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Abstract: (1) Background: Neuroimaging differentiation of glioblastoma, primary central nervous
system lymphoma (PCNSL) and solitary brain metastasis (BM) represents a diagnostic and therapeutic
challenge in neurosurgical practice, expanding the burden of care and exposing patients to additional
risks related to further invasive procedures and treatment delays. In addition, atypical cases and
overlapping features have not been entirely addressed by modern diagnostic research. The aim of this
study was to validate a previously designed and internally validated ResNet101 deep learning model
to differentiate glioblastomas, PCNSLs and BMs. (2) Methods: We enrolled 126 patients (glioblastoma:
n = 64; PCNSL: n = 27; BM: n = 35) with preoperative T1Gd-MRI scans and histopathological
confirmation. Each lesion was segmented, and all regions of interest were exported in a DICOM
dataset. A pre-trained ResNet101 deep neural network model implemented in a previous work on
121 patients was externally validated on the current cohort to differentiate glioblastomas, PCNSLs
and BMs on T1Gd-MRI scans. (3) Results: The model achieved optimal classification performance in
distinguishing PCNSLs (AUC: 0.73; 95%CI: 0.62–0.85), glioblastomas (AUC: 0.78; 95%CI: 0.71–0.87)
and moderate to low ability in differentiating BMs (AUC: 0.63; 95%CI: 0.52–0.76). The performance of
expert neuro-radiologists on conventional plus advanced MR imaging, assessed by retrospectively
reviewing the diagnostic reports of the selected cohort of patients, was found superior in accuracy for
BMs (89.69%) and not inferior for PCNSL (82.90%) and glioblastomas (84.09%). (4) Conclusions: We
investigated whether the previously published deep learning model was generalizable to an external
population recruited at a different institution—this validation confirmed the consistency of the model
and laid the groundwork for future clinical applications in brain tumour classification. This artificial
intelligence-based model might represent a valuable educational resource and, if largely replicated
on prospective data, help physicians differentiate glioblastomas, PCNSL and solitary BMs, especially
in settings with limited resources.

Keywords: brain metastases; deep learning; glioblastoma; machine learning; primary central nervous
system lymphoma

1. Introduction

Preoperative classification of brain tumours represents a critical aspect of patient
management. Brain metastases (BMs), glioblastoma and primary central nervous system
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lymphomas (PCNSLs) are among the most frequent intracranial neoplasms in adults (17%,
14.3% and 1.9%, respectively); hence, a correct diagnosis is a crucial point in the therapeutic
path of a large number of patients worldwide [1–3].

In spite of the increased efficiency and popularity of MRI and the availability of
advanced neuroimaging techniques that may assist in differentiating glioblastomas, BMs
and PCNSLs, cases showing atypical features may prove challenging even for expert
clinicians who spend a large proportion of their work time identifying, segmenting and
classifying these lesions [4,5].

As far as the T1-weighted gadolinium-enhanced (T1Gd) images considered in this
study are concerned, glioblastomas appear as iso-hypointense masses with necrotic-cystic
areas and irregular contrast-enhanced margins similar to solitary BMs; however, atypical
glioblastomas may show minimal or absent central necrosis.

PCNSLs, on the contrary, are usually shown on T1Gd images as iso-hypointense
masses with a homogeneous enhancement within the entire lesion boundaries; in atypical
presentations, there is central necrosis that may mimic glioblastomas [6], and the preopera-
tive use of steroids in patients with PCNSLs may entail false negative pathological results,
requiring additional invasive manoeuvres and potential harm and costs [7] to obtain the
correct diagnosis.

In recent years, artificial intelligence (AI)—more specifically, deep learning (DNN)—has
been accounted as an emerging and promising technique in supporting physicians in
decision-making tasks based on MRI images (i.e., computer vision) [8–12].

The aim of this study was to develop a fast and reliable system for brain tumour clas-
sification in an experimental retrospective clinical scenario. In a previous investigation [13],
we designed and internally validated a DNN model, achieving excellent diagnostic perfor-
mance. The purpose of this study was the external validation of the model’s accuracy in
differentiating GBMs, PCNSLs and BMs on T1Gd MRI scans and discussion of its eventual
role in the amelioration of diagnostic and interventional workflows.

2. Methods
2.1. Study Definition

Ethical approval was waived by the two institutions involved, by the local Ethics
Committees in view of the retrospective nature of the study and because all performed
procedures were part of routine care. Informed consent was obtained from all participants
included in the study. All procedures performed in studies involving human participants
were in accordance with the Helsinki declaration.

An internal committee among authors (L.T., G.F., G.A.B., G.C., M.L.) was formed,
and a consensus achieved on the current investigation’s proper design and reporting
guidelines. An extensive review of “Enhancing the quality and transparency of health
research” (EQUATOR) [14] network “https://www.equator-network.org” (accessed on
4 January 2022) contents was performed, and the “Standard for reporting of diagnostic
accuracy study—Artificial Intelligence” (STARD-AI) [15] guidelines were selected and
followed in the study protocol definition. The STARD-AI [15] guidelines were developed
to report AI diagnostic test accuracy studies as an evolution of the previous STARD 2015
version [16], with the addition of a specific focus on designing and reporting evidence
provided through AI-centred interventions. Adherence to STARD-AI recommendations
was reviewed by the senior authors (G.C. and M.L.) throughout the investigation and
during final review.

2.2. Patient Selection

The medical records and preoperative imaging of patients who underwent surgical
tumour resection or biopsy at “Fondazione IRCCS Cà Granda Ospedale Maggiore Policlin-
ico, Milan, Italy” (named Training Site or TrS) between June 2020 and April 2021 and at
“Ospedale San Gerardo di Monza, Monza, Italy” (named Testing Site or TeS) between Jan-
uary 2018 and November 2021 were retrospectively collected. Patient data were included

https://www.equator-network.org
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in the analysis if preoperative T1Gd MR images were available and histological analysis
confirmed the diagnosis of glioblastoma, PCNSL or solitary BMs.

Patients were excluded if:
(1) Preoperative T1Gd MR images were absent or inadequate in quality, according to

the senior neuroradiologists;
(2) They had previously received intracranial intervention (surgical intervention,

gamma knife surgery or radiation therapy);
(3) Multiple enhancing lesions were detected on preoperative MRI;
(4) In glioblastoma cases, histopathological exams included testing for IDH mutations—hence,

only IDH1 and IDH2 wild-type tumours were further considered in the investigation.
One-hundred twenty-one patients operated on at the TrS were selected to provide

image data for the training dataset of our DNN model, as reported in a previous study [13].
A total of 126 patients met the inclusion criteria at the TeS and were selected for

external validation of the aforementioned model.

2.3. MR Acquisition and Image Pre-Processing

The MR image scanning parameters at the TrS are reported elsewhere [13]. Concern-
ing the MRI acquisition protocol at the TeS, all brain MRI studies were performed with
a 1.5 T system (Philips® Ingenia 1.5T CX), including axial T2-weighted imaging, fluid-
attenuated inversion recovery (FLAIR) imaging, diffusion-weighted images (DWI) (a b-
value of 1000 sec/mm2 and a single b-0 acquisition), susceptibility-weighted imaging (SWI),
volumetric contrast-enhanced axial and sagittal T1Gd (Gadovist 1 mmol/mL; 0.1 mmol/kg
body weight) imaging; ADC maps were calculated from isotropic DWI.

All MR images in the digital imaging and communications in medicine (DICOM)
format were input to the Horos DICOM Viewer version 3.3.5, “www.horosproject.org”
(accessed on 4 January 2022), a free, open-source medical imaging viewer and analytic tool.
The lesions’ regions of interest (ROIs) were manually delineated on volumetric axial T1Gd
scans. After segmentation and signal intensity normalization, all ROIs were then centred in
a 224 × 224 pixels black box and exported in PNG file format (Figure 1).

2.4. Convolutional Neural Network Model

A 2D convolutional neural network model (i.e., ResNet-101) with 101 layers consisting
of three-layer residual blocks pre-trained with the TrS dataset was used [13,17–20].

Each ROI was used as input for all three channels expected by the ResNet model
and was treated as an independent image to increase the input data, though a group of
slices was available for each patient. The predicted diagnostic class for each patient was
the most frequently voted among its entire ROI set. The reported performance metrics
were computed considering the number of correctly predicted patients and not the whole
ROI dataset.

2.5. Performance Metrics

The classification performance of the DNN model was evaluated considering the
following metrics:

(1) Area under the receiving operative characteristics curve (AUC-ROC):

AUC (f) =
∑t0∈D 0 ∑t1∈D 1[f(t0) < f(t1) ]∣∣∣D0

∣∣∣·∣∣∣D1
∣∣∣ (1)

where 1[f(t0) < f(t1) ] denotes an indicator function, which returns 1 if f(t0) < f(t1); other-
wise, returns 0. D0 is the set of negative examples and D1 is the set of positive examples.

www.horosproject.org
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Figure 1. Model architecture trained as reported in Tariciotti et al. [13] and externally validated on 
the TeS dataset in the current study. The window size and stride for convolutional, maxpooling and 
fully connected layers are also presented. Conv: convolutional layer; FC: fully connected layer; 
GBM: glioblastoma; PCNSL: primary central nervous system lymphoma; BM: brain metastasis. 
“Reprinted with permission from Tariciotti et al [13]. Copyright © 2022 Tariciotti, Caccavella, Fiore, 
Schisano, Carrabba, Borsa, Giordano, Palmisciano, Remoli, Remore, Pluderi, Caroli, Conte, Triulzi, 
Locatelli and Bertani. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). 

2.4. Convolutional Neural Network Model 
A 2D convolutional neural network model (i.e., ResNet-101) with 101 layers 

consisting of three-layer residual blocks pre-trained with the TrS dataset was used [13,17–
20].  

Each ROI was used as input for all three channels expected by the ResNet model and 
was treated as an independent image to increase the input data, though a group of slices 
was available for each patient. The predicted diagnostic class for each patient was the most 
frequently voted among its entire ROI set. The reported performance metrics were 
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2.5. Performance Metrics 
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Figure 1. Model architecture trained as reported in Tariciotti et al. [13] and externally validated on
the TeS dataset in the current study. The window size and stride for convolutional, maxpooling and
fully connected layers are also presented. Conv: convolutional layer; FC: fully connected layer; GBM:
glioblastoma; PCNSL: primary central nervous system lymphoma; BM: brain metastasis. “Reprinted
with permission from Tariciotti et al. [13]. Copyright © 2022 Tariciotti, Caccavella, Fiore, Schisano,
Carrabba, Borsa, Giordano, Palmisciano, Remoli, Remore, Pluderi, Caroli, Conte, Triulzi, Locatelli
and Bertani. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY).

(2) Accuracy:
TP + TN

TP + TN + FP + FN
(2)

where TP = true positive; TN = true negative; FP = false positive; FN = false negative.
(3) Precision or positive predictive value (PPV):

TP
TP + FP

(3)

(4) Negative predictive value (NPV):

TN
TN + FN

(4)

(5) Recall or sensitivity:
TP

TP + FN
(5)

(6) Specificity:
TN

TN + FP
(6)

(7) F-1 score:

2× Precision× Recall
Precision + Recall

(7)

A complete explanation of the parameters mentioned above is beyond the scope of
the current study; further comprehensive descriptions are available elsewhere [21].
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A one-vs-rest (OVR) multiclass strategy was employed to extract performance metrics
for each outcome class. Then, the average value and its 95% bootstrap confidence interval
were computed for each performance metric on the hold-out test set.

2.6. Human “Gold Standard” Performance

The tumour radiological assessment was addressed by experienced neuroradiologists
(P.R. and G.B.) with at least 10 years of clinical experience. Electronic radiological reports
were retrospectively reviewed to collect the primary radiological diagnosis. Afterwards, a
comparison with the histopathological charts was completed, and the diagnostic classes
were checked for discrepancies between radiological and pathological characterization. An
OVR multiclass method was employed to extract neuroradiologists’ performance metrics
for each outcome class.

2.7. Software and Hardware

All the statistical analyses were performed in a Jupyter Notebook using Python v.3.7.6
“https://www.python.org/” (accessed on 4 January 2022). The Python packages used for
this study included: ‘PyTorch v1.7’ to develop and train the DNN model, ‘Numpy’ for
Excel dataset handling; ‘Scikit-learn’ to compute performance metrics and ‘Seaborn’ to
plot ROC-AUC. The workstation used to train the DNN model mounted an Intel Core
i7–10700K processor, while the GPU was a Tesla K80 12GB.

3. Results

The cohort of selected patients included: 64 glioblastomas (mean age, 64.4± 9.04), 27 PCNSLs
(mean age, 58.1± 16.5) and 33 BMs (mean age, 62.7± 14.2). A total of 2853 axial slices/ROIs of
tumours were extracted, of which 1748 glioblastoma ROIs (mean ROIs 28.0± 19.0), 412 PCNSL
ROIs (mean ROIs 15.0± 4.0) and 693 BMs ROIs (mean ROIs 21.0± 14.0). No significant differences
in age, gender, number of total sequences or tumour ROI slice distributions were found between
the three tumour groups (p > 0.05). The BM group included patients with various primary
tumours, the most common of which being lung cancer (n = 16, 48.4% of all BMs), breast cancer
(n = 5, 15.1%), gastrointestinal cancer (n = 4, 12.1%) and renal cancer (n = 3, 9.1%). Additional
primary diagnoses were endometrial cancers and melanoma. Demographic characteristics are
summarised in Table 1.

Table 1. Demographics and imaging acquisition data.

Glioblastoma BM PCNSL
p-Value

Count (N%) Mean (SD) Count (N%) Mean (SD) Count (N%) Mean (SD)

Gender
Female 26 (41.3%) 12 (36.4%) 8.0 (29.6%) p > 0.05

Male 37 (58.7%) 21 (63.6%) 19.0 (70.4%) p > 0.05

Age (years) 64.4 (9.04) 62.7 (14.2) 58.5 (16.5) p > 0.05

N◦ Slices of T1Gd
sequence (N) 108.0 (52.0) 107.0 (59.0) 74.0 (61.0) p > 0.05

N◦ Slices of ROI (N) 28.0 (19.0) 21.0 (4.0) 15.0 (14.0) p > 0.05

Demographic characteristics of patients recruited at TeS. BM: brain metastasis; PCNSL: primary central nervous
system lymphoma; ROI: region of interest.

3.1. DNN Model Performance Metrics Evaluation

The validated DNN model (Figure 1) achieved AUCs of 0.73 (95% CI: 0.62–0.85), 0.78
(95% CI: 0.71–0.87) and 0.63 (95% CI: 0.52–0.76), respectively, for the PCNSL (Figure 2),
glioblastoma (Figure 3) and BM (Figure 4) diagnostic classes. High reliability was reported
across all performance metrics for PCNSLs and glioblastomas diagnostic outcome classes,
while lower reliability was reported for BMs. The complete performance metric evaluation
and the related confusion matrix are reported in Table 2 and Figure 5.

https://www.python.org/
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Figure 4. AUC-ROC curves (on TeS validation dataset) for solitary brain metastasis diagnostic
outcome class (OVR). BM: brain metastasis; OVR: one-vs-rest.

Table 2. Performance metrics achieved by the convolutional neural network model in differentiating
PCNSLs, glioblastomas and BMs.

Performance Metrics PCNSL Glioblastoma BM

AUC 0.73 (0.62–0.85) 0.78 (0.71–0.87) 0.63 (0.52–0.76)

Accuracy 80.46% (74.8–87.01%) 80.37% (74.8–86.99%) 77.12% (71.54–83.74%)

Precision (PPV) 54.85% (44.11–70.00%) 84.13% (77.97–92.0%) 57.71% (46.67–72.73%)

Recall (Sensitivity) 66.86% (51.85–85.19%) 76.14% (66.67–85.71%) 57.04% (42.42–72.73%)

Specificity 84.29% (78.12–91.67%) 84.8% (78.33–93.33%) 84.49% (77.78–91.14%)

F1-Score 0.60 (0.50–0.73) 0.80 (0.73–0.87) 0.57 (0.45–0.70)

Performance metrics achieved on the hold-out test set were computed adopting an OVR multiclass strategy.
Average value and 95% bootstrap confidence interval are reported. AUC: area under the curve; BM: brain
metastasis; OVR: one-vs-rest; PCNSL: primary central nervous system lymphoma; PPV: positive predictive value.

3.2. Comparison of DNN Model and Neuroradiologists’ Gold Standard Performance

The performance metrics achieved by expert neuroradiologists are provided in Table 3.
The DNN model showed a classification performance not inferior to the neuroradiologists’
gold standard reference on glioblastomas (F1 score 0.80 (0.73–0.87) vs. 0.81), PCNSL (F1
score 0.60 (0.50–0.73) vs. 0.59) and performed poorer than physicians in diagnosing BMs
(0.57 (0.45–0.70) vs. 0.82).
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diagnosed by the DNN model. The CM shows how the model chose among available diagnostic 
classes in the current work. BM: brain metastasis; CM: Confusion matrix; DNN: deep neural network; GBM: 
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Figure 5. The confusion matrix (CM) shows the exact collocation of each patient among classification
classes during a validated simulation with our DNN model. On the TeS patients’ data, the model
misclassified histologically-confirmed atypical PCNSL nine times: in eight out of nine cases, the error
led to a computer-based diagnosis of BM. On the contrary, among histologically-diagnosed BM, the
model correctly identified 19 cases, while the remaining 14 cases were declared as glioblastomas
(n = 8) and PCNSLs (n = 6). Overall, glioblastomas were more likely to be correctly diagnosed by the
DNN model. The CM shows how the model chose among available diagnostic classes in the current
work. BM: brain metastasis; CM: Confusion matrix; DNN: deep neural network; GBM: glioblastoma;
PCNSL: primary central nervous system lymphoma.

Table 3. Neuroradiologist (Gold standard) performance metrics in differentiating PCNSL, glioblas-
toma and BM in the cohort examined.

Performance Metrics PCNSL Glioblastoma BM

Accuracy 82.90% 84,09% 89.69%

Precision (PPV) 65.21% 87.50% 79.31%

Negative predictive value (NPV) 87.23% 81.57% 94.11%

Recall (Sensitivity) 55.55% 77.77% 85.18%

Specificity 91.11% 89.85% 91.42%

F1-Score 0,595 0,819 0,818
Performance metrics achieved by neuro-radiologists (defined as the gold standard) adopting an OVR multiclass
strategy. The metrics were retrospectively computed by examining patient report charts: all patients underwent
conventional plus advanced (T1-weighted, T2-weighted, FLAIR, diffusion-weighted, conventional T1-contrast-
enhanced, dynamic contrast-enhanced and perfusion) MRI scans. Values were reported as single computation, so
95% bootstrap confidence intervals were not defined. BM: brain metastasis; OVR: one-vs-rest; PCNSL: primary
central nervous system lymphoma; PPV: positive predictive value; NPV: negative predictive value.

4. Discussion
4.1. Performance Validation

In a previous study, we reported on a DNN model capable of efficiently and accurately
differentiating glioblastomas, PCNSLs and BMs in an experimental “offline” environ-
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ment [13]. Here, we externally validated the DNN model on “never seen” data gathered at
an external academic site (TeS) with the comparable caseload, facility settings and technolo-
gies. The accuracy returned by our model was not inferior to a senior neuroradiologist’s
performance in identifying PCNSLs and glioblastomas; accuracy for BMs identification
was moderate, despite being lower than human evaluation.

In light of our previous preliminary findings, the evidence of model robustness and
generalizability achieved in the current study supports the thesis of our DNN model
being “experimentally not inferior” to senior physicians in classifying brain tumours in an
unbiased cohort, endorsing the development and deployment of such models in medical
training and clinical practice if cleared by regulatory authorities.

As previously documented, differentiating dubious BMs from gliomas and PCNSLs is
challenging per se. Despite exponential advancements in the last decade, no single MRI
modality can differentiate PCNSLs, BMs and glioblastomas with absolute accuracy. The
search for a single sequence candidate to better classify these tumours has been limited to
academic speculation, being restricted to synthetic scenarios rather than simulating clinical
practice decision workflow, where multimodality is preferred. Indeed, results from previ-
ous studies are contradictory [22,23], with several authors reporting either T2-weighted,
FLAIR or T1Gd scans’ superiority in brain tumour segmentation and classification [24–26].
The multimodality MRI approach recently showed promising diagnostic performance in
differentiating brain neoplasms in experimental settings. Relevant findings were confirmed
about dynamic susceptibility contrast (DSC) and apparent diffusion coefficient (ADC)
maps combined with T1Gd-MRI scans. This multimodal approach came at the cost of an
unstandardized diagnostic role due to the operator-dependent interpretation bias, high
heterogeneity among brain tumour phenotypes and the additional need for hardware and
set-up protocols, which might curb its use in facilities with limited resources [27–29].

During the study design, the authors agreed to implement T1Gd-MRI images only,
relying on the greater worldwide availability of this sequence compared to diffusion and
perfusion protocols, with the aim of extending the reproducibility of our workflow. Plus,
the superior distinction of tumour borders and precise representation of central necrosis,
which are common features of glioblastomas, atypical PCNSLs and BMs [30], facilitates
manual segmentation avoiding ROIs’ drawing biases. However, the inclusion of additional
sequences might have allowed a superior performance in the classification task.

Performance on BMs scored significantly lower compared to both the internal val-
idation dataset and neuroradiologists’ performance metrics (accuracy: 77% vs. 81% vs.
89%, respectively [13]). This underperformance may be imputable to the great histological
heterogeneity of this group of lesions and the consequent variability in radiological features.
Additionally, a key distinguishing feature of BMs is abundant peritumoral oedema [31];
however, the peritumoural radiological environment was not included in the ROI segmen-
tation of our dataset, which was limited to T1Gd boundaries. This might have influenced
the lower performance of DNN on BMs, together with the neuroradiologists’ access to
clinical history and additional imaging work-ups that the DNN model was blinded to.
Indeed, while the model was blinded to any additional historical or diagnostic infor-
mation except T1Gd scans, the diagnostic process accomplished at the time of imaging
work-up comprehended additional characterization by means of total body CT, positron
emission tomography (PET), and advanced MRI scans in a proportion of cases; being the
retrospective evaluation of radiological reports set in routine clinical practice, we could
not assess whether the aforementioned diagnostic exams—not involved in the current
investigation—had a valuable impact on the putative radiological diagnosis. The compara-
tive performance of DNN and senior neuroradiologists should be evaluated accordingly,
and conclusions should be drawn carefully.

4.2. Perspective for Clinical Application and Public Health Impact

From a public health perspective, diagnostic tools such as our validated DNN model
represent a promising technology spreading worldwide within industry, academia, and
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personal life settings. It is estimated that implementing AI algorithms in the USA might
save USD 150 billion in healthcare costs by 2026 [32], with a net benefit even in lower-
income countries, where AI experimentation is still under-practised. Implementation
of AI protocols in healthcare is increasing in resource-poor countries of Asia and Africa
collaterally to the wider availability of mobile phones, mobile health applications and cloud
computing, which generate a sufficient mass of data to redirect to the purpose of studies
like our own.

Given this, we believe that AI models might assist physicians in low-income countries
in tackling macro and micro-scale healthcare disparities and might reduce healthcare
borders and inequalities across high- and low-income countries by optimizing diagnostic
workflows, augmenting physician performance in those settings where highly trained
personnel are not routinely available or favouring teleconsultations and patient referral to
more experienced hospitals. The whole process, as auspicated in high-income countries,
might provide benefits to healthcare quality and allow weighted cost reduction [33], as
suggested by a recent survey conducted in Pakistan [34]. However, our belief about the
contributions of AI to healthcare optimization in such settings is speculative, and sufficient
literature about AI use in resource-poor countries is still lacking to draw accurate previsions.

4.3. Perspective in Medical Education

Other than the previously discussed applications, efficiency of computer vision has
already been demonstrated in other clinical scenarios (i.e., skin cancer classification, diag-
nosis of retinal disease, detection of mammographic lesions, fracture detection and many
other tasks) [35–38].

Recent advancements have been made in integrating CV, and ML in general, into
medical education and skill evaluation. Oliveira et al. reported a deep learning model
called PRIME that is able to evaluate the microsurgical ability of different neurosurgeons
in vessels dissection and micro-suture; the latter was designed with the aim of smoothing
the microsurgical steep learning curve and providing a self-paced ML-advised tutor for
continuous training without the need for any motion sensors around the operating table [39].
Similarly, Smith et al. reported a motion-tracking ML algorithm for surgical instrument
monitoring during cataract surgery [40].

Finally, aimed to standardize surgical procedures, enhance training and lay the ground-
work for future robot-assisted surgery, several groups are investigating whether DNN mod-
els can dissect surgical workflows into reproducible phases according to environmental
exposure, segmentation of the anatomical scenario and instrument usage [41–43].

4.4. Strengths and Limitations

The DNN model hereby presented and validated on a cohort of more than one hundred
patients is a simple but efficient tool able to help physicians diagnose atypical intracranial
tumours with limited addition of human effort. Despite not being used in real-time
scenarios yet, it is a promising and robust classification model and a candidate for further
investigations in clinical trials. Nevertheless, several limitations restrict the generalizability
of our results; the outcome accuracy was gauged in “offline” settings on a retrospective
pool of image data. To date, the usefulness in actual clinical practice has been inferred but
not demonstrated. In fact, while neuroradiologists with access to other relevant information
scored as high as the DNN model in the majority of classes (and even higher on BMs),
the interaction between the DNN response and the human decision-making process has
not been experienced and evaluated. Further prospective trials are required to clarify the
impact of artificial intelligence-based decision-making tools on human judgement and
performance in clinical practice.

5. Conclusions

These results confirm the feasibility and reliability of our DNN model in experimental
scenarios and open new possibilities for prospective clinical investigations. The delivery of
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such a diagnostic tool might enhance physicians’ performance and reduce the healthcare
access gap in settings with limited human and instrumental resources. The validated
model was built on an open-source programming language, and our methodology could
be exported and further validated at different institutions.
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