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Abstract: Different brain disorders display distinctive etiologies and pathogenic mechanisms. How-
ever, they also share pathogenic events. One event systematically occurring in different brain
disorders, both acute and chronic, is the increase of the extracellular ATP levels. Accordingly, several
P2 (ATP/ADP) and P1 (adenosine) receptors, as well as the ectoenzymes involved in the extracellular
catabolism of ATP, have been associated to different brain pathologies, either with a neuroprotective
or neurodegenerative action. The P2Y1 receptor (P2Y1R) is one of the purinergic receptors associated
to different brain diseases. It has a widespread regional, cellular, and subcellular distribution in
the brain, it is capable of modulating synaptic function and neuronal activity, and it is particularly
important in the control of astrocytic activity and in astrocyte–neuron communication. In diverse
brain pathologies, there is growing evidence of a noxious gain-of-function of P2Y1R favoring neurode-
generation by promoting astrocyte hyperactivity, entraining Ca2+-waves, and inducing the release
of glutamate by directly or indirectly recruiting microglia and/or by increasing the susceptibility of
neurons to damage. Here, we review the current evidence on the involvement of P2Y1R in different
acute and chronic neurodegenerative brain disorders and the underlying mechanisms.
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1. Introduction

Different brain disorders display characteristic etiologies and phenotypes, yet they rely
on common pathogenic events. One such common event in the development of neurode-
generation is excitotoxicity [1,2] observed both in acute and chronic brain diseases [3–6]. It
involves an abnormal Ca2+-influx, mainly mediated by the high Ca2+-permeable NMDA re-
ceptors (NMDARs) [7,8], which then leads to the activation of calpains and other proteases
mediating cytoskeleton damage [9] paralleled by oxidative stress, mitochondrial dysfunc-
tion, and subsequent activation of apoptotic pathways, events which are also associated
with different acute and chronic neurodegenerative conditions [10–13].

Another event systematically occurring in diverse brain disorders is the increase of the
extracellular levels of ATP. ATP is a ubiquitous intracellular metabolite in the millimolar
range. Hence, any insult leading to damaged cell membranes of injured or dying cells causes
a rapid increase in their extracellular levels. Accordingly, in mechanical injuries such as
traumatic brain injury (TBI), there is evidence of increased ATP release [14–17]. This increase
occurs not only proximal to the point of impact [16], but also in remote regions distant to the
location of impact [15,17]. This indicates that the increase in extracellular ATP in TBI should
reflect not only ATP leakage from injured cells, but also the involvement of mechanisms
to release ATP, most likely from astrocytes [15,17,18]. Indeed, besides ATP leakage from
dying cells, there are physiological mechanisms designed to active-release ATP, which are
also observed in pathophysiological phenomena. ATP can be released or co-released from
nerve terminals [19] in an activity and Ca2+-dependent exocytotic vesicular manner [20].
This occurs particularly at high-frequency stimulations [21–23], which suggests that this
neuronal activity-dependent release of ATP may be contributing to seizure-induced ATP
release [24,25]. Recently, we showed an increase in the evoked release of ATP from rat
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hippocampal nerve terminals 7 days upon the induction of status epilepticus (SE) [26]. In
metabolic stress such as hypoxia or ischemia, the observed increase in ATP release [27–29]
also seems to have a neuronal source [30]. Moreover, recently, it was shown that the i.c.v.
injection of Aβ1–42, which is associated to Alzheimer’s disease (AD), increases the evoked
release of ATP from mice hippocampal nerve terminals, as well [31]. Extracellular ATP
may also arise from astrocytes, perhaps the major source of extracellular ATP, through
a Ca2+-dependent vesicular release by exocytosis [32–34], by lysosomes [35], or through
hemichannels formed by either pannexins [36–38] or connexins [39,40]. Aβ exposure
promotes the release of ATP by astrocytes [41–43] through hemichannels, in particular,
connexin-43 [41,43]. In a mouse model of familial AD, astrocytic hyperactivity was shown to
be mediated by paracrine purinergic signaling involving connexin channels [44]. Pannexins
have been also reported to be involved in neurotoxicity, namely, in ischemia [45], and has
been proposed as a target for neuroprotection [46]. Accordingly, the increase of extracellular
ATP during high-potassium-induced ictal discharges on slices obtained from resected
tissues of TLE patients was blocked by the inhibition of pannexin-1, which also provided
anticonvulsive effects in a mouse model of kainic acid (KA)-induced seizures [47]. This
may involve astrocytic pannexin-1 [48]. Notably, neuronal pannexin-1 has also been shown
to be activated during ischemia and may constitute an additional neuronal source of
pathological extracellular ATP [49]. ATP release from astrocytes can also be mediated by
maxi-anion channels as observed in oxygen–glucose deprivation [50]. Extracellular ATP
may further arise through P2X7R, either directly through the high-permeability pore formed
by prolonged P2X7R activation [51,52] or by a synergistic interaction with pannexins [53,54],
suggesting a self-mechanism of sustained increase in the extracellular levels of ATP. In
addition to neurons and astrocytes, microglia may also contribute to the release of ATP
in pathological conditions, eventually through vesicular exocytosis [55]. For instance, in
mouse primary microglial cells, fibrillar and oligomeric Aβ1–42 cause ATP release [56];
and in microglial N13 cells, the active Aβ25–35 peptide causes a dose-dependent release of
ATP [57].

Thus, there is now compelling evidence demonstrating a sustained efflux of ATP into
the extracellular milieu in brain disorders either through the leak of ATP through dam-
aged membranes, or through mechanisms designed to active-release ATP in pathological
phenomena. This supports the concept that extracellular ATP is a danger signal in the
brain [58,59], constituting another event shared by different acute and brain disorders.
Accordingly, several P2 receptors (P2R) and P1 receptors (P1R) were activated by adeno-
sine upon the extracellular catabolism of ATP, and the respective ectoenzymes have been
associated to different brain pathologies, either with neuroprotective or neurodegenerative
actions (for review, see e.g., [59–66]). Here, we will review in particular the current knowl-
edge on the contribution of the P2Y1 receptor (P2Y1R) to neurodegeneration in different
acute and brain disorders and discuss the underlying mechanisms.

2. The Multimodal P2Y1 Receptor

P2Y1R is a metabotropic receptor activated by ATP/ADP with a widespread re-
gional cellular and subcellular distribution in the brain. In neurons, P2Y1R is located
both pre- and postsynaptically [67] and non-synaptically both in dendrites, cell bodies,
and axons [68]. Presynaptic P2Y1R modulates neurotransmitter release such as gluta-
mate [67,69] or GABA [70], eventually through its ability to regulate N-type Ca2+-channels
in neurons [71,72]. Postsynaptically, P2Y1R inhibits NMDAR [73], impacting the synaptic
plasticity [74]. This may also rely on the inhibition of voltage-gated Ca2+- channels [75].
Recently, we have shown in cultured rat hippocampal neurons that P2Y1R modulates the
NMDA-induced Ca2+-entry in a bidirectional and subcellular-specific manner, decreasing it
in the soma and dendrites and increasing it in the axons, most likely reflecting a differential
regulation of NMDARs’ density in the different cellular compartments [68]. P2Y1R also
regulates GABA transmission by postsynaptic regulation of GABAA receptors [76] and
through the direct control of interneurons’ excitability in different regions [76–80], involv-
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ing the regulation of K+-conductance [77,79,80]. P2Y1R can also promote rat hippocampal
pyramidal neurons’ excitability through the inhibition of M-type K+-currents [81]. In
astrocytes, P2Y1Rs are also highly expressed [44,82–85], playing a key role in the propaga-
tion of calcium waves throughout the astrocytic network [34,86,87]. P2Y1R also regulates
Ca2+-dependent vesicular glutamate release from astrocytes [88], which is able to activate
NMDAR on neurons [83] and modulate neuronal function [80,83,89,90]. It also regulates
the release of ATP from astrocytes [91], sustaining an autocrine ATPergic signaling [90] and
modulating synaptic function [92]. P2Y1R also controls GABA uptake from cultured rat
cortical astrocytes [93]. Hence, P2Y1R regulates astrocytic function, modulating astrocytic
network activity and gliotransmission. The expression of P2Y1R has been also reported in
microglia [94–96]. While motility seems to be associated with P2Y12R [97,98], microglia pro-
cess retraction may involve P2Y1R [99]. Altogether, the multiple functions so far ascribed
to P2Y1R set a transcellular integrative role for P2Y1R in the brain.

3. P2Y1 Receptor in Neurodegenerative Disorders

An increase in the expression levels of P2Y1R has been documented in different
acute or chronic neurological disorders such as epilepsy [100–102], mechanical injury [103],
ischemia [84], or AD [44,104], which suggests the gain of a noxious function of P2Y1R.
Accordingly, compelling evidence have been associating P2Y1R with different acute and
chronic brain disorders.

In ischemic conditions such as oxygen–glucose deprivation (OGD), the blockade of
P2Y1R prevented the depression of field excitatory postsynaptic potentials and anoxic
depolarization in rat hippocampal slices, also preventing CA1 pyramidal neuronal dam-
age [105,106]. Similar neuroprotection was afforded by the i.c.v. administration of a selective
antagonist of P2Y1R after transient middle cerebral artery occlusion in rats, reducing infarct
volume and recovering motor coordination [84]. Moreover, P2Y1R-KO mice displayed
reduced hippocampal damage and no cognitive decline upon middle cerebral artery oc-
clusion, an effect mimicked by the pharmacological blockade of P2Y1R in rodents [107].
This has been associated to the control of astrocytic function and glial neuroinflammatory
response [84,107,108]. However, neuronal mechanisms should also be involved in the dele-
terious contribution of P2Y1R in ischemic conditions since in another study, it was observed
that P2Y1R blockade attenuated neuronal damage and cognitive performance induced by
permanent middle cerebral artery occlusion, without inhibiting the astrocytic or microglial
reactivity [109]. On the other hand, a neuroprotective action of P2Y1R has been also re-
ported in ischemia. P2Y1R-KO mice displayed a higher number of injured hippocampal
neurons upon OGD [110] and in mouse ischemic models of photo-thrombolysis, a reduction
of neuronal damage was observed with the activation of astrocytic P2Y1R [111,112]. A
similar neuroprotection provided by astrocytic P2Y1R was observed in oxidative stress
through IL-6 release [113]. A neuroprotective vs. neurodegenerative action of P2Y1R may
be due to either the degree of P2Y1R-driven activity and/or a time-dependent gain of
a noxious function of P2Y1R, shifting astrocytes from a supportive role to a deleterious
impact and/or a time-dependent differential impact of neuronal and glial P2Y1R. A similar
time-dependent shift from a neuroprotective to a neurodegenerative input of P2Y1R was
observed in excitotoxicity. P2Y1R was shown to be required for glutamate-induced synaptic
loss and subsequent neuronal death in the rat hippocampus both in vitro and in vivo [68].
This is due at least in part to a P2Y1R-driven increase of NMDARs at the axon, leading to a
deleterious Ca2+-entry and subsequent calpain-mediated axonal cytoskeleton damage [68].
However, it also provided evidence that P2Y1R may reduce AMPAR, decreasing the sus-
ceptibility of neurons to excitotoxicity [114]. In SE-induced neurodegeneration, the i.c.v.
injection of a selective antagonist of P2Y1R reduced hippocampal neuronal death observed
with the systemic i.p. administration of KA [68]. However, in a more recent study, it was
detailed that there is a time-dependent shift from a neuroprotective to a neurodegenera-
tive contribution of P2Y1R to SE-induced neurodegeneration, correlated with a different
impact in SE-induced seizure activity. Using intra-amygdala KA and pilocarpine mouse
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models, while the antagonism of P2Y1R before SE induction increased seizure activity and
neurodegeneration in the hippocampus, the blockade of P2Y1R shortly after the onset of
SE reduced seizure activity and degeneration [115]. It was suggested that this may be due
to a time-dependent contribution of neuronal and astrocytic P2Y1R [115]. Neuronal P2Y1R
can reduce hyperexcitability, either by directly depressing postsynaptic NMDARs [68,73]
and/or by a circuit-driven increase of the inhibitory tonus [77,78]; however, then the re-
cruitment of astrocytes and the P2Y1R-induced release of glutamate [88], subsequently
activating NMDAR on neurons [83], can lead to hyperexcitability [66,90,116,117]. In ad-
dition, this time-dependent neuroprotective to neurodegenerative shift may also be due
to the fact that the contribution of neuronal and astrocytic P2Y1Rs may also change at
different pathogenic stages. For instance, neuronal P2Y1R tonically depresses dendritic
NMDARs, but in excitotoxic conditions, it induces a toxic increase in axonal NMDARs [68].
Interestingly, a similar P2Y1R-driven increase in NMDARs was found in the dorsal root
ganglion underlying remifentanil-induced postoperative hyperalgesia [118]. However, this
contribution of neuronal P2Y1R to neurodegeneration fades with more intense excitotoxic
conditions [68]. Regarding the contribution of astrocytic P2Y1R, astrocytes have a physio-
logical supportive role to neuronal function, namely, glutamate uptake or the release of
neurotrophic factors [119] and, as mentioned, astrocytic P2Y1R can have a neuroprotec-
tive effect as observed in ischemia, oxidative stress [111–113], and TBI (see below) [120].
Nevertheless, the evidence so far provided essentially point to a net neurodegenerative
contribution of P2Y1R in excitotoxic conditions. There is an increased density of P2Y1R
upon SE as well as in human tissue from temporal lobe epilepsy patients [101,102], sup-
porting microglia and astrocytic-induced hyperexcitability through the P2Y1R-induced
release of glutamate from astrocytes [102,116,121]. This is further heralded by the obser-
vation that the blockade of P2Y1R post-SE delayed the onset of epilepsy and suppressed
epileptic seizures in a reversible manner [115]. In addition to a control of seizure severity,
the antagonism of P2Y1R may be also beneficial against epilepsy comorbidities since the
blockade of P2Y1R rescued synaptic plasticity, associated to a normalization of astroglial
Ca2+-activity in epileptic hippocampus [121]

The blockade of P2Y1Rs also afforded neuroprotection upon TBI even in remote re-
gions from the injury site, improving cognitive outcomes [15]. This effect was dependent
on P2Y1R-mediated astrocytic Ca2+-waves and on NMDAR activation [15], indicating an
exacerbation/propagation of neuronal injury through a P2Y1R-driven release of glutamate
from astrocytes. This is further sustained by the release of ATP in regions distant to the
impact point [17]. In addition to having control of astrocytes, it was more recently shown
that the blockade of P2Y1R suppressed microglial activation at the injury site [122]. More-
over, evidence was provided that microglia recruited to the injury core is important for
the formation of neuroprotective astrocyte scar in the peri-injured region by downregu-
lating P2Y1R in astrocytes [120]. Hence, the neuroprotection afforded by the inhibition of
P2Y1R in TBI may be due by the concomitant promotion of a protective scar around the
lesion, mimicking the beneficial effects of microglia but inhibiting the microglia-mediated
inflammatory response and avoiding the astrocytic-driven hyperexcitability involved in
the exacerbation and propagation of neuronal injury.

In AD, P2Y1Rs were found to colocalize with neurofibrillary tangles and amyloid
β (Aβ) plaques characteristic to AD [104]. In an APP/PS1 AD mouse model, reactive
astrocytes near Aβ plaques showed enhanced P2Y1R-mediated Ca2+ signaling, displaying
both significantly higher resting Ca2+ levels and increased propagation of intercellular
Ca2+-waves [44], and was suggested to mediate Aβ-induced synaptic dysfunction/loss
and neuronal damage [44,123]. Indeed, more recently, it was shown that the chronic
blockade of P2Y1R in the APP/PS1 mice reduced/normalized neuronal activity, restored
synaptic plasticity and synaptic integrity, reduced neuritic dystrophy, and attenuated
cognitive decline [124]. The observation that this was partly observed in mice lacking the
IP3 receptor type 2, the signaling downstream of P2Y1R activation, indicates that it is in
part due to the inhibition of the astrocytic hyperactivity, similar to that observed in epileptic
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hippocampus [121]. However, it also indicates that P2Y1Rs other than those located in
astrocytes could also be involved. In fact, neuronal P2Y1R may also contribute to the
initial synaptic dysfunction/loss by favoring the loss of axonal integrity, observed prior to
dendritic damage and later neuronal death through an increase in NMDARs [68]. Besides,
additional mechanisms may underlie the contribution of P2Y1R to AD-associated synaptic
dysfunction, plasticity deficits, and cognitive impairment, eventually abnormally activated
by astrocytic-derived ATP [80,92]. The depression of postsynaptic NMDARs [73–75] was
shown to have an impact in synaptic plasticity, particularly in pathological conditions such
as hypoxia [75]. The selective activation of P2Y1R in the medial prefrontal cortex was shown
to be sufficient to impair working memory and learning [125]. In addition, the recently
shown Aβ-associated disruption of inhibitory homeostasis mediated by P2Y1R [126] may
also promote circuit-driven synaptic dysfunction.

In summary, there is now compelling evidence associating P2Y1R to different acute
and chronic neurodegenerative disorders with clear distinctive etiologies and pathogenesis,
essentially pointing towards a pro-neurodegenerative action.

4. P2Y1 Receptor as a Catalyst of Neurodegeneration

The major mechanism by which P2Y1R favors neurodegeneration, shared by dif-
ferent brain disorders, is its ability to control astrocytic function, thus entraining Ca2+-
waves, inducing the release of inflammatory cytokines [84], and promoting the release
of glutamate [15,88,102,116,121], ultimately leading to hyperexcitability and neuronal
damage [66,83,90,116,117]. P2Y1R inhibition is also neuroprotective by allowing the de-
velopment of neuroprotective astrocytic scars, namely in TBI [120]. These deleterious
mechanisms of astrocytic P2Y1R are further sustained/enhanced by P2Y1R itself due to
its ability to prevent astrocytic damage upon different noxious insults [63,127–129] and
by mediating the autocrine signaling, inducing a sustained release of ATP from astro-
cytes [17,44,91,116,130]. This mechanism can be also sustained or potentiated by microglia
recruitment through the release of ATP and subsequent P2Y1R-driven stimulation of astro-
cytes, promoting glutamatergic gliotransmission with an impact in synaptic activity [85],
tethering inflammation to synaptic failure. Besides, although the role of P2Y1R in microglia
remains elusive, it has been shown that, either directly or indirectly, P2Y1R is involved in
the recruitment of microglia in epileptic phenomena [102] in TBI [122] and in ischemia [107].
In addition, neuronal P2Y1R may also contribute to neurodegeneration [68,109], namely,
by favoring the initial synaptic loss and later neuronal death by a subcellular-specific up-
regulation of NMDARs, increasing their density in axons, leading to an initial Ca2+-driven
calpain-mediated axonal cytoskeleton damage [68]. Altogether, the ability of P2Y1R to
promote astrocyte hyperactivity and consequent glutamate release, to recruit and even-
tually format microglia response, and to directly increase the susceptibility of neurons
to damage, indicate that P2Y1R is endowed with a transcellular capability to catalyze
neurodegeneration in different brain disorders (Figure 1), both at the early onset [68,115]
and at a chronic stage [44,115,124].
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ited to P2Y1R. Other P2Rs, adenosine P1Rs, or ectoenzymes involved in the extracellular 
metabolism of ATP have been associated to the pathogenesis of different brain disorders, 
displaying both neurodegenerative actions, namely P2X7R, A2AR, and CD73 [59,62,64], 
and neuroprotective actions such as with P2Y2, P2Y4, P2Y12, and P2Y13 receptors (e.g., 
[63,65,131,132]). Hence, in order to fully comprehend the pathological contribution of 
P2Y1R to brain disorders and its potential value as a therapeutic target, it is fundamental 
to contextualize it within the purinergic signaling system. It will be important to under-
stand the hierarchy, cooperation, and/or redundancy between the different elements that 
comprise the purinergic signaling system and understand how the contribution of pu-
rinergic signaling in pathological conditions is orchestrated. Some studies started to shed 
light on this topic. Besides the contribution of different purinergic receptors to the release 
of ATP such as P2X7R or A2AR [43,51,52,59], microglia P2Y13R prevents astrocyte prolif-
eration induced by P2Y1R [133], and more recently, it was shown that A2AR physiologi-
cally reduces P2Y1R-driven Ca2+ increases in astrocytes, an effect blunted by Aßexposure 
[134]. This will allow a better comprehension of the contribution of P2Y1R to neurodegen-
eration, which is fundamental to define an eventual therapeutic strategy targeting P2Y1R, 
either directly or indirectly, to prevent its deleterious contribution. This may involve a 
multitarget time-dependent strategy. Since a sustained ATP release and the pathogenic 
involvement of P2Y1R is an event shared by different acute and chronic brain disorders, 
such a strategy targeting P2Y1R function may bring a sole therapeutic intervention to the 
different neurodegenerative disorders.  

Figure 1. Schematic illustration depicting the transcellular capability of P2Y1R to catalyze neurode-
generation: (i) astrocytic hyperactivity; (ii) release of glutamate from astrocytes; (iii) depression of
synaptic activity; and (iv) early axonal degeneration, synaptic loss, and later neuronal death.

The contribution of the purinergic signaling system to brain pathologies is not limited to
P2Y1R. Other P2Rs, adenosine P1Rs, or ectoenzymes involved in the extracellular metabolism
of ATP have been associated to the pathogenesis of different brain disorders, displaying both
neurodegenerative actions, namely P2X7R, A2AR, and CD73 [59,62,64], and neuroprotec-
tive actions such as with P2Y2, P2Y4, P2Y12, and P2Y13 receptors (e.g., [63,65,131,132]).
Hence, in order to fully comprehend the pathological contribution of P2Y1R to brain dis-
orders and its potential value as a therapeutic target, it is fundamental to contextualize
it within the purinergic signaling system. It will be important to understand the hierar-
chy, cooperation, and/or redundancy between the different elements that comprise the
purinergic signaling system and understand how the contribution of purinergic signal-
ing in pathological conditions is orchestrated. Some studies started to shed light on this
topic. Besides the contribution of different purinergic receptors to the release of ATP
such as P2X7R or A2AR [43,51,52,59], microglia P2Y13R prevents astrocyte proliferation
induced by P2Y1R [133], and more recently, it was shown that A2AR physiologically re-
duces P2Y1R-driven Ca2+ increases in astrocytes, an effect blunted by Aßexposure [134].
This will allow a better comprehension of the contribution of P2Y1R to neurodegeneration,
which is fundamental to define an eventual therapeutic strategy targeting P2Y1R, either
directly or indirectly, to prevent its deleterious contribution. This may involve a multitarget
time-dependent strategy. Since a sustained ATP release and the pathogenic involvement
of P2Y1R is an event shared by different acute and chronic brain disorders, such a strat-
egy targeting P2Y1R function may bring a sole therapeutic intervention to the different
neurodegenerative disorders.
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