Lithium Prevents Telomere Shortening in Cortical Neurons in Amyloid-Beta Induced Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compliance with Ethical Standards
2.2. Primary Cultures of Cortical Neurons
2.3. Assessment of Cell Viability
2.4. DNA extraction
2.5. Amplification primers
2.6. Telomere and 36B4 Amplification
2.7. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Condition | Median Absorbance | % | Standard Deviation | Control t Test | Toxicity t Test 5 μM | Toxicity t Test 10 μM |
---|---|---|---|---|---|---|
Control | 0.245 | 1.000 | 0.024 | |||
aβ 5 μM | 0.156 | 0.636 | 0.003 | 0.001032 | ||
Aβ 10 μM | 0.112 | 0.459 | 0.010 | 0.000035 | ||
Li 0.02 mM | 0.284 | 1.158 | 0.020 | 0.063376 | 0.000046 | 0.000013 |
Li 0.02 mM + aβ 5 μM | 0.209 | 0.852 | 0.006 | 0.041351 | 0.000007 | |
Li 0.02 mM + aβ 10 μM | 0.172 | 0.704 | 0.020 | 0.006235 | 0.001828 | |
Li 0.2 mM | 0.329 | 1.344 | 0.051 | 0.026209 | 0.000647 | 0.000216 |
Li 0.2 mM + aβ 5 μM | 0.248 | 1.012 | 0.037 | 0.458576 | 0.002820 | |
Li 0.2 mM + 10 aβ μM | 0.212 | 0.865 | 0.005 | 0.053733 | 0.000004 | |
Li 2 mM | 0.370 | 1.513 | 0.019 | 0.000547 | 0.000002 | 0.000001 |
Li 2 mM + aβ 5 μM | 0.260 | 1.062 | 0.021 | 0.258798 | 0.000173 | |
Li 2 mM + ab 10 β μM | 0.236 | 0.965 | 0.035 | 0.383682 | 0.000726 |
Condition | Median TEL/36B4 | % | Standard Deviation | Control t Test | Toxicity t Test |
---|---|---|---|---|---|
CTXCt | 1.21 | 100% | 0.058 | ||
CTXaβ | 1.28 | 1.058 | 0.139 | 0.265 | |
CTXLi2 | 1.05 | 0.871 | 0.092 | 0.026 | 0.035 |
CTXLi0.2 | 1.06 | 0.878 | 0.071 | 0.021 | 0.037 |
CTXLi0.02 | 1.08 | 0.895 | 0.055 | 0.019 | 0.041 |
CTXaβLi2 | 1.13 | 0.939 | 0.061 | 0.034 | 0.053 |
CTXaβLi0.2 | 1.11 | 0.919 | 0.053 | 0.014 | 0.035 |
CTXaβLi0.02 | 1.12 | 0.927 | 0.042 | 0.019 | 0.046 |
References
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Initiation and completion of DNA Replication in Chromosomes. In Molecular Biology of the Cell, 6th ed.; W. W. Norton & Company: New York, NY, USA, 2014; pp. 254–266. [Google Scholar]
- Spilsbury, A.; Miwa, S.; Attems, J.; Saretzki, G. The Role of Telomerase Protein TERT in Alzheimer’s Disease and in Tau-Related Pathology In Vitro. J. Neurosci. 2015, 35, 1659–1674. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boccardi, V.; Pelini, L.; Ercolani, S.; Ruggiero, C.; Mecocci, P. From cellular senescence to Alzheimer’s disease: The role of telomere shortening. Ageing Res. Rev. 2015, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Forlenza, O.V.; De-Paula, V.J.R.; Diniz, B.S.O. Neuroprotective Effects of Lithium: Implications for the Treatment of Alzheimer’s Disease and Related Neurodegenerative Disorders. ACS Chem. Neurosci. 2014, 5, 443–450. [Google Scholar] [CrossRef][Green Version]
- J De-Paula, V.; SKerr, D.; Scola, G.; F Gattaz, W.; VForlenza, O. Lithium Distinctly Modulates the Secretion of Pro- and Anti- Inflammatory Interleukins in Co-Cultures of Neurons and Glial Cells at Therapeutic and Sub-Therapeutic Concentrations. Curr. Alzheimer Res. 2016, 13, 848–852. [Google Scholar] [CrossRef]
- Nunes, M.A.; Viel, T.A.; Buck, H.S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr. Alzheimer Res. 2013, 10, 104–107. [Google Scholar]
- Forlenza, O.V.; Diniz, B.S.; Radanovic, M.; Santos, F.S.; Talib, L.L.; Gattaz, W.F. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: Randomised controlled trial. Br. J. Psychiatry 2011, 198, 351–356. [Google Scholar] [CrossRef][Green Version]
- Forlenza, O.V.; Radanovic, M.; Talib, L.L.; Gattaz, W.F. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: Randomised clinical trial. Br. J. Psychiatry 2019, 215, 668–674. [Google Scholar] [CrossRef][Green Version]
- Cardillo, G.D.M.; De-Paula, V.D.J.R.; Ikenaga, E.H.; Costa, L.R.; Catanozi, S.; Schaeffer, E.L.; Gattaz, W.F.; Kerr, D.S.; Forlenza, O.V. Chronic Lithium Treatment Increases Telomere Length in Parietal Cortex and Hippocampus of Triple-Transgenic Alzheimer’s Disease Mice. J. Alzheimer’s Dis. 2018, 63, 93–101. [Google Scholar] [CrossRef]
- Rocha, N.K.R.; Themoteo, R.; Brentani, H.; Forlenza, O.V.; De Paula, V.J.R. Neuronal-Glial Interaction in a Triple-Transgenic Mouse Model of Alzheimer’s Disease: Gene Ontology and Lithium Pathways. Front. Neurosci. 2020, 14, 579984. [Google Scholar] [CrossRef]
- De-Paula, V.J.; Dos Santos, C.C.C.; Luque, M.C.A.; Ali, T.M.; Kalil, J.E.; Forlenza, O.V.; Cunha-Neto, E. Acute and chronic lithium treatment increases Wnt/β-catenin transcripts in cortical and hippocampal tissue at therapeutic concentrations in mice. Metab. Brain Dis. 2020, 36, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Qian, T.; Zhou, W.; Tao, X.; Sang, S.; Zhao, L. Beneficial effects of low-dose lithium on cognitive ability and pathological alteration of Alzheimer’s disease transgenic mice model. Neuroreport 2020, 31, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Gherardelli, C.; Cisternas, P.; Inestrosa, N.C. Lithium Enhances Hippocampal Glucose Metabolism in an In Vitro Mice Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 8733. [Google Scholar] [CrossRef] [PubMed]
- De-Paula, V.J.; Gattaz, W.F.; Forlenza, O.V. Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations. Bipolar Disord. 2016, 18, 692–695. [Google Scholar] [CrossRef] [PubMed]
- De-Paula, V.D.J.; Kerr, D.S.; De Carvalho, M.P.F.; Schaeffer, E.L.; Talib, L.L.; Gattaz, W.F.; Forlenza, O.V. Long-term lithium treatment increases cPLA2 and iPLA2 activity in cultured cortical and hippocampal neurons. Molecules 2015, 20, 19878–19885. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Apel, C.; Forlenza, O.V.; De-Paula, V.; Talib, L.L.; Denecke, B.; Eduardo, C.; Gattaz, W.F. The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J. Neural. Transm. 2009, 116, 71–78. [Google Scholar] [CrossRef]
- Cuello, A.C.; Hall, H.; Carmo, S.D. Experimental Pharmacology in Transgenic Rodent Models of Alzheimer’s Disease. Front. Pharmacol. 2019, 10, 189. [Google Scholar] [CrossRef][Green Version]
- Cai, Z.; Yan, L.-J.; Ratka, A. Telomere shortening and Alzheimer’s disease. Neuromol. Med. 2013, 15, 25–48. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Zhao, A.; Li, M.; Ren, J.; Qu, X. New insights in amyloid beta interactions with human telomerase. J. Am. Chem. Soc. 2015, 137, 1213–1219. [Google Scholar] [CrossRef]
- Zhang, Y.; Toh, L.; Lau, P.; Wang, X. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J. Biol. Chem. 2012, 287, 32494–32511. [Google Scholar] [CrossRef][Green Version]
- Jakobsson, E.; Argüello-Miranda, O.; Chiu, S.W.; Fazal, Z.; Kruczek, J.; Nunez-Corrales, S.; Pandit, S.; Pritchet, L. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J. Membr. Biol. 2017, 250, 587–604. [Google Scholar] [CrossRef] [PubMed]
- De-Paula, V.J.; Forlenza, O.V. Lithium modulates multiple tau kinases with distinct effects in cortical and hippocampal neurons according to concentration ranges. Naunyn. Schmiedebergs Arch. Pharmacol. 2022, 395, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, J.A.; MacHado-Vieira, R.; Zarate, C.A.; Manji, H.K. Novel insights into lithium’s mechanism of action: Neurotrophic and neuroprotective effects. Neuropsychobiology 2010, 62, 50–60. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Forlenza, O.V.; De Paula, V.J.; Machado-Vieira, R.; Diniz, B.; Gattaz, W.F. Does Lithium Prevent Alzheimer’s Disease? Drugs Aging 2012, 29, 335–342. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Themoteo, R.M.; De Paula, V.J.R.; Rocha, N.K.R.; Brentani, H.; Forlenza, O.V. Lithium Prevents Telomere Shortening in Cortical Neurons in Amyloid-Beta Induced Toxicity. NeuroSci 2023, 4, 1-8. https://doi.org/10.3390/neurosci4010001
Themoteo RM, De Paula VJR, Rocha NKR, Brentani H, Forlenza OV. Lithium Prevents Telomere Shortening in Cortical Neurons in Amyloid-Beta Induced Toxicity. NeuroSci. 2023; 4(1):1-8. https://doi.org/10.3390/neurosci4010001
Chicago/Turabian StyleThemoteo, Rafael M., Vanessa J. R. De Paula, Nicole K. R. Rocha, Helena Brentani, and Orestes V. Forlenza. 2023. "Lithium Prevents Telomere Shortening in Cortical Neurons in Amyloid-Beta Induced Toxicity" NeuroSci 4, no. 1: 1-8. https://doi.org/10.3390/neurosci4010001