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Abstract: Depolarization block is such a mechanism that the firing activity of a neuronal system is
stopped for particular values of the input current. It is important to block epilepsy or unpleasant
firing rates. We investigate this property for a non-linear model of CA3 hippocampal neurons under
the action of endocannabinoid transmitters. The aim is to discover if they induce depolarization block,
a property already seen in other neuronal models and observed in some experiments, signifying that
the neural population increases its spiking frequency as some main parameter changes until reaching
a situation of no firing. The results is theoretical and it could be useful for investigating real system of
neurons of the hippocampus. In some papers it has been shown that this property is connected with
bistability, which means that the system has two equilibrium states for some ranges of its parameters.
Endocannabinoids influence the learning and memory process and so we concentrate our attention on
the CA3 neurons of the hippocampus. We find bistability and depolarization block for the considered
model, which is a generalization of the Wilson-Cowan model. The model describes average properties
of neurons divided in three classes: the excitatory neuronal population (CA3 neurons) and two types
of inhibitory neuron populations (basket cells). The exogenous concentration of cannabinoids is
the parameter that controls bistability. This result can be used for an experiment that could give
information for medical therapy. We study the time evolution of the synapses connecting the
excitatory population with two types of basket cells. The evolution of synaptic weights is considered
to be a toy model of the learning process. But this model cannot encompass the complexity and
diversity of exogenous and endogenous endocannabinoids effects in vivo.
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1. Introduction

Learning and memorization are regulated at the synaptic level by chemical substances termed
neurotransmitters. Amongst those, endocannabinoids displays a peculiar biological behavior.
The endocannabinoids are part of the wider cannabinoid (CBs) family of neurotransmitters,
which includes:
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• Phyto-CBs, they occur in flowering plants, liverworths and fungi. They were first isolated
from Cannabis sativa L., more thant 113 different cannabinoids were classified into distinct
types: cannabigerols (CBGs), cannabichromenes (CBCs), cannabidiols (CBDs), (-)-∆9-trans-
tetrahydrocannabinols (∆9-THCs), (-)-∆8-trans-tetrahydrocannabinols (∆8-THCs), cannabicyclols
(CBLs), cannabielsoins (CBEs), cannabinols (CBNs), cannabinodiols (CBNDs), cannabitriols (CBTs),
and miscellaneus cannabinoids;

• Synthetic-CBs (produced in the laboratory);
• Endocannabidoids (eCBs), naturally produced by the human body.

The phyto-CBs and the synthetic CBs can be grouped in the category of exogenous cannabinoids
to be distinguished from the endogenous cannabinoids.

The widespread interest in endocannabinoids is motivated by recent experimental studies
indicating that these neurotransmitters have an important modulatory action towards both excitatory
and inhibitory neurons [1].

Cannabinoids are an example of retrograde messengers that are produced by the post-synaptic
cells under certain conditions in order to engage their receptors on the pre-synaptic cell. The activation
of these receptors (termed CB1 receptors) triggers a reduction in secretion of the neurotransmitter
GABA, which is responsible for the inhibitory activity of the pre-synaptic cell on the post-synaptic
cell [2,3]. Therefore this mechanism by inhibiting GABA release generates a phenomenon known as
Depolarization-Induced Suppression of Inhibition (DSI) [4]. The reduction of inhibitory activity allows
storing of information deriving from both internal (sent from body to brain) and external stimuli.

It is thus generally believed that endocannabinoids are able to affect learning and memorization
because of their ability to regulate the potentiation of synaptic connections. In particular, it has been
shown that damage of the cannabinoid system (that can be caused by exogenous cannabinoids or by
schizophrenia or other mental illnesses) can negatively influence learning and memorization [5,6]. It is
thus important to understand how cannabinoids affect neuronal activity. The exogenous cannabinoids
bind to the same receptors as endocannabinoids and are thus able to alter the natural function of these
neurotransmitters. Utilizing the Zachariou et al. [6] model (the relevant equations are described in
Section 4), one can analyze qualitatively these phenomena by modifying the exogenous cannabinoids
concentration. This model describes the effect of cannabinoids on the CA3 pyramidal neurons and on
the basket cells along the perforant pathway. The model considers the evolution of the populations
of three types of neurons: CA3 neurons and basket cells with inhibitory action on the CA3 neurons,
the basket cells of type A having fast activity and those of type B being with slow activity We study
the learning process in the sense that we look for the evolution of the synaptic weights connecting the
excitatory populations of CA3 neurons with these two different types of basket cells. We notice also
that there is no experimental evidence of the influence of exogenous cannabinoids on the occurrence of
the depolarization block, while it is evident that exogenous cannabinoids influence the learning process.
The simulation of the learning process is given by the dynamics of the synaptic weights connecting the
excitatory population of neurons with the slow and fast basket cells. The learning process is modulated
by varying both the external and the internal cannabinoids concentrations. The equations utilized in
this study are based on the Wilson and Cowan model [7], to which the endocannabinoids dynamics
is added. In particular, we analyze the bifurcations of the model in relation to the variation of the
exogenous endocannabinoid concentration and, subsequently, we focus on the depolarization block.
This important phenomenon has been discussed by Bianchi et al. in relation to the CA1 neuronal
pathway [8]. We also show the connection of depolarization block with bistability. This connection
has been established in a paper by Kutznetzov et al. [9]. The dynamical model employs variable
synaptic weights in time, so we study at the same time the memorization process of the system of CA3
neurons of the hippocampus. This concept has been introduced by the Canadian psychologist Donald
Hebb [10], who postulated in 1949: "When an axon of cell A is near enough to excite cell B repeatedly
or consistently takes place in firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased", placing this mechanism at
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the basis of learning and memory. Some highly relevant studies on the functional architecture of the
hippocampus and its role in learning and memory can be found in [11–15]. In Section 2 we find all the
bifurcations, stability of limit cycles, saddle node bifurcations of cycles. In Section 3 we discuss the
results and give an interpretation in neurobiological terms of these mathematical properties.

2. Results

The equilibrium point utilized for the system bifurcation study is obtained by setting the
exogenous cannabinoid concentration CBexo and the applied external current I equal to zero. Since the
model used by us concerns the behavior of neuronal populations, all the results are about the collective
behavior of the excitatory neurons. Thus equilibrium points, stability, cycles, are properties of the group
of neurons of the same type, and we suppose that the majority of the neurons have the property of the
group in the real dynamics. The bifurcations are subsequently studied by modifying the exogenous
cannabinoid concentration. Figure 1 shows the obtained chart (the x axis represents the exogenous
cannabinoid level and the y axis represents the excitatory activity of the main neuronal population E).

Figure 1. The bifurcation diagram. The bifurcations have been studied by varying the CBexo parameter.
Two subcritical Hopf bifurcations are present. Indeed, unstable limit cycles originate from both points:
the set of limit cycles is represented by a line of small circles (each small blue circle represents the
maximum value of the neuronal activity E in the cycle corresponding to the circle), and the equilibrium
point changes from stable (red line) to unstable (black line).

As shown in Figure 1, the system is characterized by two Hopf bifurcations, and two
Neutral-Saddle NSP points for certain values of the model parameters reported in Table 1.
The Neutral-Saddle is a point (precisely a saddle point) such that the two real eigenvalues are equal
in module.

The first Lyapunov coefficient is positive for both Hopf bifurcations (cf. Table 1), therefore these
bifurcations are subcritical. Indeed, Figure 1 shows that, for the first bifurcation point, the stable
equilibrium (red curve) becomes unstable (black curve). Furthermore, unstable limit cycles (blue circles)
also appear. The unstable limit cycles collide as the CBexo parameter increases, through a saddle-node
bifurcation of cycles (LPC), with stable limit cycles (cf. Figures 1 and 2).
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Figure 2. Saddle-node bifurcation of limit cycles. Limit cycles originating from the first Hopf
bifurcation shown in Figure 1. The saddle-node bifurcation of limit cycles (LPC) is shown in red. In this
figure the entire limit cycle is plotted.

The saddle-node bifurcation of cycles is analogous to the saddle-node bifurcation for equilibrium
points. So in a saddle-node bifurcation of cycles, two limit cycles, one stable and one unstable, approach
each other until they collide and disappear.

In order to analyze the effect of the reduction of inhibition and increase of excitation, the first
factor is more important than the second, therefore one has to study the frequency of the neuronal
emission of spikes in the presence of limit cycles.

Table 1. Values of parameters relative to the system bifurcations in relation to changing CBexo values.
Notice that the variable E represents the activity of the excitatory population, while the variables A
and B are the fast and the slow interneuron’s activity, respectively.

Label E A B CBx I First Lyapunov Coefficient

LPC 0.9860651 0.6967288 0.7902171 1.557807 0

H 0.108009 0.143380 0.143380 1.657289 0 6.530075 × 10−1

NSP 0.176740 0.16826 0.168268 1.778074

NSP 0.893573 0.455675 0.455675 1.909606

H 0.893573 0.455675 0.455675 1.909606 0 8.212023 × 100

LPC 0.9980815 0.7236474 0.4869734 1.950302 0

Figure 3 shows (left to right) that up to the value 1.8 of CBexo the frequency of both stable and
unstable limit cycles increases with increasing values of CBexo. There is only a small interval, near to
the saddle-node bifurcation of limit cycles, where this type of behavior is inverted for unstable cycles.
At CBexo > 1.8 the frequency decreases, because the system has a second subcritical Hopf bifurcation.
This can be explained physiologically by the observation that a strong stimulus can force the neuron
transmembrane potential in a depolarized state of equilibrium, preventing the neurons to emit spikes.
In general Hopf bifurcations, both subcritical and supercritical, can terminate the periodic activity of
the neuronal dynamics.
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Figure 3. Variation of frequency. Dependence of the frequency of the stable (green circles) and
unstable limit cycles (blue circles) on the CBexo parameter.

The behavior of the solutions of the model allows us to hypothesize the presence of a
depolarization block for a certain value of exogenous cannabinoids higher than 1.9. By performing
several simulations, it is possible to determine a critical value of CBexo, CBexoc = 1.95, such that E(t)
has a depolarization block, i.e. the spiking activity of the population of neurons ceases. The population
remains silent for all values larger than this critical value. This behavior is illustrated in Figure 4.

Figure 4. Depolarization block obtained for CBexo = 1.95. For values smaller than the critical value,
the excitatory population of neurons shows a periodic activity. The first CBexo value for which the
spike emission stops is CBexo = 1.95.

We show in Figures 5–7 the sequence of stable cycles of the collective behavior of the E neural
population for different values of the CBexo parameter. The frequency has the same behavior as in
Figure 3: it increases and decreases at the end of the interval and has a maximum in the middle of
the interval.
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Figure 5. Sequence of periodic cycles of the E population as a function of CBexo set to a value of 1.6:
the red line is the variation of CBendo.

Figure 6. Sequence of periodic cycles of the E population as a function of CBexo set to a value of 1.8:
the red line is the variation of CBendo.

Figure 7. Sequence of periodic cycles of the E population as a function of CBexo set to a value of 1.9:
the red line is the variation of CBendo.
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It is interesting to determine whether the depolarization block occurs in the bistability range.
The saddle-node cycle bifurcation is obtained for a value of CBexo smaller than the one generating
the Hopf bifurcation. Therefore in the region between the saddle-node bifurcation of cycles and the
subcritical Hopf bifurcation there are two simultaneous stable solutions: the equilibrium point and
the periodic solution. In this situation, termed bistability, the neuron can either be quiescent or in an
active state of periodic spike emission for a certain CBexo depending on the initial state of the dynamics
(see Figure 8).

Figure 8. Example of bistability for CBexo = 1.57. The red curve is obtained for the following initial
values: E(0) = 0.25, A(0) = 0.28, B(0) = 0.3. The initial data are located in the basin of attraction of
the stable limit cycles thus in this case the solution is periodic. The cyan curve is obtained for the same
CBexo value as above but for the following initial data: E(0) = 0.1, A(0) = 0.2, B(0) = 0.2. In this case
the dynamics is attracted by the stable equilibrium point.

Varying the bifurcation parameter in Figure 1 from right to left, one can see the same behavior
for the second Hopf bifurcation point. As we can see in Table 1 and Figure 1, the values of exogenous
cannabinoid concentation for which one has bistability belong to the intervals

CBexo ∈ [1.557807, 1.657289] ∪ [1.909606, 1.950302].

Therefore the critical CBexoc = 1.95 value for which we have the depolarization block belongs to
the bistability interval.

We can show that there are various bifurcations in two-parameter space. Studying the diagram of
the first and second Hopf point including the variation of the external current I as well, we obtain the
bifurcations reported in Figure 9.

The first point of bifurcation we observe is Bogdanov-Takens (BT) ( the case when the two
eigenvalues are equal to zero). The presence of such a bifurcation allows us to postulate the existence
of a saddle-node bifurcation for a fixed I value. Bogdanov-Takens bifurcation is obtained when the
saddle-node bifurcation collides with an Andronov-Hopf bifurcation. As shown in Figure 10, the BT
bifurcation originates exactly in the intersection point of the two curves represented by the Hopf
diagram (green) and the saddle-node bifurcation diagram (violet).
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Figure 9. Bifurcation diagram with two variables. The upper figure represents (violet line) the
bifurcation diagram of the equilibrium points. The blue line shows the bifurcation diagram obtained
by a two parameter (CBexo and I) study of Hopf bifurcation points. The figure below shows the
continuation of the first H point seen in a plane with coordinates CBexo and I.

Figure 10. Bogdanov-Takens bifurcation. This figure illustrates the study of the first bifurcation
point BT seen in Figure 9. Homoclinic orbits on a saddle point (disappearing in the Bogdanov-Takens
bifurcation point) in the phase space are shown in blue. This bifurcation point originated in the
intersection between Hopf curve (green line) and the saddle-node bifurcation curve (violet line).
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Figure 10 also shows another type of two parameter bifurcation: the cuspid (indicated with the
CP label). The cuspid is a two-parameter bifurcation that can be found in an autonomous differential
equations system, and is generated when two saddle-node bifurcations collide. Thus, this bifurcation
type is seen when, in the two-parameter space, two branches of the saddle-node bifurcation diagram
touch each other tangentially originating a semicubic parabola. In fact, if we analyze the area
surrounding the cuspid point shown in Figure 10 (in the plane with I and CBexo coordinates) we obtain
the semi-cubic parabola as shown in Figure 11.

Figure 11. Image of the two-parameter study of the saddle-node bifurcation points. The cuspid
bifurcation corresponds to the points where the two branches of the saddle-node bifurcation diagram
touch each other tangentially.

For parameter values close to that of cuspid bifurcation, the system can present therefore three
types of equilibrium that disappear in a single saddle-node bifurcation.

3. Discussion

The two subcritical Hopf bifurcations that have been found in this study have a precise
neurobiological meaning. For each of the two bifurcations there is a stable fixed point surrounded
by an unstable periodic orbit. Instability in this case means that if one looks for the periodic orbit
in the (t, E) space, any small departure from it will bring the system of CA3 neurons out of this
periodic orbit. An unstable limit cycle (similar to an unstable node or focus) means that the dynamic
system intrinsically departs from it and falls either in a stable node or a stable limit cycle. Thus it is
very difficult to reveal it during the simulation. When the parameter CBexo approaches the critical
value, which is in the interval (1.6, 1.7) for the first transition and in the interval (1.8, 1.9) for the
second transition, the unstable periodic orbit collapses on the stable point which becomes unstable.
The main effect is the change of stability of the equilibrium point of the neuron population.So for
every value of the main parameter CBexo ata the left of the first H point in Figure 1 there is an unstable
periodic orbit, and another unstable periodic orbit appears after the second H point. These cycles
are important but rather difficult to catch numerically. The two Neutral Saddle Points (NSP) in the
figure are two fixed points in the limiting case when the two eigenvalues are equal. The saddle point
is a point which is stable in one eigenvalue direction and unstable in the other one, meaning that
one eigenvalue is positive and the other is negative. So a saddle point is an unstable equilibrium
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point: in the special NSP case the two eigenvalues have equal absolute value. This means that a
small perturbation of this motion in the stable direction should amplify the motion in a similar way
as the perturbation in the other direction. The saddle-node bifurcation of the cycles (or limit point
of cycles - LPC) is the analogous of the saddle-node bifurcation of equilibrium points. An unstable
orbit collides with a stable one and they annihilate each other: in the case of equilibrium points a
stable one approaches an unstable one and disappears. In terms of neuronal oscillations this means
that there are two oscillations of the CA3 excitatory neurons, one stable and another one unstable,
which approach each other and disappear for the values of (CBexo, E) shown in the picture. There is
also a line of stable limit cycles connecting the two LPC cycles. These are stable oscillations of the E
population of neurons. The set of stable cycles corresponding to the green line of Figure 3 is shown in
Figures 5–7: the frequency changes in agreement with Figure 3. In general these geometrical figures
have a basin of attraction, so not all the LPC, NSP, unstable or stable orbits have been found during
this study but the knowledge of their existence gives an indication for what values of parameters
one can have such a behavior of the system. In order to see all of them it is necessary to choose in a
proper way the initial conditions, which represents a lengthy and tedious work. We also underline
that the behavior with respect to the CBexo parameter is not changed if one varies the b parameter
of the endocannabinoids or the β parameters of the sigmoid function used in the main evolution
Equation (1). The other type of Hopf bifurcation is the supercritical one, which does not appear for this
model. From the theory of stability of solutions of systems of differential equations it is well known
that the sign of the Lyapunov coefficient determines the type of Hopf bifurcation. In our case these
coefficients are both positive and so the transition is subcritical. The concept of bistability is explained
in the section of the Results. We want to mention here that it is clear from Figure 4 that there is a
block of the spiking activity of the E population, and from Figures 5–7 that when CBexo approaches
the first Hopf bifurcation point the spiking frequency increases (1.6, 1.8 and 1.9 are the values of the
CBexo parameter) and then for CBexo = 2 the spikes vanish. In these figures CBendo is reported and one
can see that it oscillates with the activity of the group of the excitatory population of CA3 neurons.
This implies the oscillation of the synaptic coupling weights and so there is a learning process going
on, which ends when the oscillations cease. The meaning of the phase diagram obtained by varying
two parameters is more subtle but it can be analyzed in an analogous way. The model we used is a
simplified mathematical model, it is intrinsically limited and cannot encompass the complexity and
diversity of the effect of exogenous and endogenous endocannabinoids in vivo [16]. The main effect
of endocannabinoids on synaptic plasticity is long-term depression (LTD) (not long-term potentiation),
first observed in the striatum [17] and then in other brain structures [1]. Furthermore smoking cannabis
impairs short-term memory [18]. Mice treated with tetrahydrocannabinol (THC) show suppression of
long-term potentiation in the hippocampus [19].

4. Materials and Methods

The model used in this article is taken from [6] and is based on the Wilson-Cowan model.
The Wilson-Cowan (WC) [7] model consists of two nonlinear first order differential equations, created to
describe the dynamics of a neuronal population, localized in space, containing both excitatory and
inhibitory cells. This model describes the averaged dynamics of a class of neurons and thus is
not a model of individual neurons. Nevertheless we consider it interesting also because the single
neuron model cannot be studied with bifurcation analysis due its complicated phenomenological
structure [4]. In contrast to the Wilson and Cowan model [7], in this model we utilize three
differential equations describing the activity of AMPA excitatory synapses, of the inhibitory GABAB
synapses (characterized by a slow action) and inhibitory GABAA synapses (characterized by a more
rapid action).

The cells utilized in this model are the pyramidal cells, representing the excitatory population,
and the basket cells, representing the inhibitory population. Both types of cells are constituent part of
the CA3 hippocampal pathway. In Figure 12 the scheme of the model is represented.
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Figure 12. Schematic representation of the model. The triangular neuron represents the excitatory
neuron population (E) while the round one represents the fast activated basket neuron population
(A) and the slow activated basket neuron population (B). The synaptic connections are represented by
round tip arrows (for inhibitory synapses) or by pointed tip arrows (for excitatory synapses). WXY with
X, Y ∈ (E, A, B), represent the synaptic weights.

The activity of the cells is described by the following equations:

QEE = f (WEA A + WEBB + WEEE + I)
QA A = f (WAA A + WABB + WAEE + I)
QBB = f (WBA A + WBBB + WBEE + I)

(1)

where
QX = (1 + α−1

X
d
dt
)2, X ∈ (A, B, E) (2)

with αX ∈ R parameter. The variable E represents the activity of excitatory population while the
variables A and B are the fast and the slow interneurons activity respectively.

Another difference between this model and the Wilson and Cowan model is that, in this case,
the differential equations are second order to better reproduce the real synaptic response.

The excitatory synapses are characterized by positive sign (WXE > 0) while the inhibitory ones
are characterized by negative sign (WXA < 0 and WXB < 0). The f function, following the Wilson and
Cowan formalism, is sigmoid shaped: f = Sβ(u) with

Sβ(u) =
1

1 + e−βu (3)

where β is a parameter describing the steepness of the sigmoid function.
It is necessary to introduce the cannabinoid dynamics into the system. As we mentioned in the

introduction of the previous section, the activation of cannabinoid pre-synaptic receptors leads to
a decrease in inhibitory activity. In order to reproduce this behavior we have thus to modulate the
synaptic weights WEA and WEB. For the sake of simplicity, one might choose

WEX(CB) = W̄EX [1− Sγ(CB)] X ∈ (A, B), (4)

where
CB = CBexo + bCBendo b ∈ (0, 1) (5)

The parameter CBexo indicates the exogenous cannabinoid level (introduced from the outside)
while CBendo is the endogenous cannabinoid level (naturally produced).

The exogenous cannabinoid level is controlled experimentally while the endogenous cannabinoid
level is controlled by the following dynamic process:

τ
dCBendo

dt
= −CBendo + Sδ(E), (6)
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where τ is the characteristic time course of degradation the endogenous CBs. In this model the
concentration of endocannabinoids is connected with the activity of the excitatory population E,
the total level CB of cannabinoids is connected with the inhibitory synaptic weights WEX(CB).
We consider the time evolution of these synaptic weights to be the learning process according to
the general interpretation. Also since there is a one-to-one functional dependence among the synaptic
weights WEX , X = A, B and CBendo, it is enough to study the time evolution of this variable. It is also
interesting to study the bifurcation behavior with respect to the total CB.

The parameters used for simulations in Section 2 are

WEE = WAE = WBE = WAE = 1, b = 1, (7)
WAA = WAB = WBB = −1, (8)

W̄EA = −2, W̄EB = −20, (9)

αE = 0.1, αA = 0.2, (10)

αB = 0.005, β = 10, (11)

γ = δ = 1, τ = 100. (12)

We have used MATCONT for the analysis of the dynamical behavior of the system.
MATCONT computed eigenvalues of the Jacobian matrix of the system linearized around the
equilibrium points, computed the condition of stability of the trajectories, etc.

5. Conclusions

The depolarization block has been investigated with different types of models. In the paper [8]
it has been derived by numerical integration of a system of differential equations for the electric
potential of a one-compartment model of CA1 neurons with different input ionic currents.
The computations were performed using the NEURON simulation environment (version 7.1 Hines
& Carnevale [20]). The conductance of the currents has been adjusted in order to get the result,
which justified this important experimental result. In [9] the bifurcation analysis of a Hodgkin-Huxley
model for the squid axon has been done. It was shown that the depolarization block is a consequence
of a mathematical property of the model, i.e., two different stable solutions of the model were present
at the same time for certain values of the model parameters. But also the conductances of this model
were changed for getting the result. In this paper we find this property exploring the Wilson-Cowan
model of CA3 hippocampal neurons, this is a new result. It could suggest that new experiments
could be done in order to check this property. In fact, we find a critical interval of the value of the
exogenous concentration of cannabinoid CBexo such that the CA3 neurons stop firing. If confirmed
by experimental findings this result can be used for stopping epileptic seizures. The model does not
include the phenomenological details of the system of CA3 neurons with the action of endocannabinoid
but contains some interesting elements. The input-output relation of the neurons is the typical sigmoid
function of the neuron’s activity. The evolution is characterized by the interaction of CA3 neurons
with two types of inhibitory cells. The neurons are divided into three groups one is excitatory and
two are inhibitory. The model investigates the average properties of each group. The synaptic weights
connecting the three different types of neurons are chosen empirically without any reference to the
real synapsis and current. But this method has been employed also in the other two papers. Anyway,
the model exhibits a rich phenomenology and one can see that the spiking sequences are stopped for
certain values of CBexo. We give a biological interpretation of all the graphs obtained by the simulation.
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