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Abstract: Transmission of the prestressing force to concrete by prestressing tendons is a topic of
discussion within the fib Task Group 2.5: Bond and Material Models. Particularly, the extensive use of
pretensioned prestressed-concrete (PC) requires adequate knowledge of bond development at the
steel–concrete interface after prestress release. The transmission length, representing the distance from
the free-end of the beam necessary to transmit the fully effective prestressing-force to the surrounding
concrete, is a design parameter of paramount importance for PC members detailing. This contribution
presents the analytical modelling of the transmission length based on the thick-walled cylinders
(TWC) theory, considering anisotropic behaviour of the concrete. To derive the optimal friction
coefficient between steel and concrete, the theoretical model has been calibrated according to an
experimental database of transmission lengths collected from the literature, encompassing 130 data
points from 7 different campaigns. Additionally, local behaviour has been analysed by assessing
radial cracking and bond stress development along the transmission length.
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1. Introduction

Bond in prestressed-concrete (PC) members is responsible for the correct transmission of the
prestressing force from steel to concrete within the so-called transmission length (fib MC2010 [1]) or
transfer length (ACI 318-14 [2]), as described in Figure 1. Additionally, bond also plays a significant role
during the service life of the beam, when it is loaded to flexure, contributing to its general integrity.
In this situation, the tendon stress at the nominal flexural strength is assumed to be anchored to the
concrete within the anchorage length (fib MC2010 [1]) or development length (ACI 318-14 [2]). Such two
situations are commonly known as “push-in” and “pull-out”, respectively. Therefore, the correct
evaluation of the transmission length is of paramount importance for both service (SLS) and ultimate
(ULS) limit state verification of PC members. Indeed, the knowledge of the transmission length
is necessary for checking allowable stresses at the release of prestressing strands, as well as for
determining the anchorage capacity of the element.
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Figure 1. Idealised steel stress development in a prestressed-concrete member after release. 

Three main mechanisms are commonly recognised as contributing to bond development 
between prestressing tendons and concrete: adhesion, mechanical interlocking and friction. Such 
mechanisms develop subsequently, with increasing slip values. The first, adhesion, refers to the 
elastic deformation of the cementitious layer around the tendon due to its chemical and physical 
properties, as well as interlocking between cement-matrix particles and microscopic roughness of the 
steel surface. However, relative displacements take place between steel and concrete, as a result of 
the steel stress gradient along the transmission length. This breaks the adhesive effect, which can 
actually be neglected [3,4]. The second mechanism, mechanical interlocking, depends significantly 
on the shape, indentation and surface characteristics of the tendon. For individual clean wires, it is 
reasonable to assume that mechanical anchorage plays a minimal role in governing the whole bond 
behaviour, because of the smooth texture of the outer surface of the wire. Conversely, seven-wire 
strands exhibit helical patterns of the individual wires that are expected to offer significantly higher 
mechanical resistance and bond capacity, unavailable to straight wires. The third mechanism is 
represented by friction, which is considered to be the major contribution to the whole bond between 
prestressing steel and concrete. In fact, in addition to frictional contribution offered similarly to that 
in conventional ribbed bars [5], in a PC member the strand diameter tends to increase at the release 
of the prestressing-force, as a result of the recovery of the longitudinal contraction. As long as the 
surrounding concrete remains uncracked, such radial expansion of the strand results in a wedging 
action between the two materials, leading to an enhanced frictional bond capacity in the transmission 
zone (known as the Hoyer effect). 

The evaluation of the transmission length is still a matter of discussion, particularly within the 
fib Task Group 2.5: Bond and Material Models. Existing design codes for concrete structures provide 
simplified formulations, with disagreeing predictions [6,7]. It is recognised that many primary factors 
influence the bond mechanisms at prestressing-force release. However, a model accounting for 
different concrete and steel properties as a closed-form expression to predict the transmission length 
has not been developed yet. Some recent advances in this field have been reached by Abdelatif et al. 
(2015) [8] and Ramirez-Garcia et al. (2017) [9], who used dedicated theoretical models to predict bond 
behaviour of PC members along the transmission length. Particularly, the thick-walled cylinders 
(TWC) theory, applied to this specific problem, has allowed reaching promising results, even though 
existing studies are generally calibrated on a limited number of experimental results. Moreover, the 
local bond behaviour has not been analysed in detail. In this contribution, the analytical modelling of 
the transmission length based on the TWC theory is presented, considering anisotropic properties for 
the concrete in tension. In order to derive the optimal friction coefficient between steel and concrete, 
the model has been calibrated according to a comprehensive experimental dataset of transmission 
lengths collected from the literature, containing 130 data points from 7 different campaigns. Finally, 
the local behaviour at the steel–concrete interface has been analysed in detail for some indicative PC 
specimens, aiming at assessing radial cracking and bond stress development along the transmission 

Figure 1. Idealised steel stress development in a prestressed-concrete member after release.

Three main mechanisms are commonly recognised as contributing to bond development between
prestressing tendons and concrete: adhesion, mechanical interlocking and friction. Such mechanisms
develop subsequently, with increasing slip values. The first, adhesion, refers to the elastic deformation
of the cementitious layer around the tendon due to its chemical and physical properties, as well as
interlocking between cement-matrix particles and microscopic roughness of the steel surface. However,
relative displacements take place between steel and concrete, as a result of the steel stress gradient
along the transmission length. This breaks the adhesive effect, which can actually be neglected [3,4].
The second mechanism, mechanical interlocking, depends significantly on the shape, indentation
and surface characteristics of the tendon. For individual clean wires, it is reasonable to assume that
mechanical anchorage plays a minimal role in governing the whole bond behaviour, because of the
smooth texture of the outer surface of the wire. Conversely, seven-wire strands exhibit helical patterns
of the individual wires that are expected to offer significantly higher mechanical resistance and bond
capacity, unavailable to straight wires. The third mechanism is represented by friction, which is
considered to be the major contribution to the whole bond between prestressing steel and concrete.
In fact, in addition to frictional contribution offered similarly to that in conventional ribbed bars [5],
in a PC member the strand diameter tends to increase at the release of the prestressing-force, as a
result of the recovery of the longitudinal contraction. As long as the surrounding concrete remains
uncracked, such radial expansion of the strand results in a wedging action between the two materials,
leading to an enhanced frictional bond capacity in the transmission zone (known as the Hoyer effect).

The evaluation of the transmission length is still a matter of discussion, particularly within
the fib Task Group 2.5: Bond and Material Models. Existing design codes for concrete structures
provide simplified formulations, with disagreeing predictions [6,7]. It is recognised that many primary
factors influence the bond mechanisms at prestressing-force release. However, a model accounting for
different concrete and steel properties as a closed-form expression to predict the transmission length
has not been developed yet. Some recent advances in this field have been reached by Abdelatif et al.
(2015) [8] and Ramirez-Garcia et al. (2017) [9], who used dedicated theoretical models to predict bond
behaviour of PC members along the transmission length. Particularly, the thick-walled cylinders (TWC)
theory, applied to this specific problem, has allowed reaching promising results, even though existing
studies are generally calibrated on a limited number of experimental results. Moreover, the local
bond behaviour has not been analysed in detail. In this contribution, the analytical modelling of the
transmission length based on the TWC theory is presented, considering anisotropic properties for
the concrete in tension. In order to derive the optimal friction coefficient between steel and concrete,
the model has been calibrated according to a comprehensive experimental dataset of transmission
lengths collected from the literature, containing 130 data points from 7 different campaigns. Finally,
the local behaviour at the steel–concrete interface has been analysed in detail for some indicative PC
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specimens, aiming at assessing radial cracking and bond stress development along the transmission
length. The average value of the bond strength arising from the proposed model has been computed
and compared to that provided by current design codes.

2. Roles of the Major Parameters Affecting the Transmission Length

The transmission of the prestressing force from steel to concrete is typically influenced by many
important variables, both quantitative and qualitative parameters. However, only some of them
are actually taken into account within the principal design codes (fib MC2010 [1]; ACI 318-14 [2];
Eurocode 2 [10]) for the transmission length calculation. Many investigations were carried out in
literature about the role of the tendon diameter on the transmission length of PC members, with little
uncertainties in it. Particularly, it is commonly accepted that the transmission length linearly increases
with the nominal tendon diameter. Adhesion, friction and mechanical interlock are influenced in
different ways by this parameter. Oh and Kim (2000) [11] studied the role of the strand size on
transmission length by analysing PC specimens with same characteristics, but equipped with strands
of two different diameters, i.e., 12.7 and 15.2 mm. Experimental results clearly demonstrated an
average increase of 25% in the measured transmission lengths for a 15.2 mm strand compared with
those for a 12.7 mm strand, which is approximately the ratio between the two diameters. A recent
work by Dang et al. (2018) [12] extended the study on 18-mm-diameter strands in self-consolidating
concrete (SCC), which has extensive advances in bridge engineering. Furthermore, there is not much
uncertainty about a linear correlation between the transmission length and the initial prestress level,
within the limited range of initial stresses used in PC applications. This behaviour is also accepted by
current codes as they are based on uniform distribution of bond stresses along the transmission length.

The transmission length has also been investigated with respect to concrete strength, concrete
cover and tendon spacing, which should be considered as primary quantitative factors. In fact, it is
widely recognised that the larger modulus of elasticity and smaller shrinkage strains after release,
associated with higher concrete compressive strength, improve bond characteristics and result in
smaller transmission length values. Zia et al. (1977) [13] derived an inverse proportional relation
between transmission length and concrete strength, which was confirmed by Martí-Vargas et al.
(2012) [14] on a study about concrete composition effects on the anchorage length. Mitchell et al.
(1993) [15] suggested a dependence of the transmission length upon the inverse of the square root of
concrete compressive strength at release. Then, the effect of concrete cover and tendon spacing on the
transmission length has been examined only more recently by researchers. These parameters should
be such as to avoid cracking and localised bond failures at release. It is recalled that concrete cover
and tendon spacing are not explicitly taken into account in the design code formulations. Oh et al.
(2006) [16] carried out an extensive experimental campaign to understand the role of these variables.
They tested twin-strand specimens with three different tendon spacings (equal to 2, 3 and 4 times the
nominal strand diameter, respectively) and mono-strand specimens characterised by three different
concrete covers (30, 40 and 50 mm, respectively). The transmission length was found to decrease
quadratically as strand spacing and concrete cover increase, due to the larger confining stresses
provided by the surrounding concrete on the tendons.

The most important qualitative variables having influence on the transmission length are the
type of prestress release and the tendon surface condition. Several studies investigating the effect of
prestress release method on the nature of bond have shown that a sudden flame-cutting of the tendons
often results in longer transmission lengths than a gradual release process [17,18]. This phenomenon is
generally attributed to the dynamic effects associated with the transfer of energy from the tendon to
the concrete. Kaar and Hanson (1975) [19] and Cousins et al. (1990) [20] found that sudden release by
flame-cutting the tendons gives transmission lengths of 8 to 22 percent longer than those determined for
similar tendons gradually released. An additional distinction about release method has been recently
highlighted by Pellegrino et al. (2018) [21], who showed that transmission length also depends on the
considered free-end of the member, i.e., the “cut-end” or the “dead-end”. Such terms refer to the side
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of the specimen where strands are actually cut and its opposite, where stresses are released. Based on
the experimental tests carried out in [11], Pellegrino et al. (2018) [21] demonstrated that transmission
lengths at the cut end are, on average, up to 16% longer than those at the dead end, when sudden
release is applied. Lastly, the influence of the tendon surface condition on the transmission length
has been examined by Cousins et al (1990) [20]. In fact, to provide corrosion protection of tendons
in PC members located in aggressive environments, it can be useful using an epoxy-coating as a
corrosion-inhibiting barrier. In this case, the epoxy-coating should be impregnated e.g., with grit
(crushed glass) to improve its bond characteristics with concrete. It was observed that increasing
grit density results in shorter transmission length values. Other studies [22], reference [23] analysed
instead the effect of the potential presence of rust onto the strands, in small amounts, for promoting
the roughness of the steel surface. Rusted tendons were found to give shorter transmission lengths
than smooth ones.

3. Analytical Modelling of the Transmission Length

3.1. General Calculation Procedure

To obtain an accurate evaluation of the transmission length, the analysed prestressing tendon can
be subdivided into a number of finite elements of small length ∆z, as shown in Figure 2. Starting from
the element at the free-end of the PC member, where the prestress is zero (σs,0 = 0), the increment of
axial stress in the tendon ∆σs due to bond development within the element can be calculated from the
force equilibrium along the tendon longitudinal axis:

∆σs =
π ∅ ∆z σbpd

Asp
(1)

where ϕ is the nominal tendon diameter, σbpd is the bond stress along the considered element and Asp

is the tendon cross-sectional area. This implies knowledge of the bond stress distribution along the
transmission zone: the matter will be addressed in the next sections.
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the concrete section and y is the vertical reference axis. 

By repeating the mentioned procedure for each subsequent finite element, from the free-end to 
the mid-span, the theoretical concrete strain profile (ߝ௖,௭) due to transmission of the prestressing-force 
can be derived from Equation 3 at any point along the beam. Thus, as commonly adopted in the 
literature, the transmission length of the considered tendon is easily identified as the distance from 
the free-end to the point where concrete axial strain reaches 95% of the maximum strain (95% AMS 
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The prestressing-force (Pi+1) and the concrete axial stress at the level of the tendon (σc,z,i+1) in the
successive finite elements can be obtained as follows:

Pi+1 = σs,i+1 Asp

∑i+1

n=1

[
∆σs,n Asp

]
(2)

σc,z,i+1 = Pi+1

(
1

Ac
+

e
Jx

y
)

(3)

where Ac and Jx are the cross-sectional area and the moment of inertia of the concrete section,
respectively, while e represents the vertical eccentricity of the tendon with respect to the centroid of the
concrete section and y is the vertical reference axis.
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By repeating the mentioned procedure for each subsequent finite element, from the free-end to
the mid-span, the theoretical concrete strain profile (εc,z) due to transmission of the prestressing-force
can be derived from Equation 3 at any point along the beam. Thus, as commonly adopted in the
literature, the transmission length of the considered tendon is easily identified as the distance from
the free-end to the point where concrete axial strain reaches 95% of the maximum strain (95% AMS
method, as in [11,24]). However, the analytical model should also consider the type of prestress
release (i.e., sudden or gradual) and the free-end location (i.e., “cut” or “dead” end), which can
affect significantly the actual transmission length. This is accomplished by multiplying the obtained
transmission length value by a coefficient αrel, which is assumed to be 1.0 for a gradual release of
the tendons or 1.3 when a sudden flame-cutting process is employed. The latter value is taken
as the average between the two increasing factors associated with the “dead” and the “cut” end
(i.e., αrel = 1.25 and αrel = 1.35, respectively, as estimated in Pellegrino et al., 2018 [21]), in order to
achieve a better comparison with experimental data.

3.2. Elastic Analysis Based on the Thick-walled Cylinders Theory

Design formulations provided by standard codes usually assume constant distribution of prestress
transfer bond σbpd along the transmission length. Generally, bond stress is expressed through the
fundamental equation:

σbpd = µ σr
(
r jack

)
(4)

In this expression µ is the overall friction coefficient between tendon and concrete, combining
actual frictional and mechanical bond. Typically, it is assumed to be between 0.3 and 0.8 [8,25]. Instead,
σr

(
r jack

)
is the radial compressive stress arising at the steel–concrete interface as a result of the Hoyer

effect, where r jack identifies the radius of the tendon after prestressing. Many rational approaches have
been proposed in the literature for determining the magnitude of the interface pressure. Most of these
are based on the TWC theory, i.e., considering the steel tendon as a solid cylinder and the surrounding
concrete as an external hollow cylinder [16,26]. Figure 3 shows how the problem is idealised.
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Figure 3. Geometry of the idealised steel and concrete cylinders for the application of the thick-walled
cylinders (TWC) theory.

If an infinitesimal slice of the concrete cylinder of thickness dz is selected at a distance z from the
free-end of the PC member, the equilibrium in the radial direction can be written as in Equation (5),
neglecting terms containing higher-order infinitesimal and assuming z-independency of all the variables
(Figure 4):

σc,r +
dσc,r

dr
r − σc,θ = 0 (5)

where σc,r and σc,θ are the stresses in the radial and circumferential direction, respectively, while r is
the radial distance.
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At the same time, compatibility of displacements at the interface between steel and concrete
must be satisfied after release, and gives Equation (6), where rps and r jack are the tendon radius
before and after prestressing, while ups and uc are the radial displacements of tendon surface and
concrete, respectively.

rps + ups = r jack + uc (6)

In addition, the radial and circumferential stresses σc,r and σc,θ can be expressed according to the
constitutive equations of the infinitesimal element of the concrete cylinder (Equations (7) and (8)),
being σc,z the concrete axial stress, Ec and υc the elastic modulus and Poisson’s coefficient of concrete,
εc,r and εc,θ the concrete strain in the radial and circumferential direction, respectively:

σc,r =
Ec

1− υc2
(εc,r + υc εc,θ) +

υc (1 + υc) σc,z

1− υc2 (7)

σc,θ =
Ec

1− υc2
(εc,θ + υc εc,r) +

υc (1 + υc) σc,z

1− υc2 (8)

By substituting Equations (7) and (8) in the equilibrium equation, Equation (5), it is possible
to obtain:

r
d2u
dr2 +

du
dr
−

u
r

= 0 (9)

whose solution, the radial displacement u, can be written in the following form:

u = c1r + c2/r (10)

It can be noted that, combining Equation (10) with Equations (7) and (8), the radial and
circumferential stresses can also be connected to the constants of integration, c1 and c2:

σc,r = Ec [
c1

1− υc
−

c2

r2 (1 + υc)
] +

υc σc,z

(1− υc)
(11)

σc,θ = Ec [
c1

1− υc
+

c2

r2 (1 + υc)
] +

υc σc,z

(1− υc)
(12)
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Two different boundary conditions can be set separately for steel and concrete to derive the
constants of integration c1 and c2, and thus the radial displacement u (Equation (10)) and the stresses
in the radial and circumferential direction (Equations (11) and (12)). For steel cylinder, u must be zero
at the tendon centroid, i.e., at r = 0. Therefore, being σc,r = σr

(
r jack

)
at r = r jack (where r jack is the radial

distance to the outer surface of the stressed tendon and σr
(
r jack

)
is the corresponding radial pressure at

the interface), the field of the radial displacement can be expressed as in Equation (13). On the other
hand, for concrete, the two boundary conditions are σc,r = σr

(
r jack

)
at r = r jack and σc,r = 0 at the outer

surface of the concrete hollow cylinder, i.e., at r = c, so that the radial displacement can be obtained as
in Equation (14).
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Particularly, the reduced tendon radius after prestressing
(
r jack

)
is obtained when considering the

Poisson’s effect on the longitudinal strain:

r jack = (1−
σsi
Eps

υps )rps (15)

where σsi is the stress in the strand just after release, while Eps and υps are the elastic modulus and
Poisson’s coefficient of concrete, respectively. The radial pressure at the tendon-concrete interface
can finally be derived from the compatibility condition (Equation (6)). In fact, by substituting the
displacement at the tendon outer surface (ups, from Equation (13)) and the displacement at the inner
surface of the concrete hollow cylinder (uc, as given by Equation (14)):

σr
(
r jack

)
=

rps
(
1− υps σs /Eps

)
− r jack (1− υc σc,z /Ec )(

1− υps
)

rps/Eps +
[
υc −

(
r2

jack + c2
)
/
(
r2

jack − c2
)]

r jack/Ec

(16)

where σs and σc,z are the axial stresses into the steel and concrete for the finite element at a generic
distance z from the PC member free-end, respectively. However, with commonly used materials and
under standard conditions, the actual concrete tensile strength is easily exceeded in the vicinity of the
tendon, especially near the free-end of the PC member, where the Hoyer effect is maximum. Therefore,
more refined theoretical models incorporating anisotropic concrete properties should be required to
better describe the bond phenomenon in the presence of cracking of the material.

3.3. Anisotropic Analysis for Cracked Concrete

After prestress release operation, concrete may experience three different configurations along the
transmission length, depending on the confining pressure at the interface surface. Concrete, indeed,
can be fully cracked near the free-end, only partially cracked at a certain distance from the free-end
and it might be intact and uncracked at a further distance (where the Hoyer effect is very small or
negligible, see Figure 5).

Similarly to Han et al. (2016) [26], a linear elastic field of displacement for the concrete cylinder
can be assumed, resulting in the following relationship for the radial displacement u(r):

u(r) =
σct

Ec
r

(c/r)2 + 1(
c/rtip

)2
+ 1

(17)
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where σct is the tensile strength of concrete and rtip is the distance from tendon centroid to the crack tip
(see Figure 5). To determine the state of the concrete around the tendon, its circumferential strain at the
interface with the strand, i.e., εc,θ

(
r jack

)
, can be easily calculated from Equation (14), and compared with

the cracking strain, εc,ck. The condition εc,θ
(
r jack

)
> εc,ck means that concrete surrounding the tendon

is cracked. In this case, the radius from the tendon centroid to the crack tip, rtip, can be estimated as
follows by combining Equation (14) and Equation (17):

−σr
(
r jack

)
r jack

Ec
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+ 1(
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)2
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(18)
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The influence of concrete radial cracking on the magnitude of bond can be taken into account
through an appropriate softening model. For this purpose, the tri-linear model suggested by Han et al.
(2014) [27] can be adopted to represent the behaviour of concrete in tension, as depicted in Figure 6.
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From the equilibrium of the cracked concrete section (Figure 7), the interface pressure σr
(
r jack

)
can

be related to the confining pressure at the crack tip σc,r
(
rtip

)
and the residual circumferential stress in

the cracked portion of the section σc,θ(r):

σr
(
r jack

)
r jack = σc,r

(
rtip

)
rtip +

∫ rtip

r jack

σc,θ(r) dr (19)
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The confining pressure at the crack tip σc,r
(
rtip

)
can be derived as in Equation (20), considering

that the hoop stress at the crack tip σc,θ
(
rtip

)
is equal to the tensile strength of concrete σct. This enables

the determination of the interface pressure σr
(
r jack

)
from Equation (19).

σc,r
(
rtip

)
= σct

c2
− rtip

2

c2 + rtip2 (20)
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When radial cracking extends until reaching the external side of the concrete section, i.e., for fully
cracked concrete section, the field of the radial displacement results from Equation (17) by taking c
instead of rtip:

u(r) = εc,θ(c) r
(c/r)2 + 1

2
(21)

where the circumferential strain at the external side of concrete εc,θ(c) is derived from the following
Equation (22), which arises from Equations (14) and (21):

−σr
(
r jack

)
r jack

Ec
(
1/c2 − 1/r jack

2
)  (1− υc)

c2 +
(1 + υc)

r jack
2

 − υc σc,z r jack

Ec
= εc,θ(c) r jack

(
c/r jack

)2
+ 1

2
(22)

Therefore, for a fully cracked concrete section, the pressure at the interface between the tendon
and the surrounding concrete is still calculated from Equation (19), considering that no confining stress
is provided by the concrete (i.e., σc,r

(
rtip

)
must be zero):

σr
(
r jack

)
r jack =

∫ rtip

r jack

σc,θ(r) dr (23)

The whole procedure for calculating the transmission length of a generic prestressed-concrete
member according to the implemented analytical model can be summarised as in the flowchart of
Figure 8.
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4. Model Calibration and Results

4.1. Global Behaviour: Transmission Length Assessment

The presented analytical model has been implemented with Matlab®, and then calibrated in
order to evaluate the optimal friction coefficient µ, as introduced in Equation (4). The model calibration
has been addressed based on a comprehensive dataset of experimental transmission length values
measured in PC small-scale specimens, collected from an extensive review of the literature. The overall
database, as reported in Table 1, comprises 130 data points from [11,15,16,24,28–30]. The extended
version can be consulted at request by contacting the authors.

Table 1. Detail of the dataset of experimental transmission length values for model calibration:
test specimens and authors.

Reference Citation No. of Experimental Tests

Mitchell et al. (1993) [15] 14
Russell and Burns (1996) [24] 20
Russell and Burns (1997) [28] 12

Oh and Kim (2000) [11] 36
Oh et al. (2006) [16] 24

Martì-Vargas et al. (2007) [29] 12
Dang et al. (2017) [30] 12

The collected dataset spans over a great variety of influencing parameters related to both
geometrical features and material properties. Four different strand diameters (12.7, 15.2, 15.7, 18.0 mm),
strand stress at release ranging from 871 to 1418 MPa, concrete compressive strength at release covering
a range from 19.2 to 68.1 MPa, concrete cover from 36.4 to 63.5 mm and strand clear spacing up to
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60.8 mm have been considered as quantitative variables. The small-scale specimens are equipped
with up to five uncoated strands. Additionally, the type of prestressing-force release (i.e., sudden or
gradual) has also been included in the study, as a qualitative factor. However, it should be noted that
two different experimental transmission length values are usually derived from the same PC specimen,
depending on the considered free-end. In fact, the most used method for prestress release entails
flame-cutting all the strands at one location between two beams, cast simultaneously in the prestressing
bed. In this way, for a single beam, the two opposite free-ends are affected by a different amount of
released energy. The interior side between two successive beams is named “cut end”, subject to direct
flame-cutting of the strands and experiencing a higher amount of energy as a result of the cutting
process. The other free-end is the “dead end”, which is at the opposite side of the member, and thus not
subject to a direct flame-cutting of the tendons (a shorter transmission length is commonly registered
here). Therefore, in order to better compare experimental and theoretical results, the average value of
the transmission length between those measured at the “cut end” and at the “dead end” is taken for
each specimen, since the analytical model itself can not consider these situations at the release.

It is worth recalling that the accuracy of the TWC model is highly dependent on the adopted
coefficient of friction between the strand and the surrounded concrete. The role of friction between the
two materials was experimentally analysed in several previous studies ([31,32]), suggesting values of
the friction coefficient from 0.3 to 0.8. Thus, a parametric analysis has been carried out in this work
to evaluate the optimal friction coefficient, i.e., the value that gives the best fit with the experimental
results collected in the dataset. Table 2 highlights the overall performance of the analytical TWC model
when compared to the results of the experimental tests collected in the database, for different values of
the friction coefficient ranging from 0.3 to 0.8.

Table 2. Performance of the analytical TWC model for different friction coefficient values.

Friction Coefficient AVE COV RMSE

µ = 0.3 2.10 1.15 755.57
µ = 0.4 1.62 0.67 439.31
µ = 0.5 1.30 0.36 232.72
µ = 0.6 1.07 0.18 139.20
µ = 0.7 0.92 0.16 154.16
µ = 0.8 0.81 0.23 207.22

AVE = average ratio between theoretical and experimental values; COV = coefficient of variation; RMSE = root
mean square error.

Results are presented according to commonly used statistical indicators: the average ratio between
theoretical and experimental values (AVE), the coefficient of variation (COV) and the root mean
square error (RMSE). Accordingly, it can be noted that the best accuracy of the analytical model,
both in terms of AVE and RMSE, is provided when a coefficient of friction equal to 0.6 is selected.
Instead, the lower COV is achieved with a friction coefficient of 0.7 (even though the coefficient of
variation for µ = 0.6 is very similar). It is recalled that such a value is intended as the overall friction
coefficient, combining actual frictional bond and mechanical bond. Note also that for the lowest
values of µ, the performance of the model decreases significantly. This might be due to the fact that
shrinkage effect has not been separately accounted here and it is instead included in the overall friction
coefficient. Indeed, shrinkage impact on radial compressive stresses connected to friction contribution
on bond mechanism is well-known and could have a relevant impact when comparing different types
of concrete [8,33]. Figure 9 shows the graphical comparison between the theoretical values of the
transmission length obtained with the TWC model, using a coefficient of friction µ = 0.6, and the
corresponding experimental results. It can be seen that most of the data points are very close to
the diagonal ideal line “experimental vs. predicted Lt”. This demonstrates the effectiveness of the
analytical model in replicating the measured transmission length values.
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compressive strength at release of 46.7 MPa and a concrete cover thickness of 46.4 mm. Moreover, a 
sudden release of the prestressing force has been implemented. Minor differences are present 
between concrete strain values, but the general development of the experimental curve is well 
captured by the theoretical one. Particularly, the transmission lengths in the two cases are very 
similar: the experimental reference value is equal to 502 mm, determined through the 95% AMS 
method as the average between the “cut” and the “dead” end transmission length, while the 
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An additional comparison between experimental and predicted values of the concrete strain 
after release is highlighted in Figure 11 for specimens of different properties. Here, test beams 
“FC350-2” by [24] and “SS150-4” by [28] are considered, respectively, also equipped with tendons of 
12.7 mm diameter. In particular, the first specimen (Figure 11 on the left) presents three tendons with 
clear spacing of 38.1 mm, embedded in concrete characterised by a compressive strength at release of 
29.8 MPa and a cover thickness of 63.5 mm. Tendons are gradually released at 1365.2 MPa. Instead, 
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release of 26 MPa and lateral cover of 51 mm. In this case, the tendon stress at sudden release is 1299.0 
MPa. It can be noted that some slight discrepancy between the experimental and theoretical concrete 

Figure 9. Experimental vs. theoretical transmission lengths for µ = 0.6.

As an example, the comparison of the experimental concrete strain profile registered for specimen
“M12-H-C4-1” in [16] with the theoretical curve obtained from the proposed model (µ = 0.6) is depicted
in Figure 10. The test setup involves a 12.7 mm mono-strand rectangular specimen (b = 112.7 mm;
h = 200 mm), characterised by a strand stress at release of 1396.5 MPa, a concrete compressive strength
at release of 46.7 MPa and a concrete cover thickness of 46.4 mm. Moreover, a sudden release of
the prestressing force has been implemented. Minor differences are present between concrete strain
values, but the general development of the experimental curve is well captured by the theoretical one.
Particularly, the transmission lengths in the two cases are very similar: the experimental reference
value is equal to 502 mm, determined through the 95% AMS method as the average between the “cut”
and the “dead” end transmission length, while the analytical value is 561 mm.
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Figure 10. Comparison between experimental and theoretical concrete strain build-up profiles (µ = 0.6)
for specimen M12-H-C4-1; experimental results are derived from Oh et al., 2006.

An additional comparison between experimental and predicted values of the concrete strain after
release is highlighted in Figure 11 for specimens of different properties. Here, test beams “FC350-2”
by [24] and “SS150-4” by [28] are considered, respectively, also equipped with tendons of 12.7 mm
diameter. In particular, the first specimen (Figure 11 on the left) presents three tendons with clear
spacing of 38.1 mm, embedded in concrete characterised by a compressive strength at release of
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29.8 MPa and a cover thickness of 63.5 mm. Tendons are gradually released at 1365.2 MPa. Instead,
the second specimen (Figure 11 on the right) is mono-strand with concrete compressive strength at
release of 26 MPa and lateral cover of 51 mm. In this case, the tendon stress at sudden release is
1299.0 MPa. It can be noted that some slight discrepancy between the experimental and theoretical
concrete strain profiles is still present, especially in the plateau of the curves. For both the analysed
configuration, the horizontal branch of the predicted curve (i.e., the blue plots in Figure 11) is below
that of the experimental curve (i.e., the red plots). However, the general shape of the concrete strain
build-up profiles is very similar. This is also confirmed by the predicted transmission length values,
which are close to the measured ones. In Figure 11, the cut end of the described test members is shown,
where the difference between experimental and theoretical transmission lengths is equal to 3% for both
specimens “FC350-2” and “SS150-4”.
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4.2. Local Behaviour: Radial Cracking and Bond Stress Development

The evolution of radial cracking along the transmission length of the same specimen “M12-H-C4-1”,
evaluated through the TWC model, is shown in Figure 12. At the free-end section of the beam,
the compressive stress σr

(
r jack

)
at the interface between concrete and prestressing tendon is calculated

to be around 55 MPa, when the elastic case is considered (Equation (16)). As a result, the circumferential
tensile stress at the inner side of the concrete hollow cylinder, σc,θ

(
r jack

)
, is estimated in approximately

57 MPa. For the analysed specimen, such a value is about 16 times larger than the concrete tensile
strength at release, whose average value is equal to 3.43 MPa. Consequently, the concrete around the
prestressing tendon experiences cracking in the radial direction.

However, the magnitude of the strand expansion due to the Hoyer effect is not sufficient to allow
radial cracking to reach the free outer surface of the concrete section. In fact, at the free-end of the
specimen, the distance from the centroid of the tendon to the crack tip (rtip, derived from Equation (18))
is calculated to be 35.5 mm, lower than the concrete cover thickness, equal to 46.4 mm. Then, moving
towards the mid-span of the PC member, the increase in the tendon diameter due to release of the
prestressing-force becomes less significant, so that the interface pressure, the hoop stress and the extent
of the radial cracking diminish progressively. At a certain distance from the free-end, i.e., just after
500 mm, the whole concrete section becomes uncracked and the transmission length is rapidly reached
(561 mm) as a consequence of the larger confining stresses exerted by the surrounding concrete on the
strand in the central region of the PC member.
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In Figure 13, the theoretical bond stress distribution along the transmission length is also shown
for the considered specimen. It can be seen that the maximum value of the bond strength at the interface
surface between the strand and the surrounding concrete, evaluated in nearly 8 MPa, is registered in
the proximity of the free-end of the member. Here, the compressive stresses on the concrete, triggered
by the increase in the tendon diameter, are relatively high. The bond stress value at any point along
the tendon is proportional to the slope of the steel stress build-up curve, depicted in red in Figure 13.
Accordingly, bond decreases non-linearly as the transmission length is approached. Then, once the
transmission length is fully developed, the bond stress remains negligible.CivilEng 2020, 1, 6 88 
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Finally, a comparison with the bond strength values suggested by fib MC2010 [1] and ACI
318-14 [2] is presented. According to the formulation of fib MC2010, the uniform bond stress at the
interface steel–concrete after release (considering average material properties) can be estimated as in
Equation (24):

σbpd = ηp1 ηp2 σct(t) (24)
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where ηp1 is a coefficient which takes into account the type of tendon (ηp1 = 1.2 in the present case, i.e.,
for seven-wire strands) and ηp2 is a factor that considers the position of the tendon during concreting
(ηp2 = 1.0 is selected for good bond conditions, i.e., for horizontal tendons which are up to 250 mm from
the bottom or at least 300 mm below the top of the concrete section during casting). The average tensile
strength of concrete at the time of prestressing force release σct(t), as mentioned, is equal to 3.43 MPa
for specimen M12-H-C4-1. Thus, for fib MC2010, the prestressing-force is assumed to be transferred
to the concrete by a constant bond strength equal to σbpd = 4.12 MPa. However, a consideration on
such bond strength formulation is worth mentioning. Based on fib MC2010, the distinction between
the transmission length Lt calculated for transverse stress verification at release and that evaluated
for anchorage length determination at ULS is accomplished by considering a coefficient αp2, as in
Equation (25):

Lt = αp1 αp2 αp3
σsi
σptd

lbp (25)

where αp1 is a coefficient that considers the type of release, αp3 a factor that accounts for the influence
of bond situation, σsi the tendon stress at release, σptd the design tensile strength of the prestressing
steel and lbp the basic anchorage length of the tendon (which in turn depends on the inverse of the
interface bond strength σbpd). The parameter αp2, taking into account the action effect to be verified,
is prescribed to be 0.50 for stress check at release and 1.00 for calculation of the anchorage length at ULS.
Nevertheless, such coefficient αp2 should directly affect the bond strength value, as the other variables
in Equation (25) (i.e., αp1, αp3, σsi and σptd) represent test conditions or material strengths, and they do
not change between the two mentioned design situations. According to this consideration, the actual
bond strength should be computed as σbpd/αp2, with αp2 equal to 0.50 (immediately after release) or
1.00 (at the Ultimate Limit State). This means that the constant bond stress at the tendon–concrete
interface would be doubled when calculating the transmission length for stress check at prestress
release, i.e., equal to 8.24 MPa in the analysed case.

Conversely, according to the simple model of ACI 318-14, the value of the constant bond strength
along the transmission length is fixed, and equal to 2.76 MPa (400 psi), which represents the average
value obtained by the Portland Cement Association (PCA), using steel Grade 250 for the seven-wire
strands. On the other hand, if the area under the theoretical bond stress curve in Figure 13 is computed
and divided by the analytical transmission length, an equivalent constant bond strength can also
be derived from the TWC model. This value results to be 5.55 MPa, which is about 48% smaller
than the bond strength provided by fib MC2010 for SLS verification, 35% greater than that provided
by fib MC2010 for ULS calculation and about 100% greater than the value suggested by ACI 318-14.
In particular, with respect to stress verification after release, the value of the bond strength prescribed
by fib MC2010 for the considered PC specimen seems to over-estimate the effective interface bond
stress (resulting in shorter transmission lengths), while the value suggested by ACI 318-14 seems to
under-estimate it (resulting in longer transmission lengths).

5. Conclusions

In this paper, the analytical modelling of the transmission length in prestressed-concrete members
has been addressed. Particularly, a theoretical bond model based on the thick-wall cylinders theory has
been implemented, considering anisotropic properties of the concrete in tension. The overall friction
coefficient between the tendon and the surrounding concrete has been calibrated on a database of
130 experimental transmission length values measured in the literature. Comparisons with experimental
results have shown that the capability of the developed model to accurately simulate the introduction of
the prestressing force to the concrete highly depends on the selected coefficient of friction. Specifically,
a friction coefficient of µ = 0.6 was found to give the best accuracy of the model in terms of the principal
statistical indicators (AVE, COV, RMSE). With this parameter value, concerning the local behaviour,
the model is able to capture well the development of concrete strain, concrete radial cracking and bond
stress along the transmission length. For the analysed case, used as an indicative example, the average
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bond strength computed from the TWC model was 48% smaller than the value provided by fib MC2010
for SLS verification, 35% greater than that provided by the same code for ULS verification and about
100% greater than that suggested by ACI 318-14.
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Nomenclature

Ac Cross-sectional area of concrete
Asp Cross-sectional area of prestressing tendon
b Width of the concrete section
c Concrete cover thickness
c1, c2 Constants of integration for the solution of u
Ec Elastic modulus of concrete
Eps Elastic modulus of prestressing steel

e
Vertical eccentricity of the considered tendon with respect to the centre of gravity of the
concrete section

h Height of the concrete section
Jx Moment of inertia of the concrete section
Lt Transmission length of the prestressing tendon
Lt, experimental Experimental value of the transmission length
Lt, theoretical Theoretical value of the transmission length
lbp Basic anchorage length according to fib MC2010
P Initial prestressing-force in the tendon
r Radial distance from the tendon centroid
rjack Radius of the tendon after release
rps Radius of the unstressed tendon
rtip Distance from the tendon centroid to the crack tip
u Radial displacement
uc Radial displacement of the concrete
ups Radial displacement of the tendon outer surface
y Vertical distance from the centre of gravity of the concrete section
∆z Length of the single finite element in which the prestressing tendon is subdivided
z Longitudinal distance from the free-end of the PC member

αp1
Coefficient which takes into account the prestress release method, according to
fib MC2010

αp2
Coefficient which takes into account the action effect to be verified, according to
fib MC2010

αp3
Coefficient which takes into account the influence of bond situation, according to
fib MC2010

αrel
Coefficient which takes into account the prestress release method, according to the
findings proposed by the authors
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ε1
Concrete strain (assumed as 0.0003) corresponding to concrete tensile stress equal to
0.15 ft, according to Han’s softening model

εc,ck Cracking strain of concrete
εc,r Concrete strain in the radial direction
εc,θ Concrete strain in the circumferential direction
εc,z Concrete axial strain at the level of the tendon centroid

εu
Ultimate concrete strain (assumed as 0.002) corresponding to concrete tensile stress
equal to zero, according to Han’s softening model

ηp1 Coefficient which takes into account the type of tendon, according to fib MC2010
ηp2 Coefficient which takes into account the position of the tendon, according to fib MC2010

µ
Overall friction coefficient between the tendon and the surrounding concrete,
combining actual frictional and mechanical bond

υc Poisson’s ratio of the concrete
υps Poisson’s ratio of the prestressing steel
σbpd Prestress transfer bond at the interface tendon-concrete
σc,r Concrete radial stress
σc,θ Concrete circumferential stress
σc,z Concrete axial stress
σct Tensile strength of concrete
σptd Design tensile strength of the prestressing steel
σr Tendon radial stress

σr(rjack)
Radial compressive stress at the interface between steel and concrete, arising from the
Hoyer effect

∆σs
Increment in tendon stress resulting from the development of bond stress along the
finite element

σs Tendon stress at the considered point along the length of the member
σsi Jacking stress of the tendon at prestressing-force release
ϕ Nominal tendon diameter
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