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Abstract: Over the past few decades, surgeon training has changed dramatically. Surgical skills are
now taught in a surgical skills laboratory instead of the operating room. Simulation-based training
helps medical students improve their skills, but it has not revolutionized clinical education. One
critical barrier to reaching such a desired goal is the lack of reliable, robust, and objective methods
for assessing the effectiveness of training sessions and the development of students. In this paper,
we will develop a new comparative analysis approach that employs network models as the central
concept in establishing a new assessment tool for the evaluation of the surgical skills of trainees as
well as the training processes. The model is populated using participants electromyography data
while performing a simulation task. Furthermore, using NASA Task Load Index score, participants’
subjective overload levels are analyzed to examine the impact of participants’ perception of their
mental demand, physical demand, temporal demand, performance, effort, and frustration on how
participants perform each simulation task. Obtained results indicate that the proposed approach
enables us to extract useful information from the raw data and provides an objective method for
assessment the of surgical simulation tasks and how the participants’ perception of task impacts their
performance.
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1. Introduction

There is a growing shortage of medical professionals all around the world. By 2030, it
is predicted that there will be a global shortage of 10 million healthcare workers, mainly
in low- and middle-income nations. In low- and middle-income nations, an additional
143 million surgical procedures are required annually to save lives and prevent disability [1].
Unfortunately, even developed nations such as the United States are not producing enough
new medical professionals fast enough to keep up with its aging population and falling birth
rate [1]. Obtaining surgical competence is a difficult procedure requiring the acquisition
of information, judgment, professionalism, and surgical skill. Since the beginning of the
last century, doctors have been educated using the Halstedian model of surgical training,
which entails learning the skill of surgery through an apprenticeship [2]. Although this
model of surgical education has been successful in the past in producing a qualified
surgical workforce, a multiplicity of circumstances has influenced the need to reevaluate
pedagogical tactics in surgical education [3]. One inefficient aspect of current training
methods is having the trainer sit down with the learner and play back recordings of the
procedures being taught in order to get them up to speed on the necessary techniques.

Simulation is an educational method that allows the learner to operate interactively
in an environment that recreates or replicates a clinical scenario from the real world but
is not identical to “real life” [4]. Perhaps one of the most compelling motivations for the
incorporation of simulation into surgical training is the ethical duty to provide the best care
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possible to patients. Although it is accepted that trainees will eventually learn technical
skills by treating patients, patients should not be subjected to the risk of damage when
other ways of skill acquisition are available. Before trainees treat real patients, simulation
guarantees that they have had some practice. Simulation also enables other methods of skill
acquisition within the limits of work-hour restrictions and limited clinical experience [5].

Laparoscopy, a common type of minimally invasive surgery, is performed through
one or more small incisions using small tubes, miniature video cameras, and surgical
equipment [6]. In the field of laparoscopic surgery, minimally invasive surgical devices
are becoming more prevalent and complex. Doctors must learn how to use modern
technologies efficiently to remain updated within the current medical practice. However, it
is difficult to determine the efficiency of the doctors while using the new devices. There are
no quantitative assessment standards to evaluate users’ performance with the new devices.
Some individualized performance-based methods are utilized in the literature such as the
Objective Structured Assessment of Technical Skills (OSATS) [7], Observational Clinical
Human Reliability Assessment (OCHRA) [8], and hand motion analysis [9,10].

OSATS is a surgical skill assessment method that can be used to quantify a trainee’s
surgical skills. However, in order to get surgeons to rate a trainee’s performance, surgeons
themselves have to observe the trainee’s performance, which is labor expensive [7]. OCHRA
is an evaluation method based on recorded footage of an operation and distinguishes the
surgeons who made the most and the least mistakes [8]. This approach assesses the
total skills of advanced laparoscopic surgery, considering the amount of tissue handling
procedures, instrument misuse, and consequential mistakes, and does not directly analyze
the patterns of hand movement of the individuals to assess the operation itself with greater
precision. Using Machine Learning algorithms (Logistic Regression & Support Vector
Machines) to group surgeons with various levels of experience has yielded an extremely
low accuracy [11–13]. Furthermore, when classifying surgeons using Machine Learning
techniques, you lack the pedigree to notice subgroups that have evolved between subjects
within the same classification group.

Hence, we believe that there is still a lack of a sophisticated and robust model that
could assess individuals’ skill levels by utilizing a portable simulation trainer and opti-
mize the training schedules based on the performance of the subjects. Graph theory is
the study of graphs and mathematical structures that model the relationships between
objects. It is widely used to find the communities or clusters, optimal paths, and group
correlations in many application domains [14]. Recent advances in network models have
the potential to greatly enhance the usefulness of training in simulation settings by enabling
the simulation to assess the trainee’s mastery on their own. To evaluate individuals in
relation to those undergoing the same training, the suggested approach applied the idea
of comparative population-based analysis [14]. Such context-rich evaluation permits us
to evaluate not only the students themselves but also the training sessions. To determine
which participants perform similarly to one another and which ones perform distinctively,
we use the comparative analysis approach using the network model, which forms a graph
using the correlation between the subjects based on their muscle movements. In this net-
work model, the nodes represent the subjects, and the edges represent the similarity score
which is determined using the correlation coefficient. This approach has been successfully
applied to other application domains and was shown to have high degrees of accuracy
and robustness [15]. In our study, this method uses the muscle features associated with
different levels of trainees and differentiates experts from novices. We believe that these
types of network models could be useful in creating an automatic and objective method
for assessing individual performance at a cohort or population level, which will provide a
more comprehensive and inclusive outlook on the change of performances.

When undertaking surgical training that needs more physical and mental stability,
trainees appear to exhibit high levels of stress and uncertainty. Obtaining mental workload
levels during task performance is a difficult procedure. The workload level experienced by
a trainee can affect their performance in any task [16]. This effect can be caused by either
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excessive or reduced mental workload. Thus, estimating workload levels can help isolate
sources that affect performance. In the current study, we use the NASA Task Load Index
(NASA-TLX), which is a subjective, multidimensional evaluation method where workloads
received scores to determine the effectiveness or other aspects of the performance of a task,
device, or team to study the factors that impact the performance of the medical trainees [17].

By utilizing this method of comparing the progress of participants to one another in
an objective manner, an instructor could theoretically identify trainees who require more
training than is typically provided, as well as trainees who are mastering the skills quicker
than expected. These insights can then be used to create personalized training schedules,
where additional guidance is offered for a particular skill for a particular group depending
on the performance of each and his/her proficiency level for each task relative to the rest
of their class. In the sections that follow, we present the activities involved in acquiring
data, setting up an experiment, pre-processing the data using feature selection, and finally,
developing a network model.

2. Materials and Methods
2.1. Subjects

Using a virtual training system developed by a local Medical Center [18], twenty
participants (8 female and 12 male) were recruited from a variety of disciplines (2 medical
fellows, 8 medical students, and 10 non-medical students). However, due to challenges
with data collection, participants 19 and 20 were excluded from the analysis, as the data on
their performances was incomplete. Of the eighteen participants included in the analysis,
nine were from a medical background (medical student or fellow) and nine were from a
non-medical background (students in kinesiology, physical therapy, nursing, or radiology).
All of the subjects were recruited from the university campus, and none of them had any
prior experience with the research training simulator or any recent upper arm injuries that
would exclude them from using the simulator.

2.2. Tasks

All participants completed a set of basic simulation training tasks (peg transfer, needle
passing, and wire loop), and for this report to demonstrate the use of the network model,
the needle passing (NP) task was selected as shown in Figure 1. NP task involves a plate
with 6 holes in it. Using two virtual laparoscopic instruments, the participant must guide a
needle through the hole to the other side of the plate. They must then guide the needle into
the next hole and pass it through again. The task is complete when the needle has been
guided through all of the holes.
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Figure 1. Needle passing task.

2.3. Experiment Setup

All participants were asked to engage in the experimental protocol during a 4-week
period. This protocol included one pretraining test, three training sessions, and one post-
training test. All participants performed the complete set of basic training tasks in all three
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sessions. To get better precision in each session, each task is repeated five times by all
participants. Data on participants’ performance was collected in three sessions: an initial
baseline session, a session one week after baseline, and a session four weeks after baseline.
Upon finishing the task, each participant is asked to give feedback on their physical and
mental overload levels based on the NASA TLX scores.

2.4. Data Collection

The study was conducted in accordance with the Declaration of Helsinki and approved
by the Institutional Review Board of the University of Nebraska Medical Center (IRB #
103-12-EX) on 11 January 2017, for studies involving humans. Muscle activities were
collected as they performed the tasks using surface electromyography (EMG) Trigno
Wireless System [19]. Eight EMG sensors were placed on four different muscles of both
upper extremities (Biceps Brachii, Triceps Brachii, Extensor Digitorum and Flexor Carpi
Radialis). Biceps Brachii was used to bend/flex the elbow and move the forearm close
to the body. Triceps Brachii was used to extend the elbow and move the forearm away
from the body. Extensor Digitorum was used to extend the wrist whereas Flexor Carpi
Radialis was used to bend/flex the wrist. Raw EMG signals were recorded with a sampling
rate of 2000 Hz using EMG works Acquisition software [19] and were processed with a
band-pass filter of 20–300 Hz and smoothed by a root-mean-square (RMS) technique with
a 150-ms moving window to compute the EMG data. To reduce the inter-subject variation,
the maximal voluntary contraction (MVC) was obtained from each muscle to normalize
EMG signals. All EMG data were presented as the percentage of MVC. Kinematic data
such as time, speed, and distance were collected as participants completed each task. In
addition, after each task, we surveyed the participants to assess their workloads in terms of
mental demand, physical demand, temporal demand, performance, effort, and frustration.
The scores of NASA-TLX range from 0 to 10, with 10 being the higher subjective workload.

2.5. Feature Selection

We have collected normalized EMG signal data from eight muscles [right extensor
digitorum (RED), right biceps (RBC), right flexor carpi radialis (RFCR), right triceps (RTRI),
left extensor digitorum (LED), left biceps (LBC), left flexor carpi radialis (LFCR), and left
triceps (LTRI)] of 18 subjects over three sessions of work on the NP task to construct network
models. To achieve better results, a feature selection method was included to determine the
key features affecting a subject’s performance.

Stepwise Regression

The term “stepwise regression” refers to a method of iteratively building a regression
model in which the independent variables used in the final model are selected at each
stage [20]. Each cycle entails either adding or eliminating a potential explanatory variable
and then conducting a statistical significance test. Starting with a set of independent
variables, the stepwise regression model known as “backward elimination” removes one
feature at a time to see if the eliminated variable is statistically significant [20]. In our
project, we use the backward elimination method in the stepwise regression model to select
the best set of Muscles that impact the Kinematics (time, speed, and distance) of a subject
while performing the NP task. The results of stepwise regression are shown in Table 1.

We can observe that among eight muscles, RBC & RFCR are the only muscles that
impact the performance of a subject in the NP task. We will build the network models in
the next step using the variables (RBC & RFCR for NP task) that have a significant impact
on the performance of the subjects.
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Table 1. Stepwise Regression results showing the subset of variables that impact the needle passing
task.

Coefficients Estimate St. Error 1 t Value 2 Pr (>|t|) 3

Intercept −134.924 6.3131 −21.37 <2 × 10−16 ***
RBC −0.32507 0.1357 −2.396 0.0168 *

RFCR 0.25268 0.1084 +2.330 0.0200 *
1 St. Error: standard error of the regression. 2 t value: estimate/st. error. Measures how many standard errors the
coefficient is away from 0. 3 Pr(>|t|): probability of obtaining the t value with significance, significant. Codes: 0
“***”, 0.01 “*”.

2.6. Network Model Creation

The most important part of the analysis is building the network of correlations which
is a central component of the proposed comparative population-based approach. Each
participant is a vertex (node) in the correlation network graph, and if there is a relationship
between any pair of vertices, then an edge connects them. The basis of the correlation
graph is the idea that comparing two people’s electromyographic (EMG) data might show
how similar they are to one another. A strong correlation exists between two subjects’
EMG features when they are identical. Conversely, if two people have different EMG
characteristics, we call them “weakly correlated” or “distant.” In this study, we measured
the degree of correlation using Pearson’s pairwise correlation coefficient (ρ). Pearson’s
pair-wise correlation coefficient is a measure of the linear dependence of two data points.
Correlation coefficients can take on values between 0 and 1, with 0 indicating no meaningful
relationship and 1 indicating an extremely strong one. The flowchart of all the steps
involved in network model creation is shown in Figure 2 below.
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All the features chosen during the feature selection phase are used to calculate the
Pearson pair-wise correlation coefficient for each pair of participants. In this process, we
generate a Correlation Matrix (CM) that contains the values of the correlation coefficients
between each possible pairs of subjects. Thus, an 18 × 18 CM is produced, where a value at
CM [i, j] indicates the Pearson correlation coefficient value between Subjects i and j. Subjects
i and j are related to one another if the value at CM [i, j] is close to 1, and are not related to
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one another if the value at CM [i, j] is close to 0. For example, CM [7,11] has a 0.2 correlation
coefficient, indicating a weak association between Subjects 7 and 11, while CM [7,18] has
a 0.95 correlation coefficient, indicating a significant relationship between subjects 7 and
18, as shown in Figure 3 in the next section. A ρ value of 0.5 or higher is statistically
significant. A correlation criterion “k” is picked to get the groups that are similar enough
to be separated. We select a number for “k” that allows us to classify subjects according
to their degree of connectivity, with those with close ties together clustered together and
those with weaker ties being kept apart. By selecting “k” and solving the corresponding
Equation (1), a significance matrix (SM) can be created.

SM (i, j) =
{

1, if (ρ(Pi, Pj)) ≥ k
0, For other Cases

(1)
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model in Session 3. Participants who had a medical background are represented by yellow nodes,
while participants with a non-medical background are represented by gray nodes. The network
formed in Session 3 is divided into two clusters, one with higher concentration of non-medical
students (Group A) and other with higher concentration of medical students (Group B).

If SM [i, j] is 1, then the difference in ρ values between i and j is greater than k, and if it
is 0, then the difference is smaller than k. In this case, if the correlation value at CM [i, j] is
greater than the set threshold (90%), then the resulting SM [i, j] will consist of 1 or 0. The
acquired SM is now equivalent to an adjacency matrix, which will represent the 18-node
correlation network graph. If SM [i, j] is 1, then any two Subjects i (I ≤ 18) and j (j = 18) are
linked together in the network.

3. Results

From the data collected, two graphs were created representing participants’ overall
similarity in performing the needle passing task. The network models for the NP task
across two sessions are shown in Figure 3a,b.
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3.1. Networks Formed in the NP Task

The network formed in Session 1 is quite different from the network formed in Session
3. We can observe that one big cluster in Session 1 has changed to two different clusters in
session 3. The two clusters of the network after week 4 are reflecting two groups that have
progressed differently after practice. In addition, we can observe that Subjects 7 & 18 are
isolated from the only cluster formed in Session 1, but they are connected to each other. The
network formed in Session 3 is divided into two clusters, one with higher concentration of
non-medical students (Group A) and other with higher concentration of medical students
(Group B). There are no isolated nodes in the network formed in Session 3.

3.2. Validation of Networks Formed in NP Task

We are validating the Networks constructed in the preceding part by showing the raw
distribution of the normalized EMG values used to construct the network. In Figure 4a,b,
we can observe the distribution of raw EMG values for participants 7, 18, and the rest of
the group performing the NP task in Session 1. As discussed in the Feature Selection, we
have only used the EMG values of RBC & RFCR muscles, as they are the only ones that
showed an impact on the performance of the subjects. We can see that the distribution of
EMG values in Subjects 7 and 18 is comparable but considerably different when compared
to the rest of the subjects in the study. As a result, we may say that the networks established
in Session 1 for the NP task indicate the true patterns.
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Figure 4. Box plot to see the distribution of raw EMG values for NP task in Session 1: (a) distribution
of RBC muscle values of NP task in Session 1 (b) distribution of RFCR muscle values NP task in
Session 1.

In Figure 3b, we can observe that Subjects 14, 16, and 17 are medical students with
muscle patterns similar to Group A, while Subject 8 is a non-medical student with muscle
patterns similar to Group B students. Figure 5a,b demonstrates that the distribution of RBC
and RFCR muscle values for Group A is quite comparable to Subjects 14,16,17 and Group B
to Subject 8. As a result, we can say that the networks established in Session 3 for the NP
task indicate the true patterns.

3.3. Enrichment Analysis

The enrichment analysis explains the reasons behind the establishment of groups
using parameters that were not used to construct the network. We discovered that the
subject’s performance can be affected by mental overload levels in our study. As a result,
we obtained the NASA TLX scores of the subjects immediately after they completed the
exercise. NASA TLX scores comprise the subjects’ mental demand (MD), physical demand
(PD), temporal demand (TD), performance, effort, and frustration while executing the
activity. NASA TLX scores range from 0 to 10, with 10 being the highest subjective effort.
Let us look at how the NASA TLX scores differ between groups.



Surgeries 2023, 4 53

Surgeries 2023, 4, FOR PEER REVIEW  8 
 

 

   
(a)  (b) 

Figure 4. Box plot to see the distribution of raw EMG values for NP task in Session 1: (a) distribution 

of RBC muscle values of NP task in Session 1 (b) distribution of RFCR muscle values NP task in 

Session 1. 

In Figure 3b, we can observe that Subjects 14, 16, and 17 are medical students with 

muscle patterns similar to Group A, while Subject 8 is a non‐medical student with muscle 

patterns similar  to Group B students. Figure 5a,b demonstrates  that  the distribution of 

RBC and RFCR muscle values for Group A is quite comparable to Subjects 14,16,17 and 

Group B to Subject 8. As a result, we can say that the networks established in Session 3 for 

the NP task indicate the true patterns. 

   
(a)  (b) 

Figure 5. Box plot to see the distribution of raw EMG values for NP task in Session 3: (a) distribution 

of RBC muscle values of NP task in Session 3 (b) distribution of RFCR muscle values NP task in 

Session 3. 

3.3. Enrichment Analysis 

The enrichment analysis explains the reasons behind the establishment of groups us‐

ing parameters that were not used to construct the network. We discovered that the sub‐

ject’s performance can be affected by mental overload levels in our study. As a result, we 

obtained the NASA TLX scores of the subjects immediately after they completed the ex‐

ercise. NASA TLX scores comprise the subjects’ mental demand (MD), physical demand 

(PD), temporal demand (TD), performance, effort, and frustration while executing the ac‐

tivity. NASA TLX scores range from 0 to 10, with 10 being the highest subjective effort. 

Let us look at how the NASA TLX scores differ between groups. 

3.3.1. NASA‐TLX Scores for NP Task in Session 1 

Figure 3a shows that  in Session 1, Subjects 7 and 18 are apart  from  the rest of  the 

group but connected to one another. Subject 7’s temporal demand and frustration levels 

are modest, but they are comparable to other NASA TLX scores, as seen in Table 2. Subject 

18 matches the other subjects’ scores except that it has the lowest temporal demand and 

Figure 5. Box plot to see the distribution of raw EMG values for NP task in Session 3: (a) distribution
of RBC muscle values of NP task in Session 3 (b) distribution of RFCR muscle values NP task in
Session 3.

3.3.1. NASA-TLX Scores for NP Task in Session 1

Figure 3a shows that in Session 1, Subjects 7 and 18 are apart from the rest of the
group but connected to one another. Subject 7’s temporal demand and frustration levels are
modest, but they are comparable to other NASA TLX scores, as seen in Table 2. Subject 18
matches the other subjects’ scores except that it has the lowest temporal demand and lowest
physical demand compared to the other participants. Overall, the NASA TLX results from
Session 1 indicate that people exhibit varying levels of frustration and temporal demand
when doing the NP task for the first time, despite having comparable muscular motions.

Table 2. Nasa-TLX scores for NP task in Session 1.

Subjects MD 1 PD 1 TD 1 Performance Effort Frustration

7 5.5 5.5 3.0 4.5 6.0 2.0
18 3.5 2.0 1.5 6.5 6.0 5.0

Range of remaining Subjects (2.0–7.5) (2.5–9.0) (2.0–10) (1.0–8.0) (3.0–9.5) (0.5–8.5)
1 MD: Mental Demand, PD: Physical Demand, TD: Temporal Demand.

3.3.2. NASA-TLX Scores for NP Task in Session 3

Figure 3b shows that in Session 3, medical subjects 14,16, and 17 have similar muscle
movement patterns among each other and as well as to other non-medical subjects in the
study. On the other hand, Subject 8, a non-medical student has similar muscle movement
patterns to the other medical subjects in the study. Compared to the group average of
NASA TLX scores in Table 3, Subject 8 has higher levels of physical demand (6), mental
demand (6), temporal demand (6.5), effort (6) and frustration (6). Subject 14 has a higher
level of performance score (8.5) and a lower frustration (0.5). Subject 16 has a greater level
of performance (7) and effort (6) but is on par with the remaining NASA TLX scores. Subject
17 has a lower level of performance (2) and a higher level of frustration (7.5) and effort (7)
while performing NP tasks in Session 3.

Session 3 NASA TLX data shows that while participants’ muscular motions in the
NP task are similar, their levels of frustration, effort, performance, and temporal demand
vary. The overall picture shows that subjects with extremely high or low scores on at least
two of NASA TLX’s six dimensions tend to be clustered apart from those who share their
background in both sessions.
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Table 3. Nasa-TLX scores for NP Task in Session 3.

Subjects MD 1 PD 1 TD 1 Performance Effort Frustration

8 6.0 6.0 6.5 3.0 6.0 6.0
Range of remaining subjects in Group B (1.5–5.0) (0.5–5.5) (1.5–5.5) (0.5–6.0) (2.5–5.5) (1.5–6.0)

14 2.2 2.5 0.5 8.5 2.5 0.5
16 3.5 4.0 5.5 7.0 6.0 3.0
17 4.5 4.0 6.0 2.0 7.0 7.5

Range of remaining subjects in Group A (1.0–5.0) (2.0–5.5) (2.0–7.5) (1.5–5.5) (1.5–6.0) (1.5–6.0)
1 MD: mental demand. PD: physical demand. TD: temporal demand.

4. Discussion

A major goal of this project was to demonstrate that network models and popula-
tion analysis can be employed successfully in creating an automatic and objective tool
for assessing the performance of participants in using new training systems or medical
devices. Our results show that the network model implemented over time, for three ses-
sions, is successful in showing the progression of the participants as it has been shown
to be successful in other application domains [21–23]. In the research on laparoscopic
skills assessment, individual performance-based evaluation is widely used [24–27]. Most
studies usually evaluate differences between the groups in terms of measurement average
values (e.g., mean of the kinematic measures) without assessing the change in individual
performance [25]. Applying network models to assess skills performance not only can
detect individual differences across time, but also associate the individual changes with
the whole group as well as assessing different training schedules as done by Rastegari
et al. [23].

The work published by Rastegari et al. [23], is the closet study to the present work
in which they applied network analysis using features extracted from graspers’ motions
while performing simulated surgical skill. Their results showed that students’ progress in
performing a task is quicker if the training sessions are held more closely compared to when
the training sessions are far apart in time. They also reported that using a network model
takes the objective assessment of individuals’ surgical proficiency level one step further.
Our results are consistent with these findings, indicating that using network models on the
data collected over training sessions can reveal a network pattern in which participants with
similar level of proficiency are connected. Moreover, in this paper we applied enrichment
analysis and used NASA TLX measures to explain the network models. This is the first time
that enrichment analysis and NASSA TLX measures are used in assessing how simulated
surgical tasks are performed and if there is any correlation between factors such as mental
demand or perceived frustration of the participants on how they perform these tasks. The
network model generated using the data collected from the first session of training is a
homogeneous network in which most of the subjects are connected, except two of them.
Having a homogeneous network in the beginning makes sense because the expertise level
of everyone in terms of performing the needle passing task is similar. This is consistent
with the result of another study using network models for evaluating the expertise level of
participants over time learning how to perform simulated peg transfer and color matching
tasks [23]. However, network models generated for a cube transfer task in the same
study [23] does not follow the same pattern and we do not see a homogeneous network in
the beginning. This could be due to the nature of the tasks, how easy or difficult they are,
and what sorts of skills they need to be completed.

The network model generated using the third session’s data shows two clusters of
participants; one that mainly consists of medical students and one that mainly includes
non-medical students. This indicates that the way and the speed in which these two groups
developed the required skills to perform the needle passing task is different.

The analysis of NASA TLX data shows that each of the NASA TLX factors weakly
correlate with muscular motions. However, it seems that a combination of NASA TLX
factors could be considered for evaluation of the network model and muscular motion
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patterns. Looking at the first session’s network model and two individuals that are isolated
from the rest but connected to each other, we can see that both are medical students, both
with relatively low temporal demand, one with low level of frustration and the other one
with the lowest physical demand. The reason why these two participants are connected
in the network model and have similar muscular motions could be because they perceive
the task similarly in terms of NASA TLX overall rating. Coming up with one measure as
NASA TLX overall rating using its factors and then applying it to get more insight from
the network model could be of future research.

In the study by Lefor et al. [28], robot-assisted surgery kinematic data was used to
develop predictive models of skill required for three tasks (suturing, knot-tying, and needle
passing). They analyzed the relationships of self-defined skill level with global rating scale
scores and kinematic data. In our study we only used kinematic measures to find out
the muscles’ features that correlate the most with them, but the correlation of kinematic
features with each factor of NASA TLX was not studied. This could have guided us in
picking certain NASA TLX factor/factors for gaining more insight about the network
models. Additionally, the idea of comparing self-defined skills with expert-defined and
rated skills using network models could be of our future studies.

Such network-based assessment provides a multi-dimensional view for clinical ed-
ucation program directors in medical school to monitor the learning progression of each
medical student or fellow, compare a certain trainee within a cohort, and examine between-
trainees performance in a training cohort across time. As a result, program directors can
develop an optimal and individualized learning environment for trainees to efficiently
acquire surgical skills performance. This relative assessment approach also allows trainers
and trainees to monitor their progress over the duration of the training period. One of
the most benefits of the proposed approach is the ability to customize the training for
each participant as well as for each skill set, particularly when it comes to deciding on a
follow-up training session for the trainees.

Limitations

The main limitation of this study is the relatively small sample size. Additional studies
with larger sample sizes are needed to generalize the reported findings. In addition, the
temporal analysis could benefit from having additional data points for each participant.
We hope that the dissemination of the results of our study will encourage more groups
conducting training workshops to make their data available for similar analysis. The
availability of additional training datasets would make it possible to conduct the population
analysis using network models at multiple levels and obtain valuable insights into how to
provide objective assessments of education and training exercises in various domains.

5. Conclusions

Analysis of the population’s progression could be useful in an environment where
trainees must be efficiently trained to use simulation training. While this study specifically
examined how a network model could be used to analyze the performance of diverse
groups of students or trainees in basic tasks essential to laparoscopic surgery, this analytical
approach can certainly be used in a wide range of training applications such as in the areas
of robotic surgery, ophthalmology, obstetrics, and gynecology. The next step of this study
will focus on incorporating additional data to further test the proposed approach and assess
its impact on analyzing different types of training data. This step will utilize data from
medical training partners as well as data collected from publicly available data.
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