
Citation: Goel, M.; Sharma, A.;

Sharma, B. Recent Advances in

Biogenic Silver Nanoparticles for

Their Biomedical Applications.

Sustain. Chem. 2023, 4, 61–94.

https://doi.org/10.3390/

suschem4010007

Academic Editors: Francesca

Deganello and Matthew Jones

Received: 15 October 2022

Revised: 17 February 2023

Accepted: 2 March 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Recent Advances in Biogenic Silver Nanoparticles for Their
Biomedical Applications
Muskan Goel 1, Anurag Sharma 2 and Bechan Sharma 3,*

1 Amity School of Applied Sciences, Amity University, Gurugram 122413, Haryana, India
2 Amity School of Biotechnology, Amity University, Gurugram 122413, Haryana, India
3 Department of Biochemistry, University of Allahabad, Allahabad 211002, Uttar Pradesh, India
* Correspondence: sharmabi@yahoo.com

Abstract: Owing to the unique property of large surface area/volume of nanoparticles, scientific
developments have revolutionized the fields of nanotechnology. Nanoparticles can be synthesized
through physical, chemical, and biological routes, where biologically synthesized nanoparticles are
also referred to as biogenic-synthesized nanoparticles or bionanoparticles. Bionanoparticles exploit
the inherent reducing property of biological entities to develop cost-effective, non-toxic, time-efficient,
sustainable, and stable nanosized particles. There is a wide array of biomedical focus on metallic
nanoparticles, especially silver nanoparticles, due to their distinctive physiochemical properties
making them a suitable therapeutic molecule carrier. This article aims to provide a broad insight
into the various classes of living organisms that can be exploited for the development of silver
nanoparticles, and elaboratively review the interdisciplinary biomedical applications of biogenically
synthesized silver nanoparticles in health and life sciences domains.
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1. Introduction

In the past decade, the field of nanoscience and nanotechnology has revolutionized
science and technology. The term nanoparticle is defined differently by ISO [1], ASTM [1],
and IUPAC [2]. The definitions by different organizations consider a variety of attributes
such as particle number, concentration of particles, particle size distribution, aggrega-
tion/agglomeration of nanoparticles, etc. [1]. However, an internationally recognized
definition of nanoparticle has not been established. Apart from the nomenclature, other
challenges in the field of nanotechnology include a lack of (a) validated analytical methods
and test protocols, (b) reliable exposure and toxicity data, and (c) accurate analytical tech-
niques to precisely characterize nanoparticle morphology [3]. All these developments and
challenges suggest robust research and development in nano-research and the importance
of nanotechnology in the ever-changing scientific scenario.

In nanoscience and nanotechnology, there is a focus on metallic nanoparticles, espe-
cially silver nanoparticles (AgNPs), for their distinctive catalytic activity [4], electrical and
thermal conductivity [5], non-linear optical properties [6], and surface-enhanced Raman
scattering properties [7]. Moreover, studies suggest that AgNPs have excellent market value
in comparison to other nanoparticles from the consumer’s perspective [8]. In medicine
and biomedical applications, therapeutic effects largely depend on the pharmacokinetics
and pharmacodynamics of AgNPs [9]. Due to their biocompatibility and viability, AgNPs
act as suitable therapeutic molecule carriers of anticancer [10,11], antimicrobial [12,13],
antioxidant [14], and anti-inflammatory [15,16] agents. Moreover, the intrinsic properties
of AgNPs, such as binding affinity for various organic molecules and strong absorption,
make them a potential candidate for vaccine development and as drug carriers for specific
and selective tissue targeting [17]. Even after extended research, there lies a vast gap in
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the investigation of AgNPs for biomedical applications. The major hindrance is that the
state of AgNPs depends on the medium in which it interacts [18]. For example, AgNPs
undergo agglomeration, aggregation, and dissolution on exposure to biological media and
biomolecules due to various factors such as organic matter, pH, ionic strength, etc. [18,19].
Another issue is the unavailability of a systemic pattern of comparative analysis of AgNPs
for their effects in currently published papers [20,21]. The current studies are focused on
synthesizing AgNPs while minimizing these limitations.

AgNPs can be synthesized through three alternative methods, namely physical, chem-
ical, and biogenic routes. The chemical and biogenic routes of AgNPs are comparable, as
reducing and stabilizing agents help convert silver ions to AgNPs and further coat particles
to maintain size in the nano-size range and anisotropic shape. However, in biogenic routes,
biological species act as reducing and/or stabilizing agents in contrast to specific chemicals
used in the chemical route. The role of biological species to reduce and/or stabilize and
further coat AgNPs makes them an attractive candidate to investigate some prominent
concerns such as agglomeration and aggregation. The biogenic methods of synthesizing
AgNPs were initiated nearly two decades ago, and currently, more than 1000 biological
species are employed in synthesizing AgNPs. It represents a massive success in the biogenic
synthesis of AgNPs. This article is specifically focused on the biological route of AgNPs
synthesis, where biological species act as a catalyst by reducing, stabilizing, and/or cap-
ping Ag+ ions. Various reviews on silver nanoparticles and their biomedical applications
are available [22–26]. However, a single elaborative review on the use of all biological
species for silver nanoparticle synthesis is not available. This article aims to review various
employed biological species such as microorganisms, plants, viruses, and human cell lines
involved in the synthesis of AgNPs. The article also throws insight into the biomedical
applications of biogenic AgNPs.

2. Biosynthesis of AgNPs
2.1. Methods of Biosynthesis: Physical, Chemical, and Biological

The synthesis of AgNPs can follow a top-down (physical route) or bottom-up ap-
proach (chemical and biological route), as depicted in Figure 1. The top-down approach
does not require reducing or stabilizing agents but follows specific techniques reviewed
elsewhere [27]. On the other hand, the bottom-up approach requires reducing or stabilizing
agents reviewed elsewhere [27]. The reducing and stabilizing agents in the bottom-up
approach may be chemical or biological entities classifying this route into chemical and
biological methods of AgNPs synthesis, respectively, as depicted in Figure 1. The chemical
route of AgNPs synthesis is commonly a three-component system consisting of a metal
precursor, reducing agent, and stabilizing agent, where the initial concentration of the metal
precursor, the concentration of the stabilizing agent, the potential of the reducing agent,
and the molar ratio of metal precursor to reducing agent determine AgNPs size [28]. For
example, strong reducing agents (e.g., borohydride) form small-sized AgNPs in contrast to
weak reducing agents (e.g., sodium citrate) that produce large-sized AgNPs [28]. The major
shortcoming in chemically synthesized AgNPs is the adsorption of certain chemicals on
AgNPs surfaces leading to health hazards and toxicity and obstructing their advancement
to biomedical use. In contrast to the chemical route, which generally is a three-component
based system, the biological route is a two-component system where biological entities
both act as reducing and stabilizing agents to reduce metal precursors and stabilize the
formed nanoparticles. The use of biological entities both as reducing and stabilizing agents
increases their possibility to improve stability, reduce aggregation, increase the reaction rate,
and provide efficient purification of AgNPs. Moreover, the adsorption of organic molecules
from biogenic species on AgNPs increases their potential for biomedical activity. For exam-
ple, coating metallic nanoparticles with phytochemicals is suggested to improve the stability
of nanoparticles in the external environment and prevent colloidal aggregation [29,30]. In
support of this, Mousavi-Khattat et al. stated that though chemically synthesized AgNPs
had higher stability after synthesis, their stability decreased with time in comparison to
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biogenic-synthesized AgNPs [31]. They further suggested that the synergistic effect of
phytochemicals and their coating on AgNPs improve the antibacterial efficacy of biogenic-
synthesized AgNPs [31]. A similar study on the functionalization of organic groups on
AgNPs surfaces leading to their better anticancer activity in contrast to chemically synthe-
sized AgNPs has been carried out by Kummara et al. [32]. In contrast, Spagnoletti et al.
suggested similar bactericidal activity of chemical and biogenic-mediated AgNPs with
lower toxicity by the latter (further discussed in Section 2.2.3) [33]. Sreelekha et al. also
carried out a comparative study on chemically and biogenically synthesized AgNPs, sug-
gesting that the water-soluble biomolecules adsorbed on AgNPs surfaces provide higher
stability to green-synthesized AgNPs and support their higher antioxidant activity [34].
A similar comparative analysis to differentiate the properties of AgNPs produced by the
biogenic route from that of the chemical route has been carried out by Veeragoni et al.
(discussed further in Section 2.2.5) [35].
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Figure 1. The figure depicts various methods of synthesis of nanoparticles with special emphasis on
biogenic method of AgNPs synthesis.

The use of biological molecules for synthesizing bionanoparticles is mediated by plants,
living organisms, their by-products, or their functional entities. Amongst them, plant-based
approaches are substantially preferred due to easy scale-up and higher availability [31].
Furthermore, plants have higher sustainability than other organisms (such as bacteria,
actinomycetes, fungi, algae, yeast, viruses, and human cell lines). These organisms require
various mandatory conditions (cell line maintenance, cautious handling, may pose a threat
of infection to the lab individuals), which decrease their suitability. In this, the reduction of
Ag+ to Ag0 is the primary step carried out by the biological entity or its products [36]. Along
with the biological entity, the process may also involve ionizing irradiation [37,38], laser
irradiation [37], microwave irradiation [39,40], and pulse radiolysis [37]. The biological
route is usually energy-efficient; however, employing such techniques may increase energy
consumption. Sharing some characteristics of alternative methods, the biological route of
AgNPs synthesis can be eco-friendly [23,41], may require less energy [23,42], and support
mass production [43], economic feasibility [23,43,44], sustainability, and renewability [45].
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The biogenic synthesis of AgNPs can occur intracellularly or extracellularly, as de-
picted in Figure 2. Due to the diversity and interaction of microorganisms with various
metal ions via distinct mechanisms, the exact mechanism of intracellular nanoparticle
synthesis is not clear. It is believed that in intracellular synthesis, the positively charged
silver ion electrostatically interacts with the negatively charged microbial cell wall or the
negatively charged biomolecules (such as enzymes or proteins) present in the microbe’s
cytoplasm. The microbial enzymes reduce the silver ions, forming small nuclei of distinct
morphologies [46–48], and the formed AgNPs can easily diffuse out from the microbial
cell wall or cytoplasm. According to the generalized laboratory protocol, the biomass is
(a) washed and centrifuged to separate microorganisms from other substances, (b) microor-
ganisms are inoculated with a metal salt solution, and (c) nanoparticles are collected after
cell lysis and centrifugation [49]. The extracellular synthesis of nanoparticles depends on
the proteins present on the microbe’s cell surface or the enzymes secreted by microbes.
According to the generalized laboratory protocol, (a) the microorganisms are cultured
under suitable conditions for 1–2 days in a rotating shaker, (b) the culture is centrifuged to
separate microorganisms from other substances, (c) the microorganisms are inoculated with
metal salt solution, and finally (d) the nanoparticles are collected after centrifugation [50].
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Figure 2. The figure depicts intracellular and extracellular biogenic synthesis of AgNPs mediated by
biological species.

2.2. Biological Species for Nanoparticles Synthesis
2.2.1. Bacteria

Bacteria are prokaryotes that have developed a natural defense mechanism to survive
continual exposure to toxic metals and environmental conditions [51]. The resistance
of bacteria to metals such as silver causes the accumulation of Ag+ in their cell wall,
aiding in AgNPs synthesis. Therefore, bacteria’s natural mechanisms are exploited for
nanoparticle synthesis. The bacterial biomass [52] or supernatant [53] helps in intra- or
extracellular AgNPs synthesis. The bacteria’s major functional groups involved in synthesis



Sustain. Chem. 2023, 4 65

are carboxylic, hydroxylic, and primary and secondary amides. The major advantages are
a high growth rate and easy handling, amongst others. [54,55].

In bacteria-mediated AgNPs synthesis, nanoparticles can be produced from bacterial
genomic DNA, culture broth, cell-free supernatants, or protein extracts. Chumpol et al. syn-
thesized AgNPs using both ssDNA and dsDNA and stated that bacterial ssDNA-mediated
AgNPs were more stable than dsDNA, as silver ions interacted more efficiently with the
nitrogenous bases of ssDNA (produced from denaturing dsDNA) [56]. However, this
preparation method involves a three-component system where glucose was additionally
required for the conversion of silver ions [56]. Furthermore, their time-dependent synthesis
studies suggested that longer time reactions resulted in aggregation, which was confirmed
by the shift in SPR peak to a longer wavelength in proportion to time [56]. Saravanan et al.
synthesized AgNPs using a culture broth of Bacillus brevis (NCIM 2533) and stated that
the coating of proteins (from cultural extract) on AgNPs surfaces results in minimal ag-
glomeration [57]. These results are in parallel to studies of Yurtluk et al., who synthesized
AgNPs from Bacillus sp. SBT8 and obtained similar SPR peaks [58]. However, Yurtluk et al.
also studied the effects of pH and temperature and stated that particle size increases with
pH and efficient yield occurs at 33–37 ◦C [58]. To further analyze the effects of pH, Ar-
zoo et al. isolated 155 strains of Pseudomonas spp. from the rhizosphere, of which three
strains, namely SMS13, SMS100, and SMS124, were most efficient in AgNPs synthesis [59].
Arzoo et al. stated that AgNPs (from Pseudomonas aeruginosa) were synthesized at the
beginning or end of the log phase when most bacterial metabolites are produced and
in turn fluctuated the environmental pH [59]. Similar to this, Sable et al. demonstrated
the role of nitrate reductase and other enzymes from Bacillus subtilis spizizenii in AgNPs
synthesis and further suggested that the media components might alter the particle size
and optical properties of AgNPs [60]. In contrast to the study conducted by Yurtluk et al.,
Saleem et al. synthesized AgNPs using bacterial strains (wus1, wus2, and wus5) and
suggested that high pH negatively impacts AgNPs synthesis and affects SPR peak [61].
However, the optimum temperature for AgNPs synthesis reported in both studies was
parallel to that reported by Singh et al. [62]. Furthermore, Singh et al. suggested the role of
water-soluble biomolecules and active enzymes as reducing and capping agents, which
were parallel to the results from the above-discussed studies [62]. An interesting study to
confirm the role of bacterial proteins was conducted by Li et al., where they used protein
extracts of Deinococcus radiodurans and suggested that bacterial protein extracts produced
monodispersed and spherical AgNPs due to the interactions (reduction and capping) of
silver ions with hydroxyl, amine, carboxyl, phosphate, or sulfhydryl groups of proteins of
Deinococcus radiodurans [63]. The morphological characteristics and applications as studied
by bacteria-mediated AgNPs are summarized in Table 1.

Table 1. Bacteria-mediated synthesis of AgNPs, their morphological characteristics, and their applications.

Bacteria Morphological Characteristics Application Studied References

Escherichia coli strain DH5α Spherical, 15.0 ± 7.6 nm (TEM) Antibacterial activity [56]

Bacillus brevis NCIM 2533 Spherical, 41–68 nm (SEM)
Antibacterial activity against

multidrug-resistant pathogens such as
Salmonella typhi and Staphylococcus aureus.

[57]

Bacillus sp. SBT8 20.7 ± 10.5 nm (SEM) Antibacterial activity against Gram-positive
and Gram-negative pathogens. [58]

Pseudomonas aeruginosa Spherical, 60 nm to 70 nm (SEM)

Antibacterial activity against Salmonella typhi,
Shigella dysenteriae, Klebsiella pneumoniae,

P. aeruginosa, Proteus mirabilis, and
Streptococcus epidermidis

[59]
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Table 1. Cont.

Bacteria Morphological Characteristics Application Studied References

Bacillus subtilis spizizenii

Quasi-spherical, 10 ± 2 nm (TEM) Antibacterial activity against Gram-negative
(Escherichia coli, Pseudomonas aeruginosa, and
Burkholderia cenocepacia) and Gram-positive

(Staphylococcus aureus, Streptococcus faecalis, and
Clostridium sporogenes) strains

[60]
Quasi-spherical, 23.8 ± 2 nm (TEM)

E. coli strain (wus1, wus2)
Bacillus sp. (wus5) Spherical, 10–60 nm (TEM) Control the nosocomial infections triggered by

Methicillin-resistant Staphylococcus aureus [61]

Solibacillus isronensis Quasi-spherical,
80–120 nm (TEM)

Antibiofilm activity against Escherichia coli and
Pseudomonas aeruginosa [62]

Deinococcus radiodurans Spherical, 37.13 ± 5.97 nm (TEM) Anticancer activity against MCF-10A cells [63]

Streptomyces malachitus Round, 19.50 ± 6.72 nm (XRD) maternal-fetal transplacental transfer assay [64]

Nisin Spherical, 233 nm (TEM) Evaluate inflammatory activity in
macrophage cells [65]

2.2.2. Actinomycetes

Actinomycetes are Gram-positive, aerobic entities [66] with bacteria-like cell wall
composition [67] and fungus-like branched filamentous growth [68,69] found both in soil
and aquatic conditions. There is comparatively a limited number of studies synthesizing
AgNPs via actinomycetes. Actinomycetes are involved in the intra- and extracellular syn-
thesis of nanoparticles [47]. In AgNPs synthesis, the reduction and consequent formation
of nanoparticles occur on the mycelial surface and in the cytoplasm [47,70]. Ag+ ions get
trapped on the surface, which then interacts with the functional groups of biomolecules
present in mycelia, leading to Ag+ reduction [68]. Streptomyces species, the largest genus
of actinobacteria, are involved in the synthesis of AgNPs with numerous biomedical appli-
cations. The actinomycetes mediating the synthesis of AgNPs have multiple advantages,
such as monodispersity over polydispersity [71], small-sized particles that increase stability
and biocompatibility, and biocidal features [72]. Monodispersed nanoparticles have an
added advantage, as they suggest better sample-wide uniformity, lower aggregation, and
higher stability.

In actinomycetes-mediated AgNPs synthesis, nanoparticles are majorly produced
from the culture broth or cell-free supernatant of actinomycetes. Wypij et al. synthesized
small-sized AgNPs (that increased stability and biocompatibility) from the Streptomyces
xinghaiensis OF1 strain, capped with organic compounds such as amino bonds [73]. Simi-
larly, S. et al. synthesized AgNPs from the Streptomyces hirsutus strain SNPGA8, where the
presence of FTIR-intense bands suggested the role of functional groups, namely alcohols,
bromide, iodide, chlorides, and sulfates, in the reduction, stabilization, and capping of
AgNPs [74]. However, the above two studies reported the formation of polydispersed
AgNPs. To understand the dispersity phenomenon, Mabrouk et al. synthesized AgNPs
from Streptomyces spiralis and Streptomyces rochei and found that the organism’s strain played
a critical role in the size homogeneity of nanoparticles [75]. For example, they found that
Streptomyces rochei could produce monodispersed AgNPs, as a single low-molecular-weight
protein was involved in reduction, capping, and stabilization in comparison to the involve-
ment of numerous varied molecular-weight proteins in the production of polydispersed
AgNP from Streptomyces spiralis [75]. Furthermore, they stated that bactericidal activity is
higher for smaller-sized nanoparticles, as they have a higher surface area than large-sized
nanoparticles [75]. The morphological characteristics and applications of actinomycetes-
mediated AgNPs have been elaborated in Table 2.
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Table 2. Actinomycetes-mediated synthesis of AgNPs, their morphological characteristics, and
their applications.

Actinomycetes Morphological Characteristics Application Studied References

Streptomyces xinghaiensis OF1 Spherical, 5–20 nm (TEM) Antimicrobial and
antibacterial activity [73]

Streptomyces Hirsutus Strain SNPGA-8 Spherical, 18.99 nm (TEM) Antimicrobial and
anticancer activity [74]

Streptomyces spiralis Spherical, 20–60 nm (TEM)
Antibacterial activity [75]

Streptomyces rochei Spherical, 5–40 nm (TEM)

Streptomyces capillispiralis Ca-1 Spherical, 23.77–63.14 nm (TEM)
Antimicrobial, antioxidant,

and larvicidal activities
[76]Streptomyces zaomyceticus Oc-5 Spherical, 11.32–36.72 nm (TEM)

Streptomyces pseudogriseolus Acv-11 Spherical, 11.70–44.73 nm nm (TEM)

2.2.3. Fungi

Fungi are eukaryotic, unicellular, or multicellular heterotrophs that obtain food from
dead or living organisms. Fungi have a higher preference than other microorganisms for
nanoparticle synthesis [77], as they are easy to grow, handle, and resist agitation amongst
other extreme processing conditions. They secrete many proteins, enzymes, and polysac-
charides, which play a vital role in synthesizing a diverse range of nanoparticles [78]. The
major functional groups involved are carbonyl, amide, hydroxyl, etc. [79,80]. Nanoparticles
can be synthesized intracellularly and extracellularly. Intracellular synthesis provides
better control over size, while extracellular synthesis is hassle-free due to easy downstream
processing steps. Fungi also have an appreciable binding capacity, tolerance, bioaccumula-
tion, and intracellular uptake for silver ions under various experimental conditions [81].
Moreover, the size and structure of fungal-mediated AgNPs can be manipulated by altering
pH, temperature, time, and other culture conditions.

Soleimani et al. studied the effect of different pH (5.0, 6.0, 7.0, and 8.0) and tempera-
tures (40 ◦C and 60 ◦C) for fungal strains, namely Beauveria bassiana (JS1, JS2, and KA75) and
Metarhizium anisopliae, and stated that 60 ◦C and pH 7.0 were optimum conditions for the
production of small-sized AgNPs in high concentrations [82]. Furthermore, they suggested
that isolates KA75 and JS1 produced the most desirable AgNPs [82]. Koli et al. synthesized
AgNPs from Monascus red pigments, where sunlight catalyzed the reaction with a reaction
time of 5 min [83]. Spagnoletti et al. conducted a comparative study between chemical and
biogenic (via Macrophomina phaseolina) synthesis of AgNPs and stated that both modes of
nanoparticles synthesis had similar bactericidal activity. However, the biogenic-mediated
nanoparticles represented lower toxicity in the model organism [33]. Ansari et al. syn-
thesized AgNPs from various fungal species, suggesting the role of carbohydrates (from
exopolysaccharides) and not proteins in nanoparticle synthesis [84]. Furthermore, they
suggested the highest reduction capacity for Aspergillus niger KIBGE-IB36, followed by
Aspergillus terreus KIBGE-IB35, Aspergillus flavus KIBGE-IB34, and Aspergillus fumigatus
KIBGE-IB33 [84]. Though FTIR analysis was not conducted to confirm the adsorption of
functional groups on the nanoparticles surface, a strong SPR peak suggested the formation
of stable AgNPs with no aggregation for 3 months [84]. In support of Ansari et al., Li et al.
suggested the role of polysaccharides in AgNPs synthesis from Aspergillus japonicus PJ01
and stated that reducing sugars helped in reduction, and polysaccharides and proteins
supported nanoparticle stabilization [85]. They further studied the role of silver nitrate
concentration, pH, and temperature to suggest that the size of AgNPs is proportional
to silver nitrate’s concentration. Nanoparticle synthesis decreases in extreme alkaline
conditions, with the optimum temperature for synthesis being 30 ◦C [85]. However, the
work of Wang et al. was contrary to Li et al., which suggested different optimum pH
and temperatures for AgNPs synthesis from Aspergillus sydowii [86]. These contrasting
results suggested the role of the strain in deciding the optimum conditions of pH and
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temperature. The morphological characteristics and applications of fungi-mediated AgNPs
are elaborated in Table 3.

Table 3. Fungi-mediated synthesis of AgNPs, their morphological characteristics, and their applications.

Fungi Morphological Characteristics Application Studied References

Beauveria bassiana (JS1, JS2, and
KA75) and Metarhizium anisopliae

Spherical, 23.30, 27.27, 76.61 nm, and
101.34 nm, respectively (SEM)

Antimicrobial and
antifungal activity [82]

Aspergillus niger Spherical, 83.36 (DLS)

Antibacterial activity [84]
Aspergillus fumigatus Spherical, 88.8 (DLS)

Aspergillus flavus Spherical, 208.2 (DLS)

Aspergillus terreus Spherical, 113.8 (DLS)

Monascus pigment Spherical, 10–40 nm (TEM)

Antibacterial activity against
Pseudomonas aeruginosa,

Escherichia coli, and
Staphylococcus aureus

Antibiofilm activity against
antibiotic-resistant P. aeruginosa

[83]

Aspergillus japonicus PJ01 Spherical or irregular,
3.8 nm (TEM)

Antibacterial and
antifungal activities [85]

Macrophomina phaseolina Spherical, 40 nm (SEM) Antibacterial activity, assessment
of toxicity in Caenorhabditis elegans [33]

Aspergillus sydowii Spherical, 1–24 nm (TEM)
Antifungal activity

anticancer activity to HeLa cells
and MCF-7 cells

[86]

2.2.4. Yeast

Yeasts are eukaryotic, single-celled organisms, chemoorganotrophs (produce energy
from organic matter), widely used in bakery and fermentation processes, that can accu-
mulate a variety of metals. Like fungi, yeasts have a rapid growth process that can be
easily manipulated in the laboratory using specific nutrient conditions [87,88]. Yeasts can
synthesize nanoparticles intracellularly and extracellularly [89]. The metal ions trapped
by yeast undergo oxidation, reduction, sorption, chelation, cell membrane transport, or
efflux [87,90]. These processes, by different yeast genera, lead to size and shape-dependent
changes in AgNPs. The role of yeast extract as a capping agent helps produce monodis-
persed nanoparticles that can be easily preserved without precipitation for more than
a year [89,91].

Cunha et al. synthesized AgNPs from Rhodotorula glutinis and Rhodotorula mucilagi-
nosa and suggested that the time required for AgNPs synthesis was proportional to the
constituents of the extract that reduced and stabilized the nanoparticles [92]. They further
stated that the adsorption of proteins on AgNPs prepared from yeast extract prevented
aggregation and sedimentation and enhanced colloidal stability for nearly 15 months [92].
Their study also explained that proteins, ions, and water molecules adsorbed on AgNPs
surfaces (in suspended form) caused light scattering, which explained the larger size of
nanoparticles when analyzed by DLS in comparison to other techniques [92]. Supporting
the work of Cunha et al., Shu et al. synthesized AgNPs from Saccharomyces cerevisiae and
suggested that biomolecules, namely amino acids, alpha-linolenic acid, and aminobutyric
acid, favored controllable size distribution, monodispersity, and stability for nearly a year
without precipitation. The morphological characteristics and applications of yeast-mediated
AgNPs are presented in Table 4.
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Table 4. Yeast-mediated synthesis of AgNPs, their morphological characteristics, and their applications.

Yeast Morphological Characteristics Application Studied References

Rhodotorula mucilaginosa
UANL-001L

Spherical,
8.89 ± 6.95 nm (TEM)

Antibacterial and
antibiofilm properties [93]

Rhodotorula glutinis Spherical,
15.45 ± 7.94 nm (TEM) Antifungal,

catalytic and
cytotoxicity activities

[92]
Rhodotorula mucilaginosa Spherical,

13.70 ± 8.21 nm (TEM)

Saccharomyces cerevisiae Spherical,
10.3–18.9 nm (TEM)

Antimicrobial and
anticancer activity [94]

Indian Red
Yeast Rice Spherical, 6.81 nm to 30.93 nm (TEM) Antibacterial and

antibiofilm activity [95]

2.2.5. Algae

Algae are photosynthetic, unicellular or multicellular eukaryotes, found in water [96]
and soil [97]. They can be differentiated into micro- and macroalgae based on their size.
Brown algae, green algae, and cyanobacteria are significant varieties of algae that help
synthesize nanoparticles [97–99]. Algae are excellent and inexpensive sources of AgNPs
production in bulk quantities. The property of algae to develop a specific charge on their
surface [97,100] and reduce metals inside and outside the cell makes it a robust biological
entity for nanoparticle synthesis. Algae biomass, cell-free extracts, supernatants, and filtrate
of broth are used in AgNPs synthesis [99]. The major disadvantages of algae-mediated
AgNPs synthesis are the difficulties in the separation of synthesized nanoparticles from the
other components involved in the reaction and low production [101,102].

In algae-mediated AgNPs synthesis, the nanoparticles are majorly synthesized from
aqueous extract or cell-free supernatant of algae. Rao et al. synthesized AgNPs from
fucoidan solution by a microwave irradiation technique and confirmed the adsorption of
fucoidan on AgNPs surfaces through a characteristic sulfate group peak, as reflected in
the FTIR analysis [103]. They further suggested that the percentage of nanoparticles and
fucoidan was 87% and 13%, respectively, and confirmed it through inductively coupled
plasma mass spectrometry [103]. In contrast, Bao et al. synthesized AgNPs using Neochloris
oleoabundans and found the adsorption of no functional groups on the nanoparticles surface,
particularly due to the low concentration of cellular materials [104]. However, the reactions
under low concentrations suggested the efficiency of reaction by the organism and ease
in AgNPs separation. They also stated the relevance of the optimum concentration of
AgNO3 (nearly 0.4 mM), optimum pH (between 5 and 7), and extraction time (0.5–10.0 h)
for maximum nanoparticle yield [104]. Furthermore, as the reaction was carried out under
light conditions, they suggested the dependency on light for the reaction [104]. Husain
et al. synthesized AgNPs from Microchaete and suggested that intrinsic capping and stabi-
lization by functional groups of Microchaete prevented the need for further downstream
processing [105]. Veeragoni et al. carried out a comparative study analyzing the differences
between chemically and Padina tetrastromatica mediated AgNPs synthesis, suggesting the
role of alcohol, alkane, and nitro groups in chemical synthesis and ketones, aldehydes, and
phenol in biogenic method [35]. However, they stated that biogenic-mediated AgNPs were
more negatively charged contributing to low aggregation and high stability at different
pH conditions and 10% serum biological media [35]. Furthermore, they suggested that
the concentration of AgNPs synthesis was pH dependent in biogenic synthesis but not
in chemical synthesis, probably due to the impact of ions on bioactive compounds [35].
The morphological characteristics and applications studied by algae-mediated AgNPs are
summarized in Table 5.
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Table 5. Algae-mediated synthesis of AgNPs, their morphological characteristics, and their applications.

Algae Morphological Characteristics Application Studied References

Fucus vesiculosus Spherical, 36.99 ± 12.39 nm (TEM) Antimicrobial activity [103]

Neochloris oleoabundans Quasi-spherical, 16.63 nm (TEM) Antibacterial activity [104]

Ulva flexuosa 4.93–6.70 nm (TEM)

Antibacterial activity against two
Gram-positive (Bacillus subtilis,
Staphylococcus aureus) and two
Gram-negative (Escherichia coli,

Pseudomonas aeruginosa)

[106]

Microchaete Spherical, 7 nm (TEM) Antioxidant, antiproliferative, and
apoptotic activities [105]

Padina tetrastromatica spiracle or cubic structure, 166 nm (DLS) Anticancer activity [35]

2.2.6. Virus

Viruses are linear, circular, single, or double-stranded nucleic acids with capsid (outer-
most layer). They hold the capacity to synthesize monodispersed, polyvalent, or symmetric
nanoparticles of appreciable surface area and a high aspect ratio [107]. The outer proteina-
ceous coating of a virus called capsid is majorly involved in binding with metal ions [108].
Some significant viruses employed are brome mosaic virus, cowpea mosaic virus, cowpea
chlorotic mottle virus, hibiscus chlorotic ringspot virus, red clover necrotic mosaic virus,
tobacco mosaic virus, and turnip yellow mosaic virus [109]. AgNPs can be synthesized
with the help of biological substances of virus-like viroid capsules, DNA, multicellular
superstructures, and lipid cylinders. Interestingly, different combinations of viral particles
can interact with plant extract for the synthesis of bionanoparticles with reduced size in
more prominent numbers [110]. Comparatively, virus-mediated synthesis of AgNPs is
less common.

2.2.7. Plants

Amongst all the biological classes, plants hold the maximum potential for bionanopar-
ticles synthesis, as they are natural sources that can help remove heavy metals from soil and
water [111]. This characteristic property of plants is employed for the synthesis of AgNPs.
Different chemical components of plants involving various phytochemicals (e.g., catechins,
flavones, terpenoids, polyphenols, etc.) support nanoparticles synthesis [112–114]. These
phytochemicals are soluble in water and act as reducing and capping agents [115]. The
nanoparticles synthesized by plants could be through living plants (intracellular route),
plant extracts (extracellular pathway), or phytochemicals (extracellular pathway) [116].
Some methods of plant-mediated AgNPs synthesis are elaborated in Table 6.

In the intracellular route, the plant or its biomass interacts and reduces metal in
the aqueous metal salt solution [117,118]. A single plant species can produce polydis-
persed nanoparticles with variable morphological structures. This diversity is attributed
to stabilizing and reducing agents and complex nanoparticle separation and purification
procedures [119,120]. In the extracellular route, plant extracts are obtained via hot or cold
extraction methods or the Soxhlet apparatus. Phytoconstituents of plants play a vital role in
bionanomaterials synthesis. As extracts are first separated and then used for nanoparticle
synthesis, the process is called an extracellular method. The process helps in the produc-
tion of nanoparticles of specific shape and structure, which have a negative potential and
are stable in water. Due to variations in phytochemical composition, the process cannot
produce monodispersed particles [121].

Phytochemical-mediated synthesis of nanoparticles extends the extracellular route
in which specific phytochemical is isolated, quantified, and then used for nanoparticle
synthesis. This method helps predict the nanoparticle synthesis mechanism [121]. The
process majorly depends on flavonoids and polyphenols and helps control nanoparticle
shape and size.
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Table 6. Plant-mediated synthesis of AgNPs, their morphological characteristics, and their applications.

Plant Morphological Characteristics Application Studied References

Whole plant

Swertia paniculata Spherical, 31–44 nm (TEM) Antimicrobial activity [122]

Drosera ittatee Labill var. bakoensis Spherical, 21 ± 4 nm (TEM) Antimicrobial activity [123]

Brassica oleracea var. botrytis and
Raphanus sativus Spherical, 4–18 nm (TEM)

Antibacterial activity against
both Gram-negative

(Escherichia coli, Myroides,
Pseudomonas aeruginosa) and
Gram-positive (Kocuria and
Promicromonospora) bacteria

[124]

Ajuga bracteosa. Spherical, 400 nm (SEM) Antibacterial, antibiofilm,
anticancer activity [125]

Sida cordifolia Spherical, 3–6 nm (TEM)

Antibacterial activity against
Aeromonas hydrophila,

Pseudomonas fluorescens,
Flavobacterium branchiophilum,
Edwardsiella tarda, and Yersinia

ruckeri, Escherichia coli,
Klebsiella pneumonia, Bacillus
subtilis, Staphylococcus aureus

[126]

Aerial parts

Ephedra procera C. A. Mey. Spherical,
20.4 nm (SEM)

Antimicrobial activity against
Escherichia coli and

Bacillus subtilis
Antioxidant activity

Antifungal activity against
A. flavus, A. niger, and

Mucor spp.
Anticancer activity against

HepG2 Cells

[127]

Perovskia abrotanoides Spherical, 51 nm (SEM)

Antimicrobial activity against
Staphylococcus aureus and

Bacillus cereus and
Gram-negative bacteria E. coli

[128]

Dorema ammoniacum D. Spherical,
24.5 nm (TEM)

Antimicrobial activity against
Gram-positive (Bacillus cereus,

Staphylococcus aureus) and
Gram-negative (Escherichia

coli, Salmonella
typhimurium) bacteria

[129]

Lythrum salicaria Spherical, 45–65 nm (TEM)

Antimicrobial activity against
E. coli and S. aureus

Impregnation of AgNPs into
organic nanofibers

[130]

Pistacia terebinthus (terebinth) Spherical, 32 nm (SEM) Antimicrobial, antioxidant,
and anticancer effects [131]

Glaucium corniculatum (L.) Spherical, 45 nm (TEM) Antibacterial activity [132]



Sustain. Chem. 2023, 4 72

Table 6. Cont.

Plant Morphological Characteristics Application Studied References

Calotropis procera Spherical, 22.14 ± 0.42 nm (TEM)

Antibacterial activity against
Pseudomonas aeruginosa,

Klebsiella pneumonia,
Staphylococcus aureus, and
Bacillus subtilis bacteria

Antibiofilm and
photocatalytic degradation

[133]

Scurrula parasitica Spherical, 295, 26.2 ± 0.7 nm (TEM)
Anticancer activity against

human lung cancer
cells (A549)

[134]

Anthemis atropatana Spherical, 38.89 nm (TEM) Anticancer activity against
colon cancer cell lines (HT29) [135]

Lampranthus coccineus Spherical, 10.12–27.89 nm (TEM)
Antiviral activity against

HAV-10 virus, HSV-1 virus,
and CoxB4 virus

[136]

Leaves

Azadirachta indica Spherical, 40 nm (TEM) Antimicrobial activity [137]

Barleria longiflora L. Spherical, 2.4 nm (TEM) Antimicrobial activity [138]

Thymus kotschyanus Spherical, 22 nm (XRD) Antimicrobial activity [139]

Green tea Spherical, 11 nm (TEM) Antimicrobial and
antibiofilm activity [140]

Cyanthillium cinereum Spherical, 19.25 ± 0.44 nm

Antimicrobial activity against
Staphylococcus aureus, Klebsiella

pneumonia, biosensor
in neurobiology,

catalytic properties,
antioxidant potential

[141]

Phyla dulcis Bead-like, 63–114 nm (DLS)

Antimicrobial activity against
Escherichia coli O157:H7

(ATCC 43888), Salmonella
Typhimurium (novobiocin and
nalidixic acid-resistant strain),

Listeria monocytogenes (4b;
ATCC 19115), and

Staphylococcus aureus
(ATCC 6538) strains

[142]

Passiflora edulis f. flavicarpa Spherical, 3–7 nm (TEM) Antimicrobial, antioxidant,
photocatalytic activity [143]

Pteris ittate Spherical, 17.2 nm (XRD)
Antimicrobial and

antivirulence activity against
P. aeruginosa

[144]

Green tea Quasi-spherical, ~8.3 ± 3.6 nm (TEM) Antimicrobial and
anticancer activity [145]

Populus ciliata Spherical, 4 nm (TEM)

Antimicrobial activity against
Gram-positive (Staphylococcus

epidermidis, Streptococcus
pyogenes) and Gram-negative
bacteria (Klebsiella pneumoniae,

Serratia marcescens,
Pseudomonas pseudoalcaligenes)

[146]
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Table 6. Cont.

Plant Morphological Characteristics Application Studied References

Aloe vera Spherical, 20.9 nm (XRD) Antimicrobial activity [147]

Green tea Spherical, 11 nm Antimicrobial and
antibiofilm activity [140]

Aloe vera Spherical, 20.9 nm (XRD) Antimicrobial activity [147]

Stevia rebaudiana Spherical, 50–100 nm (TEM) Antibacterial activity [148]

Thymbra spicata L. (Zahter) Triangles, hexagons, spheres, and
irregular shapes, 70.2 nm (TEM)

Shape-dependent antibacterial
and cytotoxic activity [149]

Cinnamomum tamala Spherical,
10 to 12 nm (TEM)

Antibacterial activity against
multidrug-resistant bacterial
strains (Escherichia coli (EC-1),

Klebsiella pneumonia (KP-1),
and Staphylococcus

aureus (SA-1)).

[150]

Cichorium intybus L. (chicory) Spherical, 50 nm (DLS)

Antibacterial activity against
Gram-negative (Escherichia

coli) and Gram-positive
(Staphylococcus aureus) bacteria

[151]

Barleria buxifolia Spherical,
80 nm (DLS)

Antibacterial, antibiofilm,
antioxidant, and
cytotoxic agent.

[152]

Taxus Circular, 15 nm (SEM) Antibacterial and
anticancer activity [153]

Handroanthus serratifolius Spherical, 76.02 ± 3.08 nm (DLS) Antibacterial activity E. coli [154]

Crescentia cujete L. Spherical, 39.74 nm (TEM)

Antibacterial activity against
Bacillus subtilis, Staphylococcus

epidermidis, Rhodococcus
rhodochrous, Salmonella typhi,

Mycobacterium smegmatis,
Shigella flexneri, and

Vibrio cholerae

[155]

Aesculus hippocastanum
(horse chestnut) Spherical, 50 ± 5 nm (SEM) Antibacterial and

antioxidant activity [156]

Litchi chinensis Spherical, 5–15 nm (TEM) Antibacterial and sporicidal
activity against Bacillus subtilis [157]

Purple heart Spherical, 98 nm (TEM) Antibacterial activity [158]

Taxus Circular, 15 nm (SEM) Antibacterial and
anticancer activity [153]

Datura stramonium Spherical, 20.43 nm (DLS)
Antibacterial, antioxidant

activity, and DNA
cleavage activities

[31]

Lindera strychnifolia Spherical, 161, 15.7 ± 1.2 nm (TEM)
Anticancer activity against

human lung cancer
cells (A549)

[134]
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Table 6. Cont.

Plant Morphological Characteristics Application Studied References

Indigofera tinctoria Spherical, 16.46 nm (TEM)

Anticancer activity against
lung cancer cell line (A549)

Antimicrobial activity against
Gram-positive (Bacillus

pumilus, Staphylococcus aureus),
Gram-negative
(Pseudomonas sp,
Escherichia coli)

Antifungal activity against
Aspergillus fumigatus, and

Aspergillus niger
Antioxidant activity

[159]

Cratoxylum formosum Spherical, 8.8 ± 0.3 nm (TEM)
Anticancer activity against

human lung cancer
cells (A549)

[134]

Phoebe lanceolata Spherical, 412, 8.8 ± 0.3 nm (TEM)
Anticancer activity against

human lung cancer
cells (A549)

[134]

Mentha longifolia L. Spherical, 20–100 nm (SEM)
Anticancer activity against
HCT116 colon cancer cells

and Leishmania
[160]

Rubia cordifolia L. Spherical, 20.98 nm (TEM)

Anticancer activity, antifungal
activity against aflatoxigenic

Aspergillus flavus,
DNA-binding properties, and

DPPH and ABTS
free-radical inhibition

[161]

Vernonia amygdalina Spherical, 41.555 ± 2.488 nm (TEM)
Anticancer activities on the

human breast cancer cell
line MCF-7.

[162]

Cinnamomum verum Spherical, 10 to 45 nm (TEM) Treatment of Lung
Adenocarcinoma [163]

Berberis thunbergii Spherical, 15 nm (TEM) Anticancer activity against
pancreatic cancer [164]

Aloe arborescens Spherical, 40–50 nm (TEM) Wound healing activity [165]

Mentha piperita Spherical, 35 nm (TEM)
Effect on acetylcholinesterase

(AchE) to predict
its neurotoxicity.

[166]

Aloe vera Spherical to oval, 10–50 nm (TEM)
chaperone-like activity in the

aggregation inhibition of
α-chymotrypsinogen A

[167]

Stems

Picea abies Spherical, 78.48 nm (DLS) Antibacterial, antifungal, and
antimitotic effects [168]

Cannabis sativa (industrial hemp) Triangular, rods and hexagonal-shaped,
20–40 nm (TEM) Antibiofilm activity [169]

Ceratostigma minus Spherical, 16.4 ± 0.3 nm (TEM)
Anticancer activity against

human lung cancer
cells (A549)

[134]
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Plant Morphological Characteristics Application Studied References

Mucuna birdwoodiana Spherical, 35.4 ± 5.9 nm (TEM)
Anticancer activity against

human lung cancer
cells (A549)

[134]

Roots

Jurinea dolomiaea Spherical, cubic, and triangular
24.58 nm

Antimicrobial activity against
Escherichia coli,

Pseudomonas aeruginosa
Antioxidant activity

[170]

Saussurea lappa Spherical, 20.15 nm (XRD) Antimicrobial activity [171]

Beta vulgaris L. Round, 20–50 nm (TEM) Anticancer activity [172]

Shikonin Spherical, 20 nm (TEM)
Anticancer activity in human

lung carcinoma cell line
A549 cells

[173]

Myrsine africana Spherical, 11.4 ± 0.1 nm (TEM)
Anticancer activity against

human lung cancer
cells (A549)

[134]

Tubers

Turmeric powder Spherical, 18 ± 0.5 nm (TEM) Antimicrobial activity [174]

Zingiber zerumbet (L.) Spherical, 0.2–1 µm (TEM)
Antipneumonial potential in
mycoplasmal pneumonia in

experimental rats.
[175]

Zingiber officinale Spherical, 12 nm Antifungal activity against
Candida albicans [176]

Pueraria tuberosa Spherical, 162.72 ± 5.02 nm (DLS) Anticancer and
antioxidant activities [177]

Alpinia officinarum Spherical, 100 nm (TEM)
Effect against the
cisplatin-induced

nephrotoxicity
[178]

Curcuma longa Spherical, 44.9 ± 2.2 nm (TEM)
Study human

pterygium-derived
keratinocytes

[179]

Flowers

Malva sylvestris Spherical and hexagonal, 20–40 nm
(TEM)

Antimicrobial activity against
Escherichia coli, Staphylococcus
aureus, Streptococcus pyogenes

[180]

Wedelia urticifolia (Blume) DC. Spherical, <30 nm (TEM) Antimicrobial activity [181]

Abelmoschus esculentus (L.) Spherical, 16.19 nm (TEM) Antibacterial and
anticancer activity [182]

Madhuca longifolia Spherical, oval, 30–50 nm (TEM) Antibacterial activity [183]

Fruits

Solanum viarum Spherical, oval
2–40 nm (TEM)

Antimicrobial activity against
Bacillus subtilis, Escherichia coli,

Pseudomonas aeruginosa,
Staphylococcus aureus susp.

Aureus, Aspergillus niger, and
Candida albicans

[184]
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Walnut Spherical,
31.4 nm (DLS)

Antimicrobial, antioxidant,
anticancer activity against the

MCF-7 tumor cell line
[185]

Royal Jelly extract Spherical, 30–100 nm (DLS) Antibacterial activity [186]

Brassica oleracea (curly kale) Spherical
Antibacterial, antidiabetic,

antioxidant, and
anticancer activity

[187]

Benincasa hispida Spherical, 27 ± 1 nm (TEM)

Antibacterial activity
Antibiofilm activity

Anticancer activities against
the lung cancer cell line (A549)

[188]

Orange Spherical and ovoid morphology Antibacterial activity [189]

Pomelo 35 to 40 nm (XRD) Antibacterial activity [190]

Cocos nucifera (coconut) shell Spherical, 14.2–22.96 nm (TEM)

Antibacterial activity against
Staphylococcus aureus, Listeria
monocytogenes, Escherichia coli,
and Salmonella typhimurium

[191]

Elm Spherical, triangular, rod-shaped,
22.5–30.0 nm (TEM)

Antibacterial, anticancer, and
catalytic activity [192]

Grapes Round-shaped, non-agglomerated
10–40 nm (TEM)

Antibacterial and antifungal
activity against Gram-positive

(Bacillus subtilis),
Gram-negative (Escherichia
coli), and Candida albicans

wound pathogens.
Photocatalytic

[193]

Pistachio Spherical, polygonal
80–100 nm (TEM)

Antibiofilm activity against
S. aureus, P. aeruginosa [194]

Cornus sanguinea L. Spherical, 18 nm (TEM) Antioxidant and
anti-inflammatory activities [195]

Prunus serrulata Spherical, 66 nm (DLS) Anti-inflammatory [196]

Red onion Spherical, 12.5 nm (TEM) antioxidant activity [197]

Crataegus pentagyna Spherical, 25–45 nm (TEM)

Photocatalytic degradation of
organic pollutants and in the

development of
antibacterial materials.

[198]

Seeds

Artocarpus hirsutus Spherical, 25–40 nm (SEM) Antibacterial activity against
Enterobacter aerogenes [199]

Cassia tora 60.78 nm (SEM) Antibacterial activity [200]

Catharanthus roseus Spherical, 2–15 nm (TEM) Antibacterial activity against
Escherichia coli [201]

2.2.8. Human Cell Line

Human cells are heterotrophic in nature and require an external source of energy for
survival. Recent research conducted on certain human cell lines suggests that they can be
utilized in nanoparticle synthesis. The epithelial cells of a healthy individual were used for
the synthesis of nanoparticles, in vivo and in situ, without the use of external chemicals
as reducing agents. Similarly, cancerous and non-cancerous cells such as HeLa (Homo
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sapiens, human), SiHa, and human embryonic kidney-293 cell lines serve as a source of
AgNPs synthesis. Human cell-line-mediated AgNPs synthesis is simple, effective, and
inexpensive, but less commonly explored [202,203].

2.3. Characterization Techniques

Characterization of a material is the analysis of its structure, composition, and physical-
chemical properties by determining properties such as size, shape, structure, and surface
area. Microscopic and spectroscopic methods can help in nanomaterial characterization, as
depicted in Figure 3. Spectroscopic methods include X-ray diffraction (XRD), ultraviolet
spectroscopy (UV–Vis), and Fourier transform infrared spectroscopy (FTIR), while micro-
scopic techniques include scanning electron microscopy (SEM) and transmission electron
microscopy (TEM). However, these techniques are always used in combination for proper
assessment and confirmation of results. The choice of characterization techniques employed
depends on the applications specific to the prepared nanoparticles. In comparative studies
of biogenic and chemically synthesized AgNPs, the deviation or variability of peaks and in-
tensity has been observed [31,32,34]. The deviation or variability is specifically observed in
UV–Vis, FTIR, and XRD results and is attributed to the functionalization of the nanoparticle
surface. An extensive review of these techniques can be referred to elsewhere [204].
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UV–Vis is an absorption-based spectroscopic technique dependent on the Beer–Lambert
law. Apart from being fast, easy, sensitive, and selective for different types of nanoparticles,
the technique does not require calibration to characterize the colloidal suspension of
nanoparticles [205]. The unique optical properties of AgNPs cause them to interact with
a specific wavelength. Therefore, AgNPs produce a strong absorption band in UV–Vis
spectroscopy. In AgNPs, electrons can easily move, as the conduction and valence bands
lie very close to each other. When incident light falls on the surface of AgNPs, it causes
the conduction of electrons, resulting in the production of a UV–visible spectrum (also
known as surface plasmon absorption band) [206–208]. The UV–visible spectrum or surface
plasmon absorption band depends on the shape, size, dielectric medium, and chemical
surroundings of AgNPs [206–208].

FTIR is an infrared spectroscopic technique that helps determine a sample’s organic
and inorganic components and the chemical bonds in the sample. The significant advan-
tages of the technique are its time efficiency, sensitivity, and applicability in all wavelength
ranges. However, it is an expensive technique that cannot detect atoms or monatomic ions.
The average absorption peaks of AgNPs via FTIR have been observed at 1525 cm−1 (N−H),
1670 cm−1 (C−O str.), 3070 cm−1 (C−H str.), and 3590 cm−1 (O−H str.) [209].

XRD is an analytical spectroscopic technique majorly used for crystalline and molec-
ular material characterization, particle size determination, and identification of various
compounds [210]. In XRD, a diffraction pattern is formed based on the physical and chem-
ical properties of the material. This diffraction pattern also suggests the sample’s purity.
XRD peaks have been observed at (111), (200), (220), and (311) (for high concentrations
of AgNPs) and (122) and (231) (for low concentrations of AgNPs) [211,212]. The major
advantages of the technique are (a) it is inexpensive, and (b) it helps in crystalline structure
determination. However, it has size limitations and poor sensitivity.
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SEM is a microscopic technique used to determine a material’s morphological, topo-
logical, and image characteristics [213]. According to the principle, an emitted beam of elec-
trons scatters on the sample’s surface and interacts with the sample’s atoms. The interaction
produces signals (backscattered electrons, auxiliary electrons, and cathodoluminescence)
that provide information about the structure and composition. The significant advantages
of the technique are high-resolution photo-like images and bulk material characterization.
However, it is time-consuming and requires the samples to have electrical conductivity.

TEM is a microscopic technique used to determine the sample’s elements and struc-
tures. According to the principle, a monochromatic electron beam emits electrons that
interact with the sample’s atoms. The interaction produces an image visible through CCD
cameras or fluorescent screens [214]. The significant advantages of the technique are the
production of high-resolution, magnified images with excellent quality and details. How-
ever, it is an expensive technique with time-consuming sample preparation (the sample
needs to be very thin) [204,215].

3. Biomedical Applications
3.1. Antimicrobial Activity and Associated Applications

Antibiotic resistance occurs due to mutations in target microorganisms, efflux pumps,
and biofilm formation [216], which is a significant problem [217–219], causing the emer-
gence of multidrug-resistant pathogens. The hypothesis that drug-bound AgNPs act as
carriers for antibiotics and disrupt bacterial cell walls enabling antibiotic entry is explored
to overcome antibiotic resistance. AgNPs are found effective against Gram-positive and
Gram-negative bacteria [220], as they work by (a) damaging the cell membrane and its
components and (b) inducing cell ROS production that affects the DNA, RNA, and proteins
of a cell, as depicted in Figure 4. However, AgNPs have different efficacy due to the
presence of thick peptidoglycan in Gram-positive bacteria [221]. Biogenic-mediated AgNPs
with antibacterial activity and antifungal activity are discussed in Section 2.
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Biofilms represent the attachment and immobilization of a community of microorgan-
isms on a particular surface [222,223] and are an adaptation of microorganisms to survive
harsh climatic conditions [224]. This is a causative factor of drug resistance, opportunistic
infections, and transmission of infection via dental [225] and biomedical devices [226].
Biogenic AgNPs are found effective against biofilm formation where devices can be coated
with nanoparticles. The mechanism of action of AgNPs as an antibiofilm agent is like
the antibacterial action depicted in Figure 4. A few effective AgNPs-based antibiofilm
agents are discussed in Section 2. One prominent example is the use of AgNPs to coat
polyurethane catheters. This helps to decrease the degree of biofilm contamination caused
by bacteria.

Moreover, in surgery, especially hip or knee prostheses, there are high chances of
bacterial contamination, increasing mortality. This could be avoided by incorporating
AgNPs in the prostheses [227–230]. Similarly, incorporating AgNPs in dental instruments
and orthodontic adhesives can help prevent bacterial and fungal colonization [228–232].

AgNPs when employed as a vehicle for wound dressing or as drugs for wound
healing [233] support repair by exhibiting antibacterial activity, causing immunomodulation
and promoting epithelial layer formation and collagen fiber production, as depicted in
Figure 5. Various AgNPs with positive wound-healing effects are discussed in Section 2.
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Figure 5. The figure depicts various hypothetical mechanisms, namely antibacterial activity, im-
munomodulation, epithelial layer formation promotion, and collagen fiber production. These mecha-
nisms indicate AgNPs-mediated wound healing.

3.2. Antiviral Agents

Viruses pose a significant challenge for life sciences with their remarkable adaptability
to the host [234], causing life-threatening diseases. AgNPs act as potential antiviral agents
and carriers of antiviral therapies [235] by interacting with viral surface components and
blocking viral entry. AgNPs are also believed to prevent viral replication and change the
host cell pH, making the environment unfavorable for viruses. Various AgNPs-mediated
antiviral mechanisms are depicted in Figure 6. The biosynthesis of AgNPs and their
associated antiviral activity are discussed in Section 2.
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Figure 6. The figure depicts various hypothetical mechanisms, namely inhibition of viral entry,
decrease in environmental pH in host cell, and inhibition of viral replication in host cell. These
mechanisms indicate antiviral activity of AgNPs.

3.3. Other Biological Applications of AgNPs

Biosensors, analytical devices to detect an analyte or to measure physiological sig-
nals [236], are vital tools in improving therapeutic and diagnostic efficacy. AgNPs have been
developed to improve the sensitivity and efficacy of biosensors and are employed in mag-
netic resonance imaging (MRI), computed tomography (CT) imaging, and photothermal
therapy (PTT) [237], as discussed in Section 2.

AgNPs have been shown to act as antidiabetic agents, which act by inhibiting the
activities of certain enzymes, such as α-amylase and α-glucosidase (vital for carbohy-
drate metabolism) [238]. Various biogenic AgNPs with antidiabetic activity are discussed
in Section 2.

AgNPs have also been shown to act as effective anti-inflammatory agents that suppress
vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), cytokine
production (IL-12, TNFα), and COX-2 expression [239], as depicted in Figure 7. VEGF is an
inflammatory agent that enhances antigen sensitization, T-helper mediated inflammatory
cytokines such as IL-4, IL-5, IL-9, and IL-13 [240,241], and HIF-1α-mediated bacterial cytotoxic-
ity; and release of proinflammatory factors such as IL-1α, IL-6, and TNF-α [242,243]. Thus, the
inhibition of these inflammatory factors by AgNPs helps in their anti-inflammatory activity.
The biosynthesis of AgNPs and their associated anti-inflammatory activity are discussed
in Section 2.
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Figure 7. The figure depicts AgNPs mediated suppression of inflammatory agents such as vascular
endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), cytokine production (IL-12,
TNFα), and COX-2 expression. These mechanisms indicate AgNPs -mediated anti-inflammatory activity.

AgNPs act as antioxidants [244–246] as they have the potential to mimic the production
of compounds that generate free radicals [247,248]. Apart from free radical scavenging activity,
AgNPs also play a role in the absorption and delivery of antioxidant agents [249,250]. The
biosynthesis of AgNPs and their associated antioxidant activity are discussed in Section 2.

AgNPs with potential anticancer activity have been employed as diagnostics, thera-
peutics, theranostics, and drug delivery systems for cancer treatment [251]. For example, in
substitution of free doxorubicin, Ag-based nanoparticles in conjugation with doxorubicin
are used to inhibit B16F10 cell growth [252,253]. AgNPs biosynthesis and its associated
anticancer activity are discussed in Section 2.

Blood coagulation is linked to autoimmune disorders, allergies, injuries, cancer [254],
organ failure [255], and thrombosis-associated diseases such as acute coronary syndrome,
deep venous thrombosis, pulmonary embolism, stroke, and acute myocardial infarction
(AMI). AgNPs are explored for their fibrinolytic activities and antiplatelet aggregation prop-
erties. The biosynthesis of AgNPs and their effective anticoagulant activity are discussed
in Section 2.

4. Toxicity Associated with AgNPs

AgNPs are highly exploited commercial products for their biomedical advantages [256].
The increasing applications of AgNPs have set an alarming concern about their uptake and
toxicity. Previous studies have suggested that AgNPs exhibited higher oral or inhalation
exposure as compared to their uptake by the skin. One such study has indicated that
the AgNPs accumulated in various organs [257]. Research on various animal models
has suggested differential accumulation of AgNPs in different organs, i.e., higher AgNPs
accumulation in females than in males [258,259]. Nanomaterial toxicity depends on the
physicochemical properties and local barriers in the organs. For example, small-sized
silver nanoparticles have higher toxicity than their large-sized counterparts [260]. AgNPs
toxicity studies have suggested that it leads to pathological changes in various organs,
causing damage to certain organs such as the kidney [261,262] and the spleen [262–264].
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The results from earlier studies have suggested that AgNPs are linked to inflammation of
the blood–brain barrier [265,266] and disruption of the synaptic machinery of neurons [267],
thereby affecting neurodevelopment and causing neurotoxicity [268]. These studies further
contradict the anti-inflammatory activity of AgNPs. Similarly, the antimicrobial activity
of AgNPs also has toxic effects on human cells [269]. In contrast to AgNPs applications
for wound healing, it inhibits keratinocyte proliferation [270], and also leads to dermal
cytotoxicity. AgNPs are reported to cause blood diseases due to their direct interaction with
red blood cells contradicting AgNPs use as an anticoagulant [271,272]. Though AgNPs
are studied as anticancer agents, there are numerous reported studies regarding their cyto-
toxicity related to colon cancer [273] and lung cancer [274,275]. Some elaborated reviews
on the toxicity of AgNPs, their effects at the cellular level, their mechanism of cellular
effects, and their physicochemical properties leading to their toxicity are out of the scope
of this article and are reviewed elsewhere [276,277]. The reported toxicological studies
of AgNPs are comparatively fewer than their applications. This, in turn, implies further
extensive research on the associated nanotoxicity. Proper models to study AgNPs toxicity
with high-throughput analysis and efficient techniques may help in critical evaluation
to reach a conclusive remark of the safe and efficient applications of AgNPs. Above all,
relevant measures and precautions should be opted to minimize AgNPs toxicity.

5. Outlook

Several methods have been reported for the synthesis of silver nanoparticles (AgNPs),
using available chemical agents or biological species, investigating the scope and role of the
different organic substances in the synthetic process. The knowledge acquired from these
interdisciplinary studies has helped to overcome some problems, such as poor stability,
aggregation, and agglomeration of the synthesized AgNPs. The primary difference between
chemically synthesized and biogenic production of AgNPs is that the first methodology
deals with the functionalization of nanoparticles surfaces with organic molecules, causing
deviations in the characteristic properties of AgNPs and possibly hindering a biomedical
application, whereas the biogenic methods produce biocompatible materials. On the other
hand, this functionalization helps to improve the stability and reduce the aggregation,
overcoming some important limitations of AgNPs preparation methodologies. Therefore,
the advancement in the synthesis methodologies of AgNPs is held back in various ways,
preventing its translation to biomedical applications.

The advancement in different methods of AgNPs synthesis is held back in various
ways preventing its translation to biomedical applications. Foremost, there are various
methods of synthesis, purification, characterization, and validation of data for AgNPs
without an established systemic pattern to compare the characteristic properties of AgNPs.
It is believed that if research follows a standard protocol such as (a) characterization with
all the concerned techniques, (b) finding AgNPs size and morphology by each technique,
and (c) comparing results of each technique, etc., it may provide more meaningful analysis.
Secondly, AgNPs are merely prepared and studied for their applications with less focus
on investigating the primary phytochemicals or organic groups responsible for their appli-
cations. Higher attention to studying the role of the organic group that causes deviations
during characterization and improves efficacy for their therapeutic applications may mini-
mize the gap in the investigation of AgNPs for biomedical applications. Thirdly, there are
numerous AgNPs toxicology studies in contrast to the investigated biomedical applications
that require further attention before reaching a conclusive remark on the prospective thera-
peutic usage of AgNPs. Lastly, the computational advances have proved to be very helpful
in the assessment of AgNPs properties, as they help to predict, understand, and validate
the data related to biomedical applications. However, compared to the number of reported
studies of biogenically synthesized AgNPs, bare minimum articles are available that employ
in silico docking and molecular dynamics simulation (MDS) techniques, requiring attention.
Altogether, AgNPs may prove to be highly promising in the management of health and
diseases and may contribute significantly to the advancement of life sciences research.
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