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Abstract: In this perspective article, we show that a morphospace, based on information-theoretic
measures, can be a useful construct for comparing biological agents with artificial intelligence (AI)
systems. The axes of this space label three kinds of complexity: (i) autonomic, (ii) computational
and (iii) social complexity. On this space, we map biological agents such as bacteria, bees, C. elegans,
primates and humans; as well as AI technologies such as deep neural networks, multi-agent bots,
social robots, Siri and Watson. A complexity-based conceptualization provides a useful framework
for identifying defining features and classes of conscious and intelligent systems. Starting with
cognitive and clinical metrics of consciousness that assess awareness and wakefulness, we ask how
AI and synthetically engineered life-forms would measure on homologous metrics. We argue that
awareness and wakefulness stem from computational and autonomic complexity. Furthermore,
tapping insights from cognitive robotics, we examine the functional role of consciousness in the
context of evolutionary games. This points to a third kind of complexity for describing consciousness,
namely, social complexity. Based on these metrics, our morphospace suggests the possibility of
additional types of consciousness other than biological; namely, synthetic, group-based and simulated.
This space provides a common conceptual framework for comparing traits and highlighting design
principles of minds and machines.

Keywords: consciousness; brain networks; artificial intelligence; synthetic biology; cognitive robotics;
complex systems

1. Introduction

How do we build a taxonomy of consciousness based on evidence from clinical
neuroscience, synthetic biology, artificial intelligence (AI) and cognitive robotics? Here, we
examine current biologically motivated metrics of consciousness. In view of these metrics,
we show how contemporary AI and synthetic systems measure on homologous scales.
In what follows, we refer to a phenomenological description of consciousness. In other
words, that which can be described in epistemically objective terms, even though aspects of
the problem of consciousness may require an ontologically subjective description. Drawing
from what is known about the phenomenology of consciousness in biological systems, we
build a homologous argument for artificial, collective and simulated systems. For example,
in clinical diagnosis of disorders of consciousness, two widely used scales are patient
awareness and wakefulness (also referred to as arousal), both of which can be assessed
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using neurophysiological recordings [1,2]. We extrapolate these metrics to construct a
morphospace of consciousness.

The origin of the concept of a morphospace comes from comparative anatomy and
paleobiology, where quantitative measures or principal components from clustering meth-
ods allow classification in a metric-like space. However, it can also involve a qualitative
relation-based approach, as the one we will follow here. A related concept of the so-called
theoretical morphospace, has also been defined in formal terms, as an N-dimensional geomet-
ric hyperspace produced by systematically varying the parameter values associated to a
given (usually geometric) set of traits [3]. More recently, morphospaces have been used
in the study of complex systems, linguistics and biology [4–6]. Hence, a morphospace
serves as a useful tool to gain insights on design principles and evolutionary constraints,
when looking across a large class of systems (or species) that display complex variations in
traits. For the problem of consciousness, we construct this morphospace based on three
kinds of complexity. These considerations suggest an embodiment-based taxonomy of
consciousness [7].

For practical reasons, many experimental paradigms testing consciousness are de-
signed for humans or higher-order primates (see [8–10] for an overview of the field). In this
article, we argue that metrics commonly associated to biological consciousness can be appro-
priately extrapolated for conceptualizing behaviors of synthetic and artificial intelligence
systems. This is insightful not only for understanding parallels between biological and
potential synthetic consciousness, but more importantly for unearthing design principles
necessary for building biomimetic technology that could potentially acquire consciousness.
As evidenced by several historical precedents, bio-inspired design thinking has been at
the core of some of the greatest scientific breakthroughs. For instance, early attempts at
aviation in the 19th century were inspired by studying flight mechanics in birds and insects
(the term aviation itself is derived from the Latin “avis” for “bird”). In fact, biological
flight mechanisms are so sophisticated that their biomimetic implementations are still
being actively studied within the field of soft robotics [11]. However, it so happened that
rather than coming around to mimicking nature exactly, humanity learnt the basic laws
of aerodynamics based on observations from nature and looked for other embodiments
of those principles. This in fact, led to the invention of the modern aircraft by the Wright
brothers in 1903, leading to a completely new way to build machines that fly than those
that exactly mimic nature.

Metrics of consciousness are also the right tools to quantitatively study how human
and animal intelligence differs from state-of-the-art machine intelligence. Once again, it
is instructive to take a historical perspective on human intelligence as laid out by one
of the founders of AI, Allen Newell. In 1994, in his seminal work, “Unified Theories of
Cognition” [12]. Newell proposed the following thirteen criteria necessary for building
human-level cognitive architectures:

• Behave flexibly as a function of the environment
• Exhibit adaptive (rational, goal-oriented) behavior
• Operate in real-time
• Operate in a rich, complex, detailed environment (that is, perceive an immense amount

of changing detail, use vast amounts of knowledge, and control a motor system of
many degrees of freedom)

• Use symbols and abstractions
• Use language, both natural and artificial
• Learn from the environment and from experience
• Acquire capabilities through development
• Operate autonomously, but within a social community
• Be self-aware and have a sense of self
• Be realizable as a neural system
• Be constructible by an embryological growth process
• Arise through evolution
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Current AI architectures still do not meet all these criteria. On the other hand, although
Newell did not discuss consciousness back then, the above criteria are equally relevant
to the problem of consciousness. Given current advances in our understanding of neural
and cognitive mechanisms of consciousness [9], one may well argue that the problem
of consciousness supersedes and even subsumes the problem of biological intelligence.
While Newell’s criteria list signatures that are the consequence of human intelligence,
for consciousness it is more useful to have a list of functional criteria that underlie the
process of consciousness. Below, we will discuss such functional criteria.

Why are these considerations relevant for understanding the direction of today’s AI
and the development of new technologies? The field of AI, and particularly neural net-
works, began as a modest attempt to understand cognition and brain function. It dates back
to the 1930s with the first model of neural networks by Nicolas Rashevsky [13], followed by
the seminal work of Walter Pitts and Warren McCulloch in 1943 [14] and Frank Rosenblatt’s
perceptron in 1958 [15]. Eventually, with the use of analytic methods from statistical physics,
those simple models paved the way to understanding associative memory and other emer-
gent cognitive phenomena [16]. Even though artificial neural networks did not quite solve
the problem of how the brain works, they led to the discovery of brain-inspired computing
technologies such as deep learning systems and powerful technologies for computational
intelligence such as IBM’s Watson. These machines process massive volumes of data and
are built for intensive computational tasks that the brain may not even be designed for. Yet,
in spite of these computational successes, contemporary AI is still challenged in many tasks
that human and animal brains seem to perform effortlessly. For that reason, the next frontier
in AI and machine intelligence will be closely tied to our advances in understanding the
governing principles of consciousness and its various embodiments. This potentially has
a bearing on the development of next-generation biomimetic and sentient technologies.
Recent work in this direction can be found in [7,17–19].

2. Biological Consciousness: Insights from Clinical Neuroscience

We begin by reviewing clinical scales used for assessing consciousness in patients
with disorders of consciousness. In subsequent sections, we will generalize the complexity
measures pertinent to these biological scales and discuss how synthetic systems can be
measured on these.

2.1. Clinical Consciousness and its Disorders

In patients with disorders of consciousness ranging from coma, locked-in syndrome
to those in vegetative states, levels of consciousness are assessed through a battery of
behavioral tests as well as physiological recordings. Cognitive awareness in patients is
assessed by testing cognitive functions using behavioral and neurophysiological (fMRI or
EEG) protocols [1]. Assessments of wakefulness/arousal in patients are based on metabolic
markers (in cases where reporting is not possible) such as glucose uptake in the brain,
captured using PET scans. More generally, in [1,2], awareness and wakefulness have been
proposed as a two-dimensional operational definition of clinical consciousness, shown
in Figure 1 below. While awareness concerns higher and lower-order cognitive functions
enabling complex behavior; wakefulness results from biochemical homeostatic mechanisms
regulating survival drives and is clinically measured in terms of glucose metabolism in the
brain. In fact, in all known organic life forms, biochemical arousal is a necessary precursor
supporting the hardware necessary for cognition. In turn, evolution has shaped brains in
such a way so as to support the organism’s basic survival (using wakefulness/arousal) as
well as higher-order drives (using awareness) associated to cooperation and competition in
a multi-agent world [20]. Awareness and wakefulness thus taken together, form the clinical
markers of consciousness.
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Figure 1. Clinical scales of consciousness. A clustering of disorders of consciousness in humans
represented on scales of awareness and wakefulness. Adapted from [2]. In neurophysiological
recordings, signatures of awareness have been found in cortico-thalamic activity, whereas wakeful-
ness corresponds to activity in the brainstem and associated systems [1,2]. Abbreviated legends:
VS/UWS (vegetative state/unresponsive wakefulness state) [21]; MCS(+/−) (minimally conscious
state plus/minus), EMCS (emergence from minimally conscious state) [22].

The clinical definition (or criterion) of consciousness enables a practical classification
of closely associated states and disorders of consciousness into clusters on a bivariate scale
with awareness and wakefulness on orthogonal axes. Under healthy conditions, these
two levels are almost linearly correlated, as in conscious wakefulness (high arousal and
high awareness) or in deep sleep (low arousal and low awareness). However, in patho-
logical states, wakefulness without awareness can be observed in the vegetative state [1],
while transiently reduced awareness is observed following seizures [23]. Patients in the
minimally conscious state show intermittent and limited non-reflexive and purposeful
behavior [24,25], whereas patients with hemispatial neglect display reduced awareness of
stimuli contralateral to the side where brain damage has occurred [26].

The question is, how can one extrapolate wakefulness and awareness for non-biological
systems in order to obtain homologous scales of consciousness that can be applied to ar-
tificial systems? As noted above, wakefulness results from autonomous homeostatic
mechanisms necessary for the self-preservation of an organism’s germ line in a given
environment. In other words, it is tied to self-sustaining life processes necessary for basic
survival, whereas awareness refers to functionalities pertaining to estimating or predicting
states of the world and optimizing the agent’s own actions with respect to those states.
If biological consciousness as we know it, is supported via a synergistic interaction between
metabolic and cognitive processes, then how should this insight be extended to conceive
a functional notion of consciousness in synthetic systems? One way of doing so might
be generalizing from scales of wakefulness to those of generic autonomic processes; like-
wise, generalizing from scales of awareness to those of generic computational processes.
As such, most autonomic processes are usually considered to be running below the radar
of consciousness (or unconscious in certain usages). On the other hand, computational
processes provide for mechanistic descriptions for many neural and cognitive functions
associated to consciousness. However, as evident from the examples above (including
those of disorders of consciousness), biological forms of consciousness seem to require both
types of processes. For that reason, we will consider both, autonomic and computational
processes when formulating homologous scales of consciousness in synthetic systems.

2.2. Candidate Measures in Brain and Behavioral Studies

Given the above discussion of clinical scales of consciousness (based on wakefulness
and awareness), in Section 5, we will attempt to identify the homologues of these biological
scales for artificial systems. As a precursor to that discussion, in this subsection we
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will review prominent candidate measures of autonomy and computation in brain and
behavioral sciences.

Measures of autonomy and computation, including information processing performed
by cognitive agents, have been discussed in various psychometric [27] and neurophysiolog-
ical studies [28]. However, generalizing these measures to artificial systems and comparing
those values to biological systems is certainly not so straightforward (due to completely
different processing substrates as well as differing comparative benchmarks). Nonetheless,
biological/cognitive measures of autonomy and computation suggest a first step in this
direction. For example, [27] introduced an “Index of Autonomous Functioning”, tested on
healthy human subjects (via psychometric questionnaires). This index aims to assess psy-
chological ownership, interest-taking and susceptibility to external controls. This is similar
to the concept of volition (or agency), introduced in the cognitive neurosciences [29,30],
which seeks to determine the neural correlates of self-regulation, referring to actions regu-
lated by internal drives rather than exclusively driven by external contingencies.

Psychometric attempts to quantify awareness have been discussed in [31] in the context
of a unified psychological theory of self-functioning. In consciousness research, a measure
of awareness that has gained a lot of traction is integrated information [32] (often denoted
as Φ). This is an information-theoretic complexity measure. It was first introduced as a
measure that might be useful for realistic neural data. Based on mutual information, Φ has
been touted as a correlate of consciousness [32]. Integrated information is loosely defined as
the quantity of information generated by a network as a whole, due to its causal dynamical
interactions, over and above the information generated independently by the disjoint sum
of its parts. As a complexity measure, Φ seeks to operationalize the intuition that complexity
arises from simultaneous integration and differentiation of the network’s structure and
dynamics, thus enabling the emergence of the system’s collective states. The interplay
between integration and differentiation generates information that is highly diversified
yet integrated, creating patterns of high complexity. Following initial proposals [32–34],
several approaches have been developed to compute integrated information [35–50].

Notably the measure discussed in [38] will be relevant for our discussion as it develops
methods for large-scale network computations of integrated information, applied to the
human brain’s connectome network. The human connectome network consists of structural
connectivity of white matter fiber tracts in the cerebral cortex, extracted using diffusion
spectrum imaging and tractography [51,52] (see [53–58] for visualization of neurodynamical
data and model dynamics on this network). Compared to a randomly re-wired network, it
was seen that the particular topology of the human brain generates greater information
complexity for all allowed couplings associated to the network’s attractor states, as well as
its non-stationary dynamical states [38].

Φ as described above, is not specific to biological systems and can also be applied to
artificial dynamical systems. In Section 5 we will exploit the applicability of Φ and use it as
a generic measure of computational complexity for artificial systems.

3. Synthetic Consciousness? Insights from Synthetic Biology and Artificial Intelligence

Let us now look at the evidence in synthetic biology and AI to see how these systems
qualitatively compare to biological systems. Oftentimes, our methods for probing biological
systems can be limited due to natural design constraints. On the other hand, the potential
for exploring synthetic counterparts provides a unique opportunity to probe the nature
of life and intelligence processes. It has been suggested that artificial simulations, in silico
implementations and engineered alternatives are in fact, much needed for understanding
the origins of evolutionary dynamics, including cognitive transitions [59]. What can be
learned in relation to consciousness from artificial agents?

Within the context of non-cognitive phenomena, synthetic biology provides a valuable
example of the classes of relevant questions that can be answered. Examples are the
possibility of creating living systems from non-living chemistry, generating multicellular
assemblies, creating synthetic organoids or even artificial immune systems. Here advanced
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genetic engineering techniques along with a systems view of biology has been able to move
beyond standard design principles provided by evolution. Examples of this are new genetic
codes with extra genetic letters in the alphabet that have been designed and successfully
inherited [60], synthetic protocells with replicative potential [61] and even whole synthetic
chromosomes that have defined a novel bacterium species [62]. Ongoing research has
also revealed the potential for creating cognitive networks of interacting microorganisms
capable of displaying collective intelligence [63].

Of course, the criteria for consciousness, as stated in sections above, are not even
remotely satisfied by any of these synthetic systems. They either have some limited form of
intelligence or life but not yet both. Nevertheless, there have been some noteworthy recent
developments in these areas. In this context, AlphaGo’s 2016 feat in beating the top human
Go champion was remarkable for a couple of reasons. Unlike Chess, possible combinations
in Go run into the millions and when played using a timer, any brute-force algorithm
trying to scan the entire search space would simply run out of computational capacity or
time. Hence, an efficient pattern recognition algorithm was crucial to the development
of AlphaGo, where using deep reinforcement learning, the system was trained on a large
number of games [64]. Most interestingly, it played counterintuitive moves that shocked
the best human players and the sole game of the series that Lee Sedol, the human champion,
won out of five, was only possible after he himself adopted a brilliant counterintuitive
strategy. Subsequent AI systems such as AlphaGo Zero, AlphaZero and MuZero have
gone even further. While AlphaGo learnt the game by playing thousands of matches with
amateur and professional players, AlphaGo Zero learnt by playing against itself over and
over again, starting from completely random play, while reinforcing successful sequence
of plays through the weights of its deep neural networks [64,65]. This aspect of playing
itself is akin to training via social interactions as will be described below. Then we have
AlphaZero, which is a single system that taught itself from scratch how to master the games
of chess, shogi and Go [66]. And MuZero takes these ideas one step further. It matches the
performance of AlphaZero on Go, chess and shogi, while also mastering a range of visually
complex Atari games, all without being told the rules of any game [67].

Thus, AI such as AlphaGo and its successors do demonstrate a rather broad form of
domain intelligence (that is within a game or across games). In contrast, most forms of
biological problem-solving capabilities span across domains (related to ecologically-realistic
constraints). Moreover, one would agree that AlphaGo is not equipped with any form of
wakefulness mechanisms coupled to its computational capabilities [68].

The same can be said for other state-of-the-art AI systems including deep convolutional
neural networks, or deep recurrent networks. Both these latter architectures were inspired
from Hubel and Weisel’s groundbreaking work on the coding properties of the visual
system, which led to the realization of a hierarchical processing architecture [69]. Today
deep convolutional networks are widely used for image classification [70] and recurrent
neural networks for speech recognition [71], among countless other applications. Recent
developments have advanced this by virtue of larger data sets and more computational
power. For example, there have been attempts to build biologically-plausible models of
learning in the visual cortex using recurrent neural networks [72]. In summary, deep
architectures have made remarkable progress in domain-specific AI.

However, asking whether AI can be conscious in exactly the same way that a hu-
man is, is similar to asking whether a submarine can swim. Even if it did so, it might
well do so differently. If the goal of a system is to learn and solve complex tasks close
to human performance or better, current machines are already doing that in specific do-
mains [73–79]. However, these machines are still far from learning and solving problems
in generic domains and more importantly, in ways that would couple its problem-solving
capabilities to its autonomous survival drives. On the other end of things, neither have
any of the synthetic life systems discussed above been used to build architectures with
complex computing or cognitive capabilities. Nevertheless, this does suggest that a future
synthesis between artificial life forms and AI could be evaluated using homologous scales
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of consciousness to the ones currently applicable to biological beings. This plausible form
of synthetic consciousness, if based on a life form with different survival drives and mecha-
nisms, along with non-human forms of intelligence or computation, would also likely lead
to non-human behavioral outcomes.

In summary, these phenomenological considerations suggest that autonomic and com-
putational complexity provide the necessary abstractions to wakefulness and awareness,
which can be applied to a wide spectrum of synthetic agents in terms of their underlying
mechanistic processes. In the next section, we will make the case for a third kind of com-
plexity, necessary to build the morphospace of consciousness, namely, social complexity.

4. The Function of Consciousness: Insights from Evolutionary Game Theory and
Cognitive Robotics

Reviewing insights from evolution and cognitive robotics, this section looks at the
functional role of consciousness [20,80–83]. The biological substrates of consciousness pre-
sumably evolved through natural selection driven by social co-operation and competition.
This can be framed in the context of evolutionary game-theory. In [80,84] it was suggested
that rather than being thought of as a problem, consciousness could rather be seen as a
solution to the problem of autonomous goal-oriented action, when faced with a world filled
with other agents. This was formulated as the H5W problem.

4.1. The H5W Problem

What does an agent operating in a social world need to do in order to optimize
its fitness? It needs to perceive the world, to act, and through time, to understand the
consequences of its actions so it can start to reason about its goals and how to achieve
them. This requires building a representation of the world grounded on the agent’s own
sensorimotor history and use that to reason and act. The agent will witness a scene of
agents, including itself, and objects interacting in various manners, times and places. This
comprises the six fundamental problems that the agent is faced with, together referred
to as the H5W problem [80,84]: In order to act in the physical world an agent needs to
determine a behavioral procedure to achieve a goal state; that is, it has to answer the HOW
of action. In turn this requires the agent to: (a) Define the motivation for action in terms of
its needs, drives and goals, that is, the WHY of action; (b) Determine knowledge of objects
it needs to act upon and their affordances in the world, pertaining to the above goals, that
is, the WHAT of action; (c) Determine the location of these objects, the spatial configuration
of the task domain and the location of the self, that is, the WHERE of action; (d) Determine
the sequencing and timing of action relative to dynamics of the world and self, that is,
the WHEN of action; and (e) Estimate hidden mental states of other agents when action
requires cooperation or competition, that is, the WHO of action.

While the first four of the above questions suffice for generating simple goal-oriented
behaviors, the last of the Ws (the WHO) is of particular significance as it involves inten-
tionality, in the sense of estimating the future course of action of other agents based on
their social behaviors and psychological states. However, because mental states of other
agents that are predictive of their actions are hidden, these can at best be inferred from
incomplete sensory data such as location, posture, vocalization, social salience, etc. As a
result the acting agent faces the challenge to univocally assess, in a deluge of sensory data
those exteroceptive and interoceptive states that are relevant to ongoing and future action
and therefore has to deal with the ensuing credit assignment problem in order to optimize
its own actions. Furthermore, this results in a reciprocity of behavioral dynamics, where
the agent is now acting on a social and dynamical world that is in turn acting upon itself. It
was proposed in [84] that consciousness is associated to the ability of an agent to maintain
a transient and autonomous memory of the virtualized agent-environment interaction, that
captures the hidden states of the external world, in particular, the intentional states of other
agents and the norms that they implicitly convey through their actions.
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4.2. Evolutionary Game Theory

From the above, we surmise that the function of consciousness is to enable an acting
agent to solve its H5W problem while being engaged in social cooperation and competition
with other agents in its evironment, who are trying to solve their own H5W problem
in a world with limited resources [80,81]. This brings our discussion to the setting of
evolutionary game theory.

First, consider a scenario with only a small number of other agents. Then any given
agent might use statistical learning approaches to learn and classify behaviors of the few
others agents in that game. For example, multiple robots interacting to learn naming
conventions of perceptual aspects of the world [85]. At the least, this requires embodi-
ment so that agents can interpret perceptual cues presented by other agents (for example,
by pointing at objects) [86]. Another example is the emergence of signaling languages in
sender-receiver games based on replicator dynamics described by David Lewis in 1969
in his seminal work, Convention [87,88]. These are all examples where social norms are
acquired in the process of iterative multi-agent interactions, and can thus be investigated in
the setting of multi-agent game theory using evolutionary algorithms.

Note however, that most game-theoretic strategies involving statistical learning are
computationally feasible only when a limited number of players are involved. They
are often sub-optimal in the event of an explosion in the number of players (see [89]
for an overview of these limits). Likewise, in a social environment comprising a large
number of agents trying to solve the H5W problem, machine learning strategies for reward
and punishment valuations may soon become computationally unfeasible for an agent’s
processing capacities and memory storage. Therefore, for a large population to sustain itself
in an evolutionary game involving complex forms of cooperation and competition would
require strategies other than merely data-driven statistical learning. One such strategy
involves modeling and inferring intentional states of the self and that of other agents.
Emotion-driven flight or fight responses depend on such intentional inferences and so do
higher-order psychological drives. The mechanisms of consciousness enable such strategies,
whereas, contemporary AI systems such as AlphaGo do not possess such capabilities.

The importance of the role that sociality plays in surviving a multi-agent world
suggests a possible function of consciousness: it is a mechanism that enables agents
to learn and acquire complex social game-theoretic strategies based on emotional cues.
From an evolutionary perspective, social behaviors result from generations of cooperation–
competition games, with natural selection filtering out unfavorable strategies. Presumably,
winning strategies were eventually encoded as anatomical mechanisms, such as emotional
responses. The complexity of these behaviors depends on the ability of an agent to make
complex social inferences.

While evolutionary game theory itself does not hinge on consciousness (and there
are plenty of examples of emergent behaviors acquired in iterative multi-agent games
involving reciprocating agents driven by cultural cues, where the presence or need for
consciousness does not arise [90]), nor is consciousness the end-product of all evolutionary
games; the key point we wish to emphasize here is that the mechanisms of biological
consciousness, which allow organisms to have highly flexible autonomous action and
cognitive processing capabilities, provide a competitive advantage to agents operating in
complex social environments. Based on fossil records, the evolutionary and genetic origins
of consciousness have been traced back to the Cambrian Period over 500 million years
ago [91], when early vertebrates with somatotopically-organized neural representations
acquired sensory capabilities (with vision being postulated as the first conscious sense [91]).
These early markers of sensory consciousness enabled agents to navigate complex social
scenarios (without having to rely exclusively on extensive computational resources).

All of this discussion suggests a third dimension in the morphospace of consciousness
(see Figures 2 and 3 below), namely, social complexity, which serves as a measure of an
agent’s social intelligence.
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Autonomous Computational Social

Figure 2. Schematic representation of autonomic, computational and social complexity. Each
complexity measure is illustrated as a whole (the large circles) constituted of its parts (the inner
circles), their interactions (the arrows) and the emerging properties resulting from these interactions
(the inner space within the large circles, in light grey). Autonomic complexity (left) refers to the
collective phenomena resulting from the interactions between typical components of reactive behavior
such as sensors (illustrated by whiskers in the top inner circle), actuators (illustrated by a muscle in
the bottom-left inner circle) and low-level sensorimotor coupling (illustrated by a spinal cord in the
bottom-right inner circle). Computational complexity is associated to higher-level cognitive processes
such as visual perception (top inner circle), planning (bottom-left inner circle) or decision making
(bottom-right inner circle). Social complexity is associated to interactions between individuals of a
population, such as a queen ant (top inner circle), a worker ant (bottom-left inner circle) and a soldier
ant (bottom-right inner circle).

5. Three Kinds of Complexity to Characterize Consciousness

In this section we discuss the construction of the aforementioned morphospace as well
as candidate complexity measures to parametrize it.

5.1. Why Distinguish Between Complexity?

The phenomenology of consciousness draws upon a variety of empirical disciplines
including cognitive and clinical neuroscience, synthetic biology, artificial intelligence, evolu-
tionary biology and robotics. The theoretical challenge is then to find a formal explanatory
framework that provides an abstraction of the phenomenology across substrates. One at-
tempt at doing so has been through complexity measures. However, based on the evidence
discussed above, a universal complexity measure may be insufficient to parse through the
types of process and functional specifications supporting consciousness. This point has
also been mentioned in [92], albeit from purely clinical considerations. Hence, in this work,
we make the case for at least three kinds of complexity, based on process types. These
are autonomic complexity, computational complexity and social complexity (see Figure 2
and Table 1 below). Table 1 lists the respective building blocks, systems-level realizations,
and associated emergent phenomena for each of these complexity kinds.

A common type of complexity measure, that is often discussed in neuroscientific and
consciousness-related paradigms, is a whole-versus-parts measure. Here, a system’s com-
plexity C is defined by how much an integrated whole outdoes the sum of its independent
parts in terms of an information processing metric. Generally, C = Isubstrate −∑{parts} Ipart,
where I refers to an appropriate type of information. For instance, when I is the con-
ditional entropy, C yields the measure Φ of integrated information theory and its many
derivatives. Besides whole-versus-parts measures, there are a host of others which capture
different aspects of information processing in complex systems. Below, we discuss the
relevance of each of these measures with respect to the three kinds of complexity proposed
in this article and how they may be collectively used for labelling states of consciousness.

Autonomic complexity CAutonomic measures the complexity of processes enabling the
system to act autonomously in its environment. In eukaryotes, autonomic action refers to
arousal mechanisms resulting from coordinated nervous system activity; in prokaryotes,
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this refers to reactive behaviors such as chemotaxis, stress responses to temperature, toxins,
mechanical damage, etc., all of these resulting from coordinated cellular signaling processes;
in robotics, autonomic systems refer to homeostatic mechanisms driving reactive behaviors.
Hence, autonomic complexity quantifies information processing by the collective dynamics
of the systems driving autonomous behaviors.

Table 1. Presented in the table below is a classification of three kinds of complexity relevant for
charting a taxonomy of consciousness, namely, autonomic, computational and social complexity.
This classification is based on the respective building blocks or substrates of each complexity kind,
the systems-level realizations of these substrates, and their associated emergent phenomena.

CAutonomic CComputational CSocial

Building Blocks Sensors, Actuators Neurons, Transistors Individual Agents

Systems-Level Prokaryotes, Autonomic Cognitive Systems, Population of Agents,
Realizations Nervous System, Bots Brains, Microprocessors Social Organizations

Emergent Self-Regulated Problem Solving Signaling Conventions,
Phenomena Real-Time Behavior Capabilities Language, Social Norms,

Arts, Science, Culture

On the other hand, computational complexity CComputational refers to the ability of
an agent to integrate information over space and time across computational or cognitive
tasks. In higher biological forms, this complexity is typically associated to neural processes;
in artificial computational systems, it refers to microprocessor signaling. The distinction
between CComputational and CAutonomic is specified by the tasks that they refer to, rather than
substrates. CAutonomic refers to autonomous control loops, whereas CComputational refers to
computational and inferential mechanisms.

In whole-versus-parts terminology, social complexity CSocial would refer to information
generated by a population as a whole, during the course of social interactions, over the
information generated additively by individual agents of that population. Unlike CAutonomic
or CComputational , CSocial is not assigned to an individual, but rather to a specific population
(its own species) within which the individual has been interacting. As discussed earlier,
by way of social games, these interactions are believed to have contributed to the emergence
of the agent’s consciousness on an evolutionary time-scale. Note that CSocial as defined here,
does not refer to group consciousness (we will discuss that in following sections), rather it
quantifies the environmental complexity due to a population of agents (this in turn, applies
selection pressures on individual agents).

5.2. Candidate Complexity Measures

This section takes an overview on candidate complexity measures for quantifying
each of the three complexity kinds discussed above. Table 2 below provides a summary of
these measures.

Let us begin with autonomic complexity. Besides integrated information, which may
also be customized to the components of the autonomic system, other measures that have
proven more practical for capturing the complexity of autonomous processes in systems
are morphological computation [93,94], synergistic information [95,96] and the index of
autonomous functioning [27,97,98]. The first of these is particularly useful for systems
with high morphological dexterity such as in biology and soft robotics. It captures the
extent to which a system’s morphological properties are used to delegate and distribute its
informational processing capabilities towards the goal of autonomous action. Synergistic
information refers to information provided by the simultaneous knowledge of multiple
variables, that is not available from any of the individual variables by themselves. In [96],
this was used to show how an agent’s cue sensors jointly carry cue information with the
agent’s interneurons (in fact, in this example, this measure quantifies the coupling between
systems referring to CAutonomic and CComputational). The index of autonomous functioning
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has extensively been used in human behavioral studies to quantify regulation of action
by the self. All these studies, particularly [98] emphasize the necessity of autonomy (and
hence, autonomic complexity) for systems realizing goal-oriented behaviors.

Now let us turn our attention to measures capturing systems and processes referring
to computational complexity CComputational . These have been studied extensively in neu-
roscience and AI. In the context of consciousness research, the most prominent among
these is the measure of integrated information, Φ. However, there have been several can-
didates for this measure and its many approximations. The earliest version of IIT was
based on a measure called neural density [32] (see also [33,34]). Subsequently, version
2 of the theory, IIT v2, defined Φ in terms of a Kullback-Leibler divergence, which was
used as a relative entropy measure to quantify the information generated by the whole
over the sum of its parts [43,99]. The current version of the theory, dubbed IIT 3.0, uses
the Earth Mover’s Distance (EMD) [46]. Despite its conceptual appeal, the algorithm
proposed by IIT has been computationally intractable for realistic biological or artificial
systems. This is where either related or approximate integrated information measures
have been useful. Examples of related measures include stochastic interaction (also called
total information flow) [49], stochastic integrated information [35,38,44] and geometric
measures of integrated information [42]. Examples of various empirical approximations to
Φ include the ‘Perturbational Complexity Index’ based on Lempel-Ziv compression [100]
and causal connectivity based on Granger causality [101] (see [40] for a review of theoretical
and empirical consciousness measures).

Besides integrated information, other information-theoretic measures that have been
used in cognitive and computational neuroscience are mutual information and specific
information, both of which have been used in neural coding paradigms [96]. From partial
information decomposition methods, one has measures of redundant information, unique
information and synergistic information [95,96]. These measures are relevant in situations
where multiple sources potentially carry information about a measurement outcome or cue
variable. Synergistic information refers to the property of multiple random variables coop-
erating to predict, or reduce the uncertainty of, a single target variable. In general cases,
these are quite difficult to compute. In the case of two and three source variables, a formu-
lation of these measures can be found in [95,96]. Yet another class of information-theoretic
measures applicable to computational systems is that which describes the dynamics of
information processing. Examples of these information-theoretic measures are transfer
entropy, information gain and information transfer (discussed in [96]). The last two of these
are of practical relevance. They have been tested on an artificial cognitive agent with a
brain, body and environment [96]. This study shows that information-theoretic analysis
reveals important insights on how task-relevant information flows through the embodied
agent and is combined into a categorization decision. Furthermore, a dynamical systems
analysis reveals the key geometrical and temporal interrelationships underlying the above
categorization task performed by the agent.

Finally, let us discuss social complexity. There are two broad measures that have
been discussed in the literature for this kind of complexity. One is, not surprisingly,
integrated information, discussed in [102]. The other is the collective intelligence factor,
discussed in [103,104], which refers to how well groups perform on a diverse set of group
problem-solving tasks. The primary influences on a group’s collective intelligence were
identified to as the following: (a) the group composition (e.g., the members’ skills, diversity,
and intelligence) and (b) the group interaction (e.g., structures, processes, and norms of the
group). Other related works that discuss collective intelligence include [105–108]. All of
these cited measures seek to capture social complexity of groups with respect to complex
tasks involving the group as a whole. Below we shall see that this kind of complexity
is important for the morphospace of consciousness where the groups refer to species of
animals or kinds of technologies.
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Table 2. A summary of complexity measures that have been tested on various autonomic, computa-
tional and social systems.

Complexity Kind Complexity Measures

CAutonomic Index of Autonomous Functioning
Synergistic Information

Morphological Computation

CComputational Integrated Information (v1, v2, v3, geometric)
Stochastic Information/Total Information Flow

Mutual & Specific Information
Redundant & Unique Information

Synergistic Information
Transfer Entropy & Information Transfer

CSocial Collective Intelligence Factor
Integrated Information v2

5.3. Constructing the Morphospace

Using these definitions for the three complexity kinds, we construct the morphospace
of consciousness in Figure 3. While this space is only a first attempt at constructing a
common framework for biological and artificial agents, the precise coordinates of various
systems within this morphospace might change due to the rapid pace of new and develop-
ing technologies, but we expect the relative locations of each example to remain the same.
We start with the human brain, which is taken as the benchmark in this space, defining
a limit case located at one upper corner with highest scores on all the three axes. The
human brain can perform computational tasks across a variety of domains such as making
logical inference, planning an optimal path in a complex environment or dealing with
recursive problems and hence leads with respect to computational complexity due to these
cross-domain capabilities. On the social axis, human social interactions have resulted in
the emergence of language, music, art, culture or socio-political systems. Other biological
entities such as non-human primates [109,110] or social insects would score lower on the
social and computational axis than humans. Additionally, other species of vertebrates such
as some types of birds and cephalopods have been shown to exhibit complex behavior and
possess sophisticated nervous systems. These two groups have actually been enormously
useful in the search for animal consciousness [111,112].

Current AI systems such as IBM Watson [113], AlphaGo [64], DQNs [114] and Siri [115]
are powerful computing systems over a narrow set of domains, but in their current form
they do not show general-purpose functionality, that is, the capacity to independently
interact with the world and successfully perform multiple tasks in different domains [116],
or as proposed by Allen Newell, the capability with which anything can become a task [117].
These AI systems are still clustered high on the computational axis, but lower than humans
(due to their domain-specificity). Also they score low on autonomic and social complexity.
Synthetic forms of life such as protocells show some levels of autonomous functioning,
reacting to chemicals and stressors, but currently show minimal capabilities for computation
or inference and minimal interactions with other agents [118].

Interest in the field of multi-agent robotics has led to the rise of machines where
emergent collective behaviors, e.g., coordination (KiloBot [119], Multi-Agent Deep Net-
work [120]) or shared semantic conventions (Talking Heads [86]) self-organize out of
multi-agent interactions. These systems are designed to display simple forms of naviga-
tion, object-detection, etc., while interacting with other agents performing the same task.
However, they show lower social and autonomic complexity than most biological agents.
Being embodied systems, they currently score lower on computational complexity than
heavy-powered AI systems such as Watson or AlphaGo.
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Figure 3. Morphospace of consciousness. Autonomous, computational and social complexity
constitute the three axes of the consciousness morphospace. Human consciousness is used as a
reference in one corner of the space. Current AI implementations cluster together in the high
computation, low autonomy and low social complexity regime, while multi-agent cognitive robotics
cluster around low computational, but moderate autonomous and social complexities. Abbreviated
legends: MADeep (multi-agent deep reinforcement system) [120]; TalkH (talking heads) [86]; DQN
(deep Q-learning) [114]; DAC-X (distributed adaptive control) [121], CoBot (cockroach robot) [122],
Kilobot (swarm robot) [119], Subsumption (mobile robot architecture) [123].

An important use of the morphospace within evolutionary biology is related to the
actual occupation of this space by different solutions. Notice that in the morphospace in
Figure 3, a large part of the space is left vacant. A similar observation was made in [5] in
the context of the morphospace of synthetic organs and organoids. In both cases, such an
observation points towards new classes of artificial life and intelligence. Most present-day
artificial systems (both, synthetic biology and AI), depicted in the morphospace, remain
in the lower part of the cube. This is indicative of the currently minimal role played by
social context in the development of these systems. On the other hand, in natural systems,
social interactions have played an important role in shaping the minds of the organisms
(those close to the left wall in Figure 3, involving high autonomy and sociality). Complex
organisms equipped with brains and exhibiting cooperative behavior have evolved to live
together with others. This is because social synergies increase the resilience of the group to
many environmental and predatory challenges.

5.4. Relation to General Intelligence

How do our discussions on consciousness relate to theories of general intelligence? The
idea that consciousness resides in select regions of a morphospace, that is constructed from
function-specific types of complexity, has implications for any theory of general intelligence.
The dimensions of our morphospace implicitly entail (or rather subsume) distinct types
of intelligence. In cognitive psychology, manifestations of human intelligence have been
discussed in the context of Howard Gardner’s theory of multiple intelligences [124]. Here
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we want to understand how the dimensions of our morphospace help group different types
of intelligences. This works as follows (We thank Carlos E. Perez for bringing this point to
our attention). A discussion about how Gardner’s intelligence types may be realized in
machines using deep learning can be found in his recent book [125]). The autonomic axis
reflects adaptive intelligence found in biological organisms. This encapsulates Gardner’s
kinesthetic, musical and spatial intelligence (some of these also require computational
complexity). The computational axis refers to recognition, planning and decision-making
capabilities that we find in computers as well as in humans. These are tasks involving
logical deduction or inference. Hence, this complexity refers to those types of intelligences
that require computational capabilities, such as logical reasoning, linguistic intelligence, etc.
The third axis of the morphospace, social complexity, relates to social capabilities required
for interacting with other agents. This refers to interpersonal and introspective intelligence,
in Gardner’s terms. These types of intelligences are also associated to the evolution of
language, social conventions and culture. Then there are also other types of intelligences
described in Gardner’s theory such as naturalistic and pedagogical intelligence, which
involve a composition of social and computational complexity.

As described above, the defining dimensions of our morphospace account for all of
the multiple types of intelligence proposed by Gardner. Taking these intelligence (or their
associated complexity) types into account, while building artificially intelligent machines,
elucidates the wide spectrum of problems that future AI could potentially address. In the
light of both, Gardner’s theory and Newell’s criteria, our morphospace, in fact, suggests that
consciousness as we know it, subsumes a specific form of integrated multiple intelligence.
Note that one ought to be careful to not claim that consciousness ’is’ general intelligence.
Following William James, in cognitive psychology, consciousness is seen as a process that
enables action for survival purposes [126]. We claim that this process, enabling action,
constitutes mechanisms and phenomenology that realize an integration of specific types
of intelligences and their associated complexities in such a way so as to meet survival
goals. On the other hand, intelligence by itself can be thought of as any task-specific
capability (or a process realizing that capability), that is not necessarily tied to existential
pressures [127]. However, currently we have yet to fully understand how several of the
intelligence types mentioned above, especially the non-computational ones [128], can be
functionally realized in machines, let alone understanding the mechanisms that lead to
integration of types. Nonetheless, given the myriad of recent advances in human-machine
interactions, a complexity-based conceptualization of consciousness provides a practical
and quantitative framework for studying ways in which interactions with machines might
enhance our joint complexities and competences.

The outlook of these complexity kinds with respect to general intelligence is that
systems and processes referring to computational intelligence will bring about new cures
in medicine, new scientific understanding, and more efficient and less wasteful processes.
Machines with autonomous intelligence capabilities will bring about greater conveniences
such as self-driving automobiles, robotic care-takers in the workplace and in the home,
and intuitive user interfaces. The third kind, systems with social intelligence, will be
beneficial with regards to advertising to the masses, promoting global causes and managing
social unrest.

5.5. Other Embodiments of Consciousness in the Morphospace

What other forms of consciousness does our morphospace suggest? Because there
is no precise definition or consensus to benchmark consciousness even in biological life
forms, the best one can do at the moment is to pursue a comparative functional approach
as has been followed here. The three complexity axes on the morphospace encapsulate
processes necessary to support functions that consciousness serves. Moreover, from the
earlier discussion on multiple intelligence types being distributed across the morphospace,
one may ask what forms of systems might reside in distinct regions of this space. Higher
biological life-forms, those which are generally believed to possess some degree conscious-
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ness (in terms of reportable behaviors), tend to cluster closer to one corner of the cube in
Figure 3. The other corners are suggestive of agents or systems with different embodiments
and functionalities. Below we identify these embodiments and the form of consciousness
or intelligence that they might potentially refer to (again, purely on functional grounds).

To illustrate these embodiments, it is instructive to represent the morphospace as a
Boolean graph, where vertices are labelled by their corresponding cartesian co-ordinates in
the cubic morphospace and edges refer to one of the three complexity axes along the cube
(Figure 4). The (1, 1, 1) vertex corresponds to human consciousness. The (1, 0, 0) vertex and
(0, 1, 0) vertex correspond to present day synthetic biological systems and AI technologies,
respectively. Neither of them are considered conscious. Examples of current technologies
near the (0, 0, 1) vertex would be highly interactive reactive systems. Even these are not
what one would consider conscious. The (1, 1, 0) vertex corresponds to an agent that is
highly autonomous and computational, but lacking social drives. Evolutionarily, such
agents would be disfavored. Technologically, they offer somewhat similar utilities as
agents on either the (1, 0, 0) or (0, 1, 0) vertex. For our purposes, the interesting vertices
are (1, 0, 1) and (0, 1, 1). This is where future intelligent technologies or potentially new
forms of conscious systems may be found. Below we identify three system embodiments,
corresponding to potential forms of consciousness, that occupy these vertices.
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(0,1,0)

(0,1,1)

(1,0,0)
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Figure 4. A Boolean Graphical Representation of the Morphospace.

5.5.1. Synthetic Consciousness

In Section 3 above, we alluded to two kinds of synthetic systems: synthetic biological
systems and AI technologies. The question is, what augmentations would these systems
need in order to be able to solve the H5W problem (of Section 4), with respect to their
conspecifics? When that criterion is met, these systems could be considered to possess basic
forms of consciousness on functional grounds. For certain, this would require them to have
sufficient social complexity. Systems located near the (1, 0, 1) vertex would show behaviors
similar to some biological life-forms. Systems located near the (0, 1, 1) vertex would be
where current efforts in AGI (artificial general intelligence) are trying to get. Of course,
at present, we do not know of any objective tests to ascertain if these systems on the (1, 0, 1)
and (0, 1, 1) vertices may have first-person experiences (this criticism holds also for many
biological species that one would otherwise argue as possessing phenomenological traits of
consciousness). The comparison of these to a form of consciousness is made on behavioral
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grounds. Alternatively, one might as well refer to these systems as a form of synthetic
general intelligence.

5.5.2. Group Consciousness

In a sense, biological consciousness itself can be thought of as a collective phenomenon
where individual cells making up an organism are themselves not considered to be con-
scious (with respect to the three complexity measures defining the morphospace), even
though the organism as a whole is. But what happens when the system itself is not local-
ized? We postulate group consciousness as an extension of the above idea to composite or
distributed systems that display levels of computational, autonomic and social complexity
that are sufficient to answer the H5W problem. Note that, as per this specification of group
consciousness, the group itself is treated as one entity. Hence, social complexity now refers
to the interactions of this group with other similar groups.

This bears some resemblance to the notion of collective intelligence, which is a widely
studied phenomenon in complex systems ranging from ant colonies [107], to a swarm of
robots (the Kilobot in [119] and the CoRobot in [122]), to social networks [129]. However,
these are usually not thought of as conscious systems. As a whole, they are not considered
as autonomic forms with survival drives that compete or cooperate with other similar
agents. However, these distinctions begin to get blurred during transient epochs when
collective survival comes under threat. For example, when a bee colony comes under attack
by hornets, collectively it demonstrates a prototypical survival drive, similar to lower-order
organisms. Other examples of such behaviors have also been studied in the context of
group interactions in humans, where social sensitivity, cooperation and diversity have
been shown to correlate with the collective intelligence of the group [103]. Following this,
the notion of collective intentionality has been discussed in [108]. More recently, [102] have
applied integrated information Φ to group interactions, suggesting a new kind of group
consciousness. While it is known that Φ in adapting agents increases with fitness [130],
one can ask a similar question for an entire group: what processes (evolutionary games,
learning, etc.) enable an increase in all three complexity types for an entire group such that
it can solve the H5W problem while cooperating or competing with other groups?

For these reasons, this type of system, if conscious, in terms of being able to solve the
H5W problem with respect to its conspecifics (other groups), will cluster around the (1, 0, 1)
vertex of the morphospace.

5.5.3. Simulated Consciousness

Our discussions on complexity kinds also suggest yet another potential type of con-
sciousness, namely, simulated consciousness, wherein embodied virtual agents in a sim-
ulated reality interact with other virtual agents, while satisfying the complexity bounds
that enable them to answer the H5W questions within the simulation. In this case, con-
sciousness is strictly confined to the simulated environment. The agents cannot perceive
or communicate with entities outside of the simulation but satisfy all the criteria we have
discussed above within the simulation. How these embodied virtual agents could acquire
consciousness is not yet known. Presumably by evolving across multiple generations of
agents that adapt and learn to optimize fitness conditions. It is also not clear what precise
traits or mechanisms would have to be coded into the simulation (as initializations or
priors) in order to enable consciousness to evolve. The point here is simply that the same
criteria that we have identified with consciousness in biological agents in the physical
world, could in principle be admitted by agents within a simulation and confined to their
interactions within that simulation. This has parallels to the notion of “Machine Conscious-
ness” discussed in [131], which proposes that neural processes leading to consciousness
might be realizable as a machine simulation (it even goes further to claim that computer
systems might someday be able to emulate consciousness). At the moment, these are all
open challenges in AI and consciousness research. Examples of studies discussing embod-
ied virtual agents can be found in the work of [132,133]. More recent implementations
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of embodied virtual agents have been using gaming technology, such as the Minecraft
platform [134,135].

Simulations, if conscious in the functional sense—that is, being able to solve the H5W
problem with respect to its conspecifics (other groups) within the simulation—will cluster
around the (0, 1, 1) vertex of the morphospace.

6. Discussion

The objective of this article was to bring together diverse ideas from neuroscience, AI,
synthetic biology, evolutionary theory and robotics in order to identify measures and mech-
anisms that relate to the problem of consciousness. Synergies between these disciplines
have started to converge towards a systematic science of consciousness. Following through
with these developments, we have attempted to generalize the applicability of current clini-
cal scales of consciousness to artificial agents. In particular, starting from clinical measures
of consciousness that calibrate awareness and wakefulness in patients, we have investi-
gated how contemporary AI agents and synthetically engineered organisms compare on
homologous measures. An abstraction of processes involving awareness and wakefulness
can be generically associated to forms of computational and/or autonomic complexity.

Furthermore, based on insights from evolutionary game theory, we have discussed the
function that consciousness serves in nature, and argued that the mechanisms of conscious-
ness arose as an evolutionary game-theoretic strategy. This was why we introduced a third
kind of complexity to describe consciousness, namely, social complexity. Social interactions
play a crucial role in driving and regulating adaptive responses through behavioral feedback
in both natural and artificial systems [20]. In [80,84], it has been suggested that complex
social interactions may have evolutionarily served as a trigger for consciousness. For these
reasons, social complexity is crucial for constructing a morphospace of consciousness.

A morphospace is a useful construct to study systems-level properties of complex
systems based on information-theoretic complexity measures. The three kinds of com-
plexity specified here, capture functional characteristics of biological as well as synthetic
complex systems. Using these scales, we have shown how biological organisms includ-
ing bacteria, bees, C. elegans, primates and humans compare to current AI systems such
as deep networks, multi-agent systems, social robots, intelligent assistants such as Siri
and computational systems such as IBM’s Watson. Put together, the above three kinds
complexity help characterize both, biological and artificial agents in a common framework.

Besides consciousness as we know it (in biology), distinct regions in the morphospace
suggest other plausible manifestations of consciousness (based on functional criteria),
namely, synthetic, group and simulated consciousness, each based on a distinct embodi-
ment. However, what is far from clear is whether there exist specific thresholds in the values
of each complexity, that an agent must surpass in order to attain a level of consciousness.
Certainly, from developmental biology we know that both humans (and many higher-order
animals) undergo extensive periods of cognitive and social learning, concurrent to physio-
logical development, from infancy to maturation. These phases of physiological, cognitive
and social training are necessary for the development of autonomic and cognitive abilities
leading to levels of consciousness attained by brains.

Even though we may still be far from understanding most of the engineering principles
required to build conscious machines, a complexity-based comparison between biological
and artificial systems reveals interesting insights. For example, current AI systems using
deep learning tend to cluster along the computational complexity axis of the morphospace,
whereas synthetically engineered life forms group closer along the autonomic complexity
axis. On the other hand, biologically conscious agents are distributed in regions of the
morphospace corresponding to relatively high complexity along all three of the axes (which
suggests necessary, if not sufficient, conditions for biological consciousness). In terms
of Newell’s criteria, mentioned in the introduction, excluding those criteria that refer
exclusively to human-specific traits (language, symbolic reasoning), the remaining ones
are completely satisfiable by any agent located in the high complexity region of all three
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axes of the morphospace. In contrast, current AI or synthetic systems do not check out
on this list. Though in 1994 Newell was not explicitly referring to consciousness, it is
remarkable to note how those ideas to formulate theories of cognition and intelligence
seem to reconcile with current ideas of consciousness. One could summarize the crux of
Newell’s criteria as referring to agents displaying autonomous adaptive behaviors with
cross-domain problem-solving capabilities, which can be decomposed to the kinds of
complexity discussed here.

This perspective on consciousness opens several possibilities for future work. For in-
stance, it may be interesting to further refine the morphospace described here. In particular,
computational complexity itself may involve several sub-types involving learning, adap-
tation, acquiring sensorimotor representations, etc, all of which are relevant for cognitive
robotics. Another question arising out of our discussion is whether the emergence of
consciousness in a multi-agent social environment can be identified as a Nash equilibrium
of a cooperation–competition game. In a game where, say, two species attain consciousness,
the population pay-offs in cooperation and competition between them are likely to reach
one of possible equilibria due to the recursive nature of social inferences, when an agent
attempts to infer the inferences of other agent about its own intentions. Multi-agent models
might offer a viable approach to test ideas such as these.

Furthermore, a conceptualization of a morphospace of consciousness offers an interest-
ing comparative perspective on leading candidate theories of consciousness. The main con-
tenders in this case are: (i) Integrated Information Theory (IIT) [10], (ii) Global Workspace
Theory (GWT) [8], (iii) Predictive Processing Theories (PPT) [136], (iv) Higher Order Theo-
ries (HOT) [137], and (v) Orchestrated Objective Reduction Theory (Orch-OR) [138]. These
are also the major theoretical paradigms of consciousness currently being pitted against
each other as part of the ‘Structured Adversarial Collaboration Projects’ initiative being
supported by the Templeton World Charity Foundation. The ultimate goal (and test) of
any theory of consciousness is to satisfactorily explain the so-called “hard problem of con-
sciousness”, that is, ‘How and why first-person phenomenal experiences arise, and what
the nature of qualia may be?’ [139]. Our intention, in this work, is not to directly address
any of those fundamental questions or propose a new theory of consciousness. Rather,
we have investigated a taxonomy of conscious and artificial agents based on complexity,
with the objective of highlighting design constraints shared across minds and machines.
These constraints may help fine-tune future iterations of the above candidate proposals
of consciousness.

Given the morphospace of consciousness, we can now ask the following questoin:
What kinds of complexity could the above-mentioned candidate theories of consciousness
admit? The first four of these, for the most part, associate consciousness to computational
complexity. IIT, with its information-theoretic Φ measure, says little about autonomic or so-
cial processes, deferring consciousness to computational mechanisms with high integrated
information. GWT explicitly proposes conscious access as a kind of computation [140].
PPT operates within the framework of predictive coding and Bayesian inference. These
models are grounded in sensorimotor interactions and, to a certain extent, also involve
autonomic processes (see also [141]). In HOT, phenomenal consciousness is postulated to be
a higher-order representation of perceptual or quasi-perceptual contents, that is, thoughts
or perceptions about first-order mental states. Orch-OR, on the other hand, explicitly
states that consciousness is a non-computational process (one that cannot be algorith-
mically implemented in the Turing sense). This theory associates “proto-consciousness”
to an orchestrated objective reduction of the quantum wave-function in dendritic micro-
tubuli. Of the three complexity kinds, processes postulated in Orch-OR belong to the
autonomic class and manifest at the molecular level. It is also worth mentioning other
non-computational processes such as stochastic dynamics [142] or non-Darwinian mecha-
nisms [143,144] that are relevant to molecular and systems-level biology, but have not yet
been fully exploited in the context of consciousness research.
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What we have learned here, from synthesizing cross-disciplinary evidence about
brains and machines into a unified framework of a morphospace, is that consciousness
(at least, as we know it in biology) is supported by processes of at least three kinds of
complexity and that these processes are closely intertwined with each other. This poses a
challenge for all of the above candidate theories of consciousness. Hence, these theories
have to explain how the core mechanisms they associate to consciousness unfold into all
three complexity kinds. In the absence of that, the proposed theories at best only describe
individuated components of the full problem and may require building bridges with each
other in order to reconcile how autonomic, computational and social processes collectively
give rise to consciousness.

Related to the above point, the morphospace, described here, suggests a taxonomy of
complexity into three kinds of systems-level processes. In a sense, these correspond to the
brain (CComputational), body (CAutonomic) and environment (CSocial). While this taxonomy was
derived from functional arguments (the H5W problem), this correspondence to the brain,
body and environment suggests architectural constraints on conscious agents, namely,
that such architectures include computational, embodied, situated and social modalities.
However, this by itself is not surprising; there is extensive work in the cognitive science
literature studying each of these paradigms, some of which also concern the easy problem
versus hard problem dichotomy [139]. The point we emphasize in this work is that a
morphospace forces one to think of these functions and design constraints in a common
framework. It is also a challenge for all existing theories of consciousness to show how
the axioms they propose to address the “hard” problem reconcile with the integration of
the “easy” problems via interactions between the brain, body and environment. This is the
issue that a morphospace of consciousness brings to the forefront.

As a final remark, note that the taxonomy of the three complexity kinds discussed here,
also shows up in current AI architectures where physics and psychology engines provide
priors to hierarchical Bayesian networks used for meta-learning or learning to learn [145].
The physics engine in this case can be identified to processes mostly along the autonomic
axis. The psychology engine largely accounts for social processes. Computational and
reasoning processes are implemented on Bayesian inference engines. Of course, these
engines do not operate mutually exclusively, being closely coupled and co-ordinated with
each other. This observation lends evidence to the claim that a morphospace, as we have
described here, serves as a useful construct for identifying general design principles and
constraints in our theories and architectures of biological as well as artificial intelligence.
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