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Abstract: Neuroscience is a vast discipline that deals with the anatomy, biochemistry, molecular
biology, physiology and pathophysiology of central and peripheral nerves. Advances made through
basic, translational, and clinical research in the field of neuroscience have great potential for long-
lasting and beneficial impacts on human and animal health. The emerging field of biological therapy
is intersecting with the disciplines of neuroscience, orthopaedics and rheumatology, creating new
horizons for interdisciplinary and applied research. Biological drugs, growth factors, therapeutic
peptides and monoclonal antibodies are being developed and tested for the treatment of painful
arthritic and rheumatic diseases. This concise communication focuses on the solutions provided
by the fields of neuroscience and neuroimmunology for real-world clinical problems in the field
of orthopaedics and rheumatology, focusing on synovial joint pain and the emerging biological
treatments that specifically target pathways implicated in osteoarthritis pain in peripheral nerves.
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1. Introduction

Neuroscience is a branch of biology and medicine that deals with the anatomy, physiol-
ogy, biochemistry and molecular biology of the central and peripheral nervous systems. It
deals with the structure and function of central and peripheral nerves and their relationship
with other cells, tissues and organs that are associated with nerves. For many decades
the field of neuroscience was viewed as a separate discipline, isolated and independent
of other areas of medicine. However, in recent years, the fields of neuroscience, oncology,
immunology and metabolism have intersected, creating exciting opportunities for multi-
disciplinary collaborative research in basic, translational and clinical sciences. For example,
the integration of cancer-related neuroscience research is opening up new horizons in
cancer-related neurotoxicity to investigate disease mechanisms, develop new drugs and
implement novel pharmacological interventions. The integration of neuroscience in the
fields of immunology and the emerging field of immunometabolism is helping to build a
clearer picture of the role of the nervous system in immune function and inflammation [1].
The role of the peripheral and central nervous systems in tumor growth and metastasis is
also increasingly well recognized and it is becoming widely accepted that many neoplastic
and auto-immune diseases have an important neuroscience component [2,3]. Neuroscience
is impacting other areas of medicine, including immunology, endocrinology, metabolism,
orthopedics and musculoskeletal sciences [4].

The nervous system is now recognized to be a component of many age-related and
inflammatory diseases. The rapidly expanding aging population [5] and changing de-
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mographics [6,7] highlight opportunities for studying the role of the nervous system
in different diseases such as cancer, immunological disorders, inflammatory conditions,
metabolic and musculoskeletal diseases. This communication focuses on the solutions
that neuroscience and neuroimmunology are able to offer for problems in the fields of
orthopaedics and rheumatology, and specifically addresses the issue of arthritis pain. This
paper will summarize emerging treatments that specifically target nociceptive pathways
implicated in arthritis pain in peripheral nerves. Many of the emerging treatments for
osteoarthritis (OA) are biological and intra-articular. Neuroscience has already offered new
treatment targets for OA by unraveling the crucial role of nerve growth factor (NGF) in the
development and evolution of pain. More research is needed to understand the roles of the
central and peripheral nervous systems in OA pain and identify safer and more effective
pain medications.

2. Osteoarthritis (OA)

OA is the most prevalent form of arthritis globally and is the leading cause of physical
disability and the primary source of health and social societal cost in older adults [8]. OA
is a serious disease [9]. According to the World Health Organization (WHO), OA affects
millions of people worldwide. Recent estimates suggest that OA affects at least 7% of the
global population, which represents more than 500 million people worldwide, with women
disproportionately affected by the condition [10], especially after menopause [11–13].
Although OA is primarily related to aging [14], it is also associated with a wide variety of
modifiable and non-modifiable risk factors that include: overweight and obesity [15,16],
sedentary behavior [17] and lack of physical exercise [18]. OA is a syndrome with a
multifactorial etiology [19]. In addition to the primary risk factors of aging, obesity, the
female gender, and genetics, other inciting risk factors for OA may include previous joint
trauma or history of repetitive joint injuries or even the presence of metabolic syndrome and
endocrine disease [20]. However, OA is primarily a biomechanical disease [21]. However,
in addition to biomechanical factors [22], there are inflammatory [23] and metabolic [24]
factors that play dominant roles in the initiation and progression of OA.

Many patients with osteoarthritis exhibit comorbidities such as obesity, low-grade
systemic inflammation, diabetes mellitus and depression [25–28]. These comorbidities can
significantly influence the course of osteoarthritis, and the intensity and frequency of joint
pain, which is thought to be influenced by depression [29–31]. Research has only recently
begun to focus on the significance of such factors in OA pain. We know that changes in
peripheral joint innervation are partly responsible for degenerative alterations in joint
tissues which contribute to the development of OA [32,33]. This is why targeting NGF
and peripheral innervation in painful arthritic joints with targeted biological drugs is
timely and important [34–36]. Ion channels and G-protein coupled receptors (which are
often ion channels themselves) in peripheral innervation of painful osteoarthritis joints
must therefore be a high priority target for therapeutic monoclonal antibodies (mAbs) and
biological drugs that are administered intra-articularly rather than injected subcutaneously
or systemically [37–40].

Another promising area for future development focuses on nanobodies and bispe-
cific antibodies. Nanobodies, originally identified in camelids, are a class of therapeutic
proteins based on single-domain antibody fragments that contain the unique structural
and functional properties of a naturally-occurring heavy chain-only antibodies [41–44].
Bispecific antibodies on the other hand possess binding specificity for two different target
molecules and have recently been developed for targets in a range of autoimmune diseases,
such as RA, systemic lupus erythematosus, and psoriasis, and tested in clinical trials [45].

3. Existing Recommended Treatments for OA

Despite the heavy burden of OA on individuals, families, and healthcare systems, there
are currently no disease-modifying OA-specific treatments authorized for clinical use [46].
According to the experts and the treatment guidelines that have been published recently,
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Everyone should receive education teaching them to be active, exercise and manage their
weight. Some individuals may benefit from anti-inflammatory drugs or interarticular
injections and a few need surgery (Figure 1). However, as the aging population expands
and the number of people with OA rises across the world, the number of individuals
that require surgery and joint replacement is likely to rise. Inevitably, this will place
increased pressure on the need for orthopedic surgery and the cost to individuals and
payers, including healthcare systems and insurance companies.

NeuroSci 2021, 2, FOR PEER REVIEW 3 
 

Despite the heavy burden of OA on individuals, families, and healthcare systems, 
there are currently no disease-modifying OA-specific treatments authorized for clinical 
use [46]. According to the experts and the treatment guidelines that have been published 
recently, Everyone should receive education teaching them to be active, exercise and man-
age their weight. Some individuals may benefit from anti-inflammatory drugs or interar-
ticular injections and a few need surgery (Figure 1). However, as the aging population 
expands and the number of people with OA rises across the world, the number of indi-
viduals that require surgery and joint replacement is likely to rise. Inevitably, this will 
place increased pressure on the need for orthopedic surgery and the cost to individuals 
and payers, including healthcare systems and insurance companies. 

 
Figure 1. The osteoarthritis (OA) treatment pyramid outlining the first, second and third-line treat-
ment for patients with this disease. All patients will benefit from education, exercise and weight 
control. Some patients that benefit from anti-inflammatory drugs and intra-articular injections. A 
small number of individuals will require surgery and joint replacement. 

Unfortunately, many OA clinical trials have failed and continue to fail at the phase II 
stage. Most trials conducted to date have produced inconclusive results [47]. This means 
that the novel pharmacological agents, disease-modifying OA drugs (DMOADs) [48–50] 
and biological interventions that are currently being tested must have an impact on joint 
structure (i.e., articular cartilage) and the symptoms of pain, even if the trials include sur-
rogate endpoints and post-marketing confirmatory data under the accelerated drug ap-
proval regulations set forth by the Food and Drug Administration (FDA) [51]. 

4. Emerging Biological Treatments for OA 
Biological treatments that target OA, attenuate catabolic activity and promote artic-

ular cartilage repair include purified or recombinant growth factors, including fibroblast 
growth factor 18 (FGF-18), also known as Sprifermin [52–54], bone morphogenic protein 
7 (BMP7) [55,56], transforming growth factor β1 (TGF-β1) [57–59], neuropeptides [60,61], 
humanized mAbs that target NGF and vascular endothelial growth factor (VEGF) (i.e., 
tanezumab (Pfizer) and fasinumab (Teva/Regeneron) against NGF and bevacizumab 
(Genentech/Roche) and ranibizumab (Genentech/Roche) against VEGF) [62–66], gene and 
cell therapy incorporating allogeneic cells and protein production platforms that overpro-
duce produce growth factors (i.e., Kolon TissueGene’s TissueGene-C, overproducing 
TGF-β1) [67–71] (Figure 2). A detailed discussion of each of these areas and intra-articular 
therapies is way beyond the scope of this communication and readers are directed to sev-
eral comprehensive reviews [72–75]. The following section will focus on biological treat-
ments that specifically target ion channels and nociception in peripheral nerves. 

Among the many biological mediators involved in OA pain, NGF is one of the most 
promising because mAbs that block and neutralize NGF significantly reduce OA pain [76–

Figure 1. The osteoarthritis (OA) treatment pyramid outlining the first, second and third-line treatment for patients with
this disease. All patients will benefit from education, exercise and weight control. Some patients that benefit from anti-
inflammatory drugs and intra-articular injections. A small number of individuals will require surgery and joint replacement.

Unfortunately, many OA clinical trials have failed and continue to fail at the phase II
stage. Most trials conducted to date have produced inconclusive results [47]. This means
that the novel pharmacological agents, disease-modifying OA drugs (DMOADs) [48–50]
and biological interventions that are currently being tested must have an impact on joint
structure (i.e., articular cartilage) and the symptoms of pain, even if the trials include
surrogate endpoints and post-marketing confirmatory data under the accelerated drug
approval regulations set forth by the Food and Drug Administration (FDA) [51].

4. Emerging Biological Treatments for OA

Biological treatments that target OA, attenuate catabolic activity and promote artic-
ular cartilage repair include purified or recombinant growth factors, including fibroblast
growth factor 18 (FGF-18), also known as Sprifermin [52–54], bone morphogenic protein
7 (BMP7) [55,56], transforming growth factor β1 (TGF-β1) [57–59], neuropeptides [60,61],
humanized mAbs that target NGF and vascular endothelial growth factor (VEGF) (i.e.,
tanezumab (Pfizer) and fasinumab (Teva/Regeneron) against NGF and bevacizumab
(Genentech/Roche) and ranibizumab (Genentech/Roche) against VEGF) [62–66], gene
and cell therapy incorporating allogeneic cells and protein production platforms that over-
produce produce growth factors (i.e., Kolon TissueGene’s TissueGene-C, overproducing
TGF-β1) [67–71] (Figure 2). A detailed discussion of each of these areas and intra-articular
therapies is way beyond the scope of this communication and readers are directed to
several comprehensive reviews [72–75]. The following section will focus on biological
treatments that specifically target ion channels and nociception in peripheral nerves.



NeuroSci 2021, 2 48

1 

 

 

 
Figure 2. Biological intra-articular treatments for OA include growth factors, humanized monoclonal antibodies (mAbs),
anti-inflammatory cytokines and cytokine receptor blockers, cell and gene therapy that results in over-expression of growth
factors or blocks cytokine receptors or stimulates chondrogenic gene expression. Biological intra-articular therapies also
include mAbs that inhibit nerve growth factor (NGF) and interfere with NGF signaling.

Among the many biological mediators involved in OA pain, NGF is one of the
most promising because mAbs that block and neutralize NGF significantly reduce OA
pain [76–78] (Figure 2). The development of mAbs that inhibit NGF for OA pain would
not have been possible without significant input from the fields of neuroscience and
immunology. Several studies show that neutralization of IL-1β and TNF-α may reduce
OA pain [79,80]. However, the impact of IL-1β inhibition on pain has been shown to
be very modest in the Anakinra (Amgen) trial [81] and the AMG 108 (Amgen) trial [82].
The same outcome was observed in subsequent clinical trials of ABT-981—lutikizumab
(AbbVie)—anti-IL-1 α/β dual variable domain immunoglobulin conducted by AbbVie in
erosive hand OA [83] and knee OA with synovitis [84]. It is important to note that in some
of these trials the mAbs were delivered subcutaneously, which is not ideal because it is not
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delivered directly to the arthritic joint. This is a very important weakness of some of these
clinical trials and has not been discussed and debated widely.

5. Ion Channels and Pain

In the last two decades research from the converging fields of nociception and ion
channel biology has helped to identify many ion channels involved in nociception and
pain. Originally the research focused on the capsaicin receptor and its possible role in ther-
mosensation, ATP-gated channels, proton-gated channels, and nociceptor-specific sodium
channels [85–89]. In 2006, humans with congenital insensitivity to pain (CIP) were found
to lack functional NaV1.7 channels [90] and new research began to focus on the sodium
channel family as mediators of pain [91]. This was followed by a rush to develop selective
inhibitors of NaV1.7 channels with the ultimate goal of producing effective analgesics
without the problems of addiction and tolerance associated with opioids [92]. However,
in the years that have elapsed since then, it has been increasingly clear that translation
from in vitro studies and preclinical studies conducted with rodent models to humans
is extremely challenging. Many of the excellent pharmacology studies conducted with
in vitro and preclinical models do not translate into in vivo analgesic efficacy [93]. Fur-
thermore, many of the drug pipelines do not test promising candidates in an appropriate
translational large animal model and jump straight from mice to men [94]. Recent research
using various inflammatory models has shown that acute administration of peripherally
restricted NaV1.7 inhibitors can produce analgesia but only when administered in combi-
nation with an opioid [95]. Despite this drawback, research in this area has opened up new
opportunities for screening natural products including spider, scorpion and snake venom
for peptides that can be used as inhibitors of sodium channels and other ion channels with
analgesic potential.

6. Drug Pipelines with Putative Ion Channels Targets

The US-based drug company Flexion Therapeutics has a biological drug targeting
the Nav1.7 sodium channel. In April 2020 Flexion announced promising preclinical data
to support the development of FX301, a locally administered Nav1.7 inhibitor candidate
for post-operative pain. Although this is not an OA drug, its development has opened up
exciting new opportunities for targeting ion channels involved in OA pain.

TissueGene-C, developed by the US-based company Kolon TissueGene is another
exciting development in cell and gene therapy specifically developed for the treatment of
knee OA [69]. In this unique product, transfected and irradiated protein packaging cell lines
are used as “cellular factories” for the production of therapeutic TGF-β1. TissueGene-C is
a unique combination of cell and gene therapy targeting knee OA. The treatment strategy
is simple and is achieved through a single intra-articular injection of joint-derived chon-
drocytes mixed with irradiated GP2-293 cells, a protein production platform derived from
HEK293 cells. The general concept for TissueGene-C is presented in Figure 2. Effectively,
the GP2-293 cells in TissueGene-C are a protein-producing tool and “cellular factory”. We
have previously emphasized that native patient-derived primary chondrocytes do not
have the capacity to over-produce growth factors such as TGF-β1 in the high quantities
needed for effective cellular therapy and regenerative applications. TissueGene-C has
been shown to promote an anti-inflammatory micro-environment in OA via polarization
of M2 macrophages leading to pain relief and structural improvement [70]. Although
the mechanism of action of TissueGene-C is currently not thought to target ion channels
directly, this possibility has not been ruled out. The impact that TissueGene-C has on the
inflammatory micro-environment of the joint, specifically the reduction in pain, implies that
it has biological impacts across the entire cellular taxonomy of the joint (Figure 3) including
neurons in peripheral nerves, which warrants further investigation into its putative action
on joint innervation.
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Figure 3. The cellular taxonomy of the synovial joint in OA. Many cell types are involved in the process of OA development
and progression but of the research has focused on articular chondrocytes. A more comprehensive cellular taxonomy should
include all the cell types that are found within the synovial joint and greater emphasis on the phenotypic and functional
plasticity of peripheral neurons. In this scheme peripheral nerves are the primary targets of biological drugs targeting OA
pain. However, many of the other cell types produce and secrete pro-inflammatory cytokines such as IL-1β, TNF-α, IL-6,
IL-8 and growth factors such as nerve growth factor (NGF) and vascular endothelial growth factor (VEGF).

7. mAbs Targeting Ion Channels

The expanding collection of therapeutic mAbs represent a rapidly growing class of
biological drugs [96]. Whether mAbs are injected locally or delivered systemically, they are
becoming an important arsenal in precision medicine and targeted cancer therapy [97–99].
Many of the recently developed therapeutic mAbs have high specificity and affinity for
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their target antigen, which is often present on the cell surface [96]. This is why it is cru-
cially important to learn more about the surfaceome and membranome of chondrocytes
and other cell types within the synovial joint, which has been an active area of research
in our laboratory for the last few years [100,101]. The establishment of a comprehensive
surfaceome and membranome for chondrocytes and other synovial joint cells may combine
multi-omics approaches with conventional by chemical, immunological, cellular and in silico
techniques [102]. An important sub-component of the surfaceome and membranome is the
channelome, which is the complete set of ion channels and porins expressed in a cell [103].
Ion channels are a large family of transmembrane proteins that control ion transport across
the cell membrane. They are actively involved in almost all cell biological processes in both
health and disease and are widely considered as prospective therapeutic targets in many
cardiovascular, respiratory, musculoskeletal and neurological diseases [104–111]. The chan-
nelome has been partially been defined in chondrocytes using a combination of proteomic
and electrophysiological approaches [112–115]. However, thus far, no antibody-based drug
targeting ion channel has been developed for clinical use [116,117]. Despite this limitation,
there is huge potential for new research and development in this area. The technologies
for designing and producing antibodies have become increasingly streamlined, scalable,
simplified, practical and affordable. We need to focus on identifying pain targets and
developing mAbs against them. We must also take advantage of the technological advances
in protein and antibody engineering, cell and gene therapy, biomaterials and nanotechnol-
ogy [118–122] and innovate in this area to develop new diagnostics and therapeutics for the
benefit of people with OA and other forms of arthritis.

8. Discussion

The field of rheumatology received a massive boost from basic research conducted
in the field of oncology following the introduction of inhibitors of tumor necrosis factor
α (TNF-α) for the treatment of a range of rheumatological conditions, beginning with
RA [123–125]. OA is not the same as RA but the two diseases share some important charac-
teristics. At the present time, OA remains highly problematic as a disease entity. Existing
drugs only address symptoms of OA and there are no approved DMOADs [126,127]. OA
drug development is hampered by the lack of sensitive outcome measures and there are
only a handful of biomarkers that can be used to test the efficacy of new drugs [128].There
are at present no early biomarkers of early OA [129,130]. Several Phase II OA clinical trials
have recently failed but the therapeutic pipeline contains several promising biological
candidates and it is hoped that a few symptoms modifying drugs may be approved within
the next 3 to 5 years. Many future OA treatments are likely to be biological and developed
for intra-articular delivery. However, we will need better biomarkers to assess the efficacy
of these treatments and develop intra-articular biological treatments that are targeted
to intra-articular phenotypes of OA (i.e., articular cartilage, synovitis and sub-chondral
bone phenotypes). At the present time, we do not possess the tools for phenotyping and
stratification of heterogeneous OA cohorts. However, as we develop these tools using deep
phenotyping and multi-omics-driven approaches, we will be closer to achieving patient
stratification for more effective targeting of biological drugs (Figure 4).

We must exploit opportunities to develop novel biological drugs for intra-articular
injection and apply them as early as possible. Synovial biopsies and biomarkers have
been very useful for guiding rheumatology practice, monitoring disease progression and
response to therapy in RA and other rheumatic diseases. The situation is going to be much
more challenging in the case of OA. Synovial fluid and synovial biopsies are difficult
to collect and require invasive procedures but the collection and banking of these will
be needed for biomarker studies and future OA drug development. We also need to
develop more sensitive methods to non-invasively assess synovial joint inflammation using
magnetic resonance imaging and ultrasound. In conclusion, developing DMOADs remains
challenging and this is an area that will benefit from interdisciplinary collaboration to
develop new ideas into therapeutic innovations and treatments (Figure 5).
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Figure 5. Current clinical practice and proposed intra-articular therapeutic innovations that will shape the future state-of-
the-art in addressing OA symptoms and pain.

9. Conclusions

The aim of this review article was to highlight the roles of neuroscience and neuroim-
munology in the development of new therapeutics for OA. Neuroscience can potentially
offer new insights and solutions for OA pain. More research is needed to understand
the role of the central and peripheral nervous systems in OA. We need to learn more
about the physiology and pathophysiology of the peripheral innervation in OA and how
neuro-inflammation of peripheral nerves can be selectively targeted for more successful
outcomes in OA drug development. The intersection between the fields of neuroscience,
immunology, orthopaedics and rheumatology can offer new solutions for OA pain and
lead to the development of a new class of symptom and disease-modifying drugs that can
target the key molecular players involved in the progression of pain (i.e., NGF) and related
immunometabolic mechanisms, including the mechanistic target of rapamycin (mTOR) [24]
that can provide the metabolic fuels needed to sustain and perpetuate the inflammatory
pathways that eventually lead to pain in OA [131]. However, it is not sufficient to target
pain as an isolated entity. It is also important to target the pathways that lead to its devel-
opment, which is why research on new anti-inflammatory drugs and senolytic compounds
targeting chondrosenescence mechanisms [132,133] needs to continue in conjunction with
research on new analgesics that specifically target OA pain. Neuroscience and neuroim-
munology are likely to impact more profoundly on orthopaedics and rheumatology and
provide new therapies for OA symptoms and pain.
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