, which denotes an initial solution vector for an optimization run). Thus,
configuration Ci is processed at cascade optimization stage n− i + 1, which produces the
optimum design dn−i+1(Ci) (Figure 3).

Set initial
design d0(Cn)

(cold-start)

Design
optimization

using DVC Ci

Attained
optimum design:

dn−i+1(Ci)

i =n i =0
?

YES

Set initial design
d0(Ci −1)=dn−i+1(Ci−1)

(hot-start)

i = i −1 NO

Finally achieved
optimum design:

dn+1(C0)

Convert
design dn−i+1(Ci)

to dn−i+1(Ci−1)

Figure 3. Flowchart of the proposed multi-DVC cascade sizing optimization procedure.

The multi-DVC cascade sizing optimization procedure is applied by executing n + 1
cascade optimization stages, in order to process all n + 1 available DVCs one by one. The
first cascade stage initiates from a random cold-start and attains an optimum design, which
is passed to the second cascade stage, in order to initialize a new optimization run carried
out using a DVC with a larger number of design variables. Several cascade optimization
stages can be performed in the same manner with subsequent steps using finer and finer
DVCs. The cascade process is continued until all constructed DVCs are utilized, i.e., until,
finally, the DVC with the largest number of design variables (C0) is processed. To ensure
more effective design space exploration, more than one cascade stage can be carried out
using a single DVC (by modifying the employed optimizer and/or the initial seed for
the utilized random number generator, the same DVC can be employed in a number of
successive cascade stages before proceeding to a finer DVC). Whether the utilized DVC
changes between two successive cascade stages or remains the same, the coupling between
these stages is realized by initializing the new stage using the finally attained optimum
design of the previous stage.

The first stages of the cascade procedure executed with the coarsest DVCs aim at
a basic non-detailed search of the full design space. This search is facilitated by the
manageable DVCs handled, which avoid confusing the employed optimizer with huge
design spaces. Thus, the areas of appropriate design variable values are identified by
detecting (near-)optimum solutions among the relatively limited design options provided.
As the numbers of design variables processed in the cascade stages become larger, a more
detailed representation of the full design space is offered and the optimizer is given the
opportunity to improve the quality of the optimal solution reached. The gradual upgrade
of the optimal design vector over a number of cascade stages is practically feasible due to
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the transfer of the optimization results between successive stages, in order to exploit in each
new optimization stage the search space exploration efforts performed up to the previous
stage. Thus, despite the large design spaces handled, the appropriate initialization of each
cascade stage prevents the optimizer from being trapped in a process of purposeless and
ineffective searching. In the final cascade stages utilizing the finest DVCs, relatively small
adjustments to an already good-quality design occur, in an effort to identify (or at least
approach) the globally optimum design. Hence, the first optimization stages of the cascade
procedure serve the purpose of basic design space exploration, while the last stages aim at
fine-tuning the achieved optimal solution.

5. Optimization Results

The effectiveness of the proposed multi-DVC cascade sizing optimization approach
was assessed using two real-world design problems from the fields of aerospace engineering
(wing box design) and civil engineering (building design).

5.1. Test Problem 1: Wing Box

The first test problem considered to evaluate the cascade optimization approach for
large numbers of design variables proposed in this work was a wing box sizing optimization
problem. The particular wing box optimized was the primary structure of an Airbus A320
wing. It contains the key structural components of the wing (spars, ribs, braces, bars, struts,
etc.) and is enclosed by the upper and lower skins of the wing. Wing box optimization was
studied in a number of publications (e.g., [26–29]).

In order to simulate the structural response of the wing box, a three-dimensional
Finite Element (FE) model was developed in Abaqus/CAE [30], which is composed by
9050 elements and 40,674 degrees of freedom. A view of the generated FE mesh is given
in Figure 4. The external upper, lower, and side surfaces of the wing box, as well as the
enclosed rib surfaces were modeled using triangular and quadrilateral shell elements.
The openings of an elliptical shape providing working access were placed at the lower
box surface and at the smallest rib lying at the free edge of the box (Figure 4). Stiffeners
installed longitudinally and at certain angles to the box were modeled using bar elements.
All structural components comprising the wing box were made of aluminum alloy. The
connection of the wing to the main body of the aircraft was modeled by assuming clamped
support for the wing. Specifically, all degrees of freedom of the nodes lying at the perimeter
of the largest rib and being in contact with the aircraft’s main body were fully constrained.
The external surface loads imposed on the wing were modeled as concentrated loads acting
on the perimeter nodes of the ribs.

Figure 4. Test Problem 1: finite element mesh of the wing box (bottom view).

In the sizing optimization problem considered in this part of the study, the aim was to
minimize the total material volume of the upper, lower, rib, and side surfaces of the wing
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box by determining appropriate thicknesses for these surfaces. Thus, sizing design variables
were defined, which control the aforementioned thicknesses. Two types of constraints
were imposed to appropriately limit: (a) the maximum von Mises stress developed in
the structural model and (b) the maximum vertical deflection arising at the free edge
of the wing. A discrete Evolution Strategies (ES) algorithm was employed to solve this
optimization problem. In particular, the (10,10)ES scheme was applied (10 parent and 10
offspring vectors were used) as described in [31], where more details on this evolutionary
algorithm are also provided. Any optimization run, whether it is an individual (non-
cascade) run or a run of a cascade stage, was stopped when no improvement in the best
attained objective function value was observed for four consecutive ES generations.

In the framework of the optimization procedure, any candidate optimum solution was
assessed by invoking Abaqus/CAE to conduct an FE analysis for the surface thicknesses
defined by the particular solution processed. The optimization program and Abaqus/CAE
were linked through specially developed interface software, which automatically passes
data and results from the optimization algorithm to Abaqus/CAE and vice versa. The
simple, yet effective multiple linear segment penalty function [24] was used in this study
for handling the constraints. According to this technique, if no violation was detected, then
no penalty was imposed on the objective function. If any of the constraints were violated, a
penalty, relative to the maximum degree of the constraints’ violation, was applied to the
objective function.

Table 1 provides information about the five DVCs defined for this sizing optimization
problem. Hence, n = 4 and S = {C0, C1, C2, C3, C4}, i.e., four coarser DVCs of the fine
configuration C0 were constructed. The total number of design variables in the five DVCs
ranged from 4 to 108. As an illustrative example, Figure 5 indicates how the design variables
were allocated to the wing box surfaces for configuration C3 (nd = 20 design variables
in total). Each design variable corresponds to the thickness of a group of shell elements.
Thicknesses were allowed to take only specific pre-defined values; therefore, all design
variables were discrete. Finer DVCs gave the optimizer the opportunity to select designs
with larger thickness variations in the wing surfaces, which might result in substantial cost
savings due to the more effective use of material.

Table 1. Test Problem 1 (wing box): number of design variables and their allocation to structural
parts for each of the 5 design variable configurations defined.

Wing Box Surface
Design Variable Configuration (DVC)

C4 C3 C2 C1 C0

Upper 1 5 10 15 15
Lower 1 5 10 18 18
Rib 1 5 10 23 35
Side 1 5 10 24 40

Total 4 20 40 80 108

Figure 6 reports the ES optimization results obtained for the wing box problem. The
convergence histories presented for non-cascade optimization runs clearly show the inabil-
ity of the optimizer to effectively search the design space available in each optimization
case. The optimizer converges to suboptimal solutions, which tend to be of lower quality
as the number of variables is increased, and the resulting design space becomes larger. The
best solution from non-cascade runs was attained using the coarsest DVC available in set S
(C4), which has only four design variables and produces an easily searchable design space
of a small size. It is also interesting to notice the long non-cascade run using the finest DVC
available in S (C0), in which the objective function value was improved at a rather slow
rate and converged to a very high value. This reveals the difficulty encountered by the
optimizer in handling the large number of design variables defined for C0 (nd = 108).
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Figure 5. Test Problem 1 (wing box): groups of shell finite elements defined for design variable
configuration C3 of the wing box. The elements in each group share the same design variable, i.e.,
they have the same thickness. The 20 design variables of C3 are allocated to the wing box’s: (a) upper
surface (Groups 1–5), (b) lower surface (Groups 6–10), (c) rib surfaces (Groups 11–15), and (d) side
surfaces (Groups 16–20).
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On the other hand, the proposed multi-DVC cascade optimization procedure per-
formed consistently despite being confronted with large numbers of design variables.
Overall, n + 1 = 5 cascade stages were executed, in order to process all DVCs in S one after
the other, as described in the flowchart of Figure 3. The non-cascade run using C4 was
adopted as the first cascade stage. This provides the hot-start for the second cascade stage,
in which C3 is used. As can be seen in Figure 6, the cascade procedure manages to deliver
lighter designs for finer DVCs and, finally, achieves a much lower objective function value
than any non-cascade optimization run. Specifically, the best wing box design achieved
with the cascade procedure was about 50% lighter than the best design obtained without
cascading (using C4) and 70% lighter than the design attained without cascading using C0.

An interesting by-product of the optimization runs conducted is the trade-off infor-
mation depicted in Figure 7, which provides the results of Figure 6 in the form of Figure 2.
Figure 7 reveals again the poor performance of non-cascade optimization runs for fine
DVCs. Actually, the solution attained using C4 “dominates” all solutions obtained with the
other (finer) DVCs. On the contrary, “non-dominated” optimum solutions are achieved
with the multi-DVC cascade optimization procedure. In fact, the solution attained using
C1 cannot be improved upon using C0, which means that the solution attained using C1
dominates the solution obtained using C0. Thus, there is no reason to adopt C0 (nd = 108),
because it does not lead to a lower objective function value than C1 (nd = 80). Moreover,
C2 (nd = 40) leads to practically the same objective function value as C3 (nd = 20). Thus,
the final decision should actually be between 4 (C4), 20 (C3) and 80 (C1) design variables. It
has to be decided whether the reduction in material volume gained with a larger number
of design variables compensates the disadvantage of the additional complexity of the
final design.
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Figure 7. Test Problem 1 (wing box): trade-off relation between the number of design variables and
the finally attained objective function value.

Inevitably, the gains in material quantity using finer DVCs with the cascade optimiza-
tion approach were obtained at some additional computational cost. Figure 8 demonstrates
the relative performance of the non-cascade (single-DVC) and cascade (multi-DVC) op-
timization approaches. It can be seen that the non-cascade optimization runs using C4,
C3, C2, and C1 require about half (or even less) of the computational cost compared to the
overall multi-DVC cascade procedure, but yield rather poor final designs. The non-cascade
optimization run using C0 exhibits comparable computational demands as the overall
cascade procedure, but is not able to attain a satisfactory objective function value. Thus, the
multi-DVC cascade optimization approach is indeed computationally more expensive, but
performs computations that are really useful in making an effective search and directing it
toward a high-quality solution. Such effectiveness is not shown by standard non-cascade
optimization runs using fine DVCs, as the computations seem to be wasted in conducting
poorly guided and, therefore, unproductive searches.
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Figure 8. Test Problem 1 (wing box): finally attained material quantity and corresponding computa-
tional cost for various optimization runs. The results are given as ratios, relative to the performance
of the multi-DVC cascade optimization approach.

5.2. Test Problem 2: 36-Story Steel Space Frame

The second test problem examined in this study is the 36-story steel building of
Figure 9, which was modeled as a space frame with 3228 elements and 7992 degrees of
freedom. The space frame was clamped to the ground and was subjected to vertical dead
and live loads and horizontal wind loads. It was divided in the vertical direction into
three 12-story sections, as shown in Figure 9. The frame has steel columns and beams
with I-shaped cross-sections and steel cross-bracings with L-shaped cross-sections. This
test problem was previously investigated in [15], while a similar structure was considered
in [8].

Section 1
12x3.56m

Section 2
12x3.56m

Section 3
12x3.56m

12x4.57m 6x4.57m
x

y
z

Figure 9. Test Problem 2: schematic of the 36-story steel space frame structure and definition of the
three 12-story sections along its height.
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In this sizing optimization problem, the aim is to minimize the total material weight
of the structure. The constraints imposed involve member stresses checked with respect
to the design provisions of Eurocode 3 [32], as well as inter-story drifts, which are limited
below the threshold value h/250, where h is the story height. The sizing design variables
defined control the cross-sectional geometries of the frame’s steel members.

In order to produce suitable member groups for the sizing optimization procedure,
the following member types of the space frame were distinguished:

• Four types of columns: corner columns, outer columns, inner columns in unbraced
frames, and inner columns in braced frames;

• Three types of beams for the two lower sections 1 and 2: outer beams, inner beams in
unbraced frames, and inner beams in braced frames;

• Two types of beams for the upper section 3: outer and inner beams;
• Two groups of bracings in the longitudinal and transverse directions.

Based on these member types, three DVCs are defined in Table 2, i.e., n = 2 and
S = {C0, C1, C2}. Each design variable corresponds to the cross-section of a member
group. The three DVCs result from the different groupings of members within each of the
structure’s sections 1, 2, and 3. For example, in configuration C0, the columns of section
1 are grouped every two stories, which means that section 1 is divided in the vertical
direction into six sub-sections; since there are four types of columns, the total number of
column groups (and corresponding design variables) in section 1 is 4× 6 = 24. The total
number of design variables in the three DVCs defined ranges from 25 to 186. The options
for the design variables of the structure’s columns and beams are contained in a large
database with 200 standard I-shaped cross-sections. The options for the design variables
corresponding to the cross-bracings are contained in a smaller database with 15 standard
L-shaped cross-sections. Since specific pre-defined cross-sectional geometries are included
in these databases, all sizing design variables utilized are discrete.

Table 2. Test Problem 2 (36-story steel space frame): number of design variables (total and per
section of the structure) and their allocation to the structural parts for each of the 3 design variable
configurations defined.

DVC Member
Type

Number of Member Groups Members
Grouped EverySection 1 Section 2 Section 3 All Sections Total

C0 Columns 4× 6 = 24 4× 6 = 24 3× 6 = 18 66 } 2 stories
Beams 3× 12 = 36 3× 12 = 36 2× 12 = 24 96 186 1 story
Bracings 2× 4 = 8 2× 4 = 8 2× 4 = 8 24 3 stories

C1 Columns 4× 3 = 12 4× 3 = 12 3× 3 = 9 33 } 4 stories
Beams 3× 3 = 9 3× 3 = 9 2× 3 = 6 24 81 4 stories
Bracings 2× 4 = 8 2× 4 = 8 2× 4 = 8 24 3 stories

C2 Columns 4× 1 = 4 4× 1 = 4 3× 1 = 3 11 } 12 stories
Beams 3× 1 = 3 3× 1 = 3 2× 1 = 2 8 25 12 stories
Bracings 2× 1 = 2 2× 1 = 2 2× 1 = 2 6 12 stories

Figure 10 depicts the results obtained by applying the proposed multi-DVC cascade
optimization procedure. The convergence history and the finally attained optimum solution
for the first cascade optimization stage using C2 were taken from [15]. Hence, the first
cascade stage was performed with a multi-database optimization procedure using a discrete
ES algorithm. More specifically, in order to effectively deal with the large database of I-
shaped cross-sections, which contains 200 items, coarse versions of it with fewer items
were formed (the coarsest version had just 10 items); then, cascade optimization runs were
executed using each time a different database, starting with the coarsest and ending with
the finest one. Details on how the results using C2 were obtained can be found in [15].



CivilEng 2022, 3 730

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0 5000 10,000 15,000 20,000 25,000 30,000

To
ta

lw
ei

gh
t(

kN
)

Candidate optimum design

3rd cascade stage using C0

2nd cascade stage using C1

non-cascade run using C0

non-cascade run using C1

1st cascade stage using C2

Figure 10. Test Problem 2 (36-story steel space frame): convergence histories of non-cascade and
cascade optimization approaches.

The second and third cascade optimization stages were executed with a discrete
Simulated Annealing (SA) algorithm using the fine database with 200 I-shaped cross-
sections for columns and beams and the smaller database with 15 L-shaped cross-sections
for bracings. The SA implementation described in [33] was adapted herein to perform sizing
optimization for the 36-story space frame. The constraint handling technique used with ES
in the first test example was also employed with SA in this example. SA optimization at
the second or third cascade stage was stopped when no improvement in the best attained
objective function value was observed after 2nd consecutive evaluations of candidate
optimum designs. This termination criterion is relatively strict and resulted in rather long
SA runs, but also in well-explored design spaces.

The best design detected with C2 in [15] was used as the hot-start for the SA run with
C1; this run reaches an optimum solution, which is passed as a hot-start to the SA run with
C0. The optimization runs in the second and third cascade stages may be long, because
SA is confronted with huge design spaces (due to the large numbers of design variables
and database items), but result in significant gains (Figure 10). Specifically, the optimum
total material weight of the frame with C2 is 17,486 kN [15] and is reduced to 15,277 kN
with C1 (about 13% reduction) and to 14,340 kN with C0 (18% reduction with respect to the
first run, 6% reduction with respect to the second run). It remains to compare these gains
with the associated design complexities, in order to finally select the appropriate optimum
design using either C0, C1, or C2.

Figure 10 also presents the convergence histories of the non-cascade optimization runs
using C1 and C0. These non-cascade runs were executed with the same SA implementation
and database configurations employed for the second and third cascade optimization stages
described earlier. As already observed in the results for the first test problem, the non-
cascade optimization procedure was unable to handle the huge design spaces produced
by very large numbers of design variables and, consequently, yielded suboptimal final
designs with a high cost. This inadequate performance is highlighted by the corresponding
trade-off curve of Figure 11, which shows that the optimal solution achieved using C2
clearly “dominates” the solutions obtained with the non-cascade optimization procedure
using either C1 or C0. On the other hand, a regular trade-off curve was attained by the
proposed multi-DVC optimization procedure, which is of the form of Figure 2 and consists
of “non-dominated” optimal solutions, i.e., a finer DVC consistently leads to an optimal
design with a lower cost.
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Figure 11. Test Problem 2 (36-story steel space frame): trade-off relation between the number of
design variables and the finally attained objective function value.

Observations similar to the ones for Test Problem 1 can be reported for the 36-story
steel space frame test problem with respect to the relative performance of the non-cascade
(single-DVC) and cascade (multi-DVC) optimization approaches based on the ratios given
in Figure 12. Hence, the non-cascade optimization approach using any DVC is computa-
tionally much less expensive than the multi-DVC cascade approach, but the effectiveness
of the latter in detecting a high-quality solution cannot be matched by any single-DVC
optimization run.
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Figure 12. Test Problem 2 (36-story steel space frame): finally attained material weight and corre-
sponding computational cost for various optimization runs. The results are given as ratios, relative to
the performance of the multi-DVC cascade optimization approach.

6. Concluding Remarks

Achieving cost savings when constructing/manufacturing structural systems is partic-
ularly important in today’s competitive markets. The purpose of this study was to facilitate
the efforts to reduce the structural cost by considering designs of increased complexity,
which were the outcome of a structural sizing optimization process. In such designs, each
structural component or group of components can have its own cross-sectional geometry.
This gives the optimizer the opportunity to make very effective use of materials, but results
in many different cross-sectional types and dimensions in the structure.

From a computational and algorithmic viewpoint, the search for such complex, yet
cost-effective designs is not a straightforward task. A large number of design variables
is required in the employed sizing optimization procedure, which creates difficulties in
dealing with the vast amount of all possible design options. The cascade optimization
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procedure proposed in this paper proved itself capable of exploiting the huge design spaces
formed and could reduce the objective function value over a number of optimization
stages by initially operating on a small number of design variables, which was gradually
increased stage after stage. The results obtained for two sizing optimization problems taken
from two different areas of engineering (aerospace and civil engineering) demonstrate the
gains that can be achieved with the proposed approach. More specifically, for the wing
box test example, the design attained with the proposed cascade optimization approach
was about 50% lighter than the best design obtained without cascading using the coarsest
design variable configuration available; for the 36-story steel space frame example, the
corresponding improvement achieved was 18%.
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