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Abstract: Solvent-free mechanochemical reactions represent an important path towards sustainable
chemistry. The preparation of Prussian blue from solid iron and hexacyanoferrate compounds by the
simple use of a mortar and pestle is an easy, inexpensive, and fast method to teach mechanochemical
reactions. The course of the reaction can be followed very well visually via the color change of the
solid mixture towards blue. With this communication, earlier publications on Prussian blue and
mechanochemistry in the field of chemical education are updated and extended.
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1. Introduction

Mechanochemistry, also known as tribochemistry or mechanical alloying [1], is the
application of mechanical force to influence chemical reactions. Mechanical actions, such
as ball milling, grinding, sliding, or plastic deformation can lead to chemical reactions due
to intimate mixing, heating, compression, shear, and/or friction of compounds or mixtures
of compounds.

“Mechanically induced solid-state chemical reactions can be performed completely without
solvents. Ideally, by-products disappear via the gaseous phase. As a consequence, solid-
state mechanochemistry is an attractive alternative to classical, solvent-based syntheses
routes and can be regarded as green chemistry” [2].

The beginnings of mechanochemistry “fade into prehistory” because grinding with a
mortar and pestle “was already used in the stone age” [3].

Mechanochemical reactions hold great promise to provide environmentally friendly,
solvent-free, cleaner, safer, and more efficient chemical reactions for a sustainable chemical
industry [4]. To be considered sustainable, the production of chemicals should meet as
many of the 12 principles of green chemistry as possible [5]. It has been shown convincingly
in several examples that mechanochemical reactions can meet all of these 12 principles [6].
Therefore, it is necessary and useful to introduce chemistry students to mechanochemistry.

Several experiments have been proposed for this purpose in recent years, such as the
reaction of palladium(II) chloride with a bidentate phosphine resulting in a catalyst for the
Suzuki coupling reaction [7], the synthesis of tetrathiafulvalene–chloranil charge transfer
salt, a functional organic electronic material [8] or the preparation of the antidiabetic drug
tolbutamide [9]. However, the formation of the deep blue compound Prussian blue by sim-
ply grinding together two more or less unattractive yellowish-brownish or (more attractive)
reddish solids in a mortar can be a much more impressive way to show a mechanochemical
reaction in an undergraduate chemistry teaching laboratory. The impressive color change
of this reaction eliminates the need for any additional chemical analysis to be performed
before, during, or after the experiment to prove that a mechanochemical reaction took place.

Prussian blue, iron(III) hexacyanoferrate(II), is a deep blue pigment [10] that can be
reduced to Prussian white, iron(II) hexacyanoferrate(II), or oxidized to Prussian yellow,
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iron(III) hexacyanoferrate(III). Prussian blue was discovered in 1706 in Berlin by Johann
Jacob von Diesbach (ca. 1670–1748) and Johann Conrad Dippel (1673–1734) [11]. As Berlin
was at that time the capital of the newly founded Kingdom of Prussia, this new compound
was named Prussian blue in the English-speaking world. Because of its impressive for-
mation by deep blue precipitation upon mixing two yellowish aqueous solutions and the
remarkable color change during oxidation or reduction, Prussian blue and its reactions are
long-time companions of chemistry teachers [12–20]. Figure 1 shows a roughly 200-year-old
teaching example with Prussian blue: a chemistry teacher demonstrating to his student the
formation of a Prussian blue precipitate.
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from 1936 with four alkali ions in alternate octants. 

Figure 1. The painting “Chemist and Assistant in Laboratory” from 1827 depicts a teacher demon-
strating the precipitation of Prussian blue to his student (source: Inv. 56577, © History of Science
Museum, University of Oxford).

In recent years [21–24], discussions and detailed analyses of the wealth of research results
of the last two decades led to the conclusion that Prussian blue, if slowly and carefully prepared,
has a structure that was already described by James F. Keggin (1905–1993) and Frank D.
Miles (1885–1968) in 1936 [25]. According to the Keggin and Miles model, Prussian blue
KFeIII[FeII(CN)6] crystallizes in a cubic lattice in which Fe(II) and Fe(III) alternately occupy
the corners of a cube. Fe(II) and Fe(III) are each connected to one another by cyanide groups
located on the edges of the cube. The low-spin iron(II) is always bound to the carbon
and the high-spin iron(III) to the nitrogen atom of these cyanide groups. The result is an
edge length of the cube of about 5.1 Å and a wide-meshed framework with large cavities.
The lattice constant for Prussian blue made out of eight such cubes is therefore about 10.2
Å, but a more exact value of 10.16 Å is often reported [26]. Figure 2 shows this Prussian
blue lattice.
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The Prussian blue lattice according to the still-popular Ludi model [27] from the 1970s
with 25% hexacyanoferrate(II) vacancies is only formed by excessively fast precipitation,
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e.g., by precipitation upon mixing aqueous solutions of iron(III) salts, such as ferric chloride,
and potassium hexacyanoferrate(II) as shown in Figure 1 and described in Reaction (1) [24].

Fe3+ + 3Cl− + 4K+ + FeII(CN)6
4− → KFeIII[FeII(CN)6] ↓ + 3K+ + 3Cl− (1)

For more than 300 years, Prussian blue has been in use as a blue pigment [10]. How-
ever, today, applications in such diverse fields as biomedicine; catalysis; energy storage
technologies; environmental protection, especially for radioactive caesium decontamina-
tion and sea water desalination; poison antidotes; electrochromism; and sensor technology
make Prussian blue one of the most versatile materials for use in a multitude of modern
cutting-edge technologies [28].

The mechanochemical or tribochemical way to prepare Prussian blue without solvents
from solid precursors only is not new [29,30], but is also not widely known and has not been
proposed for teaching mechanochemical reactions in a publication before. This preparation
method has recently regained the interest of researchers and has been proposed to produce
battery-grade Prussian blue [31–33] and/or Prussian blue for more efficient caesium ion
adsorption [34].

2. Materials and Methods

For these simple experiments, it is advantageous to use a mortar and pestle made
of porcelain or other white ceramic materials. In this way, the solid-state reaction can be
most easily followed visually. The chemicals used were ferrous sulfate FeIISO4·7H2O, ferric
chloride FeIIICl3·xH2O, potassium hexacyanoferrate(III) K3[FeIII(CN)6], and potassium
hexacyanoferrate(II) K4[FeII(CN)6]·3H2O, all purchased from Sigma Aldrich. Three dif-
ferent mechanochemical Prussian blue preparations were followed: (i) grinding together
ferric chloride and potassium hexacyanoferrate(II)—Reaction (2), (ii) ferrous sulfate and
potassium hexacyanoferrate(III)—Reaction (3), and (iii) ferrous sulfate and potassium
hexacyanoferrate(II)—Reactions (4) and (5). The reactions were performed by manually
grinding equimolar amounts (0.01 mol) at room temperature in air with a 43% relative
humidity. Humidity measurements were performed using a Testo 623 hygrometer device.
If the water content of the compounds was not stated by the supplier, (xH2O) x = 5 was
used for calculations. Photographs were taken during certain time intervals. It should be
noted that the reaction rate strongly depends on the speed and force applied during the
manual grinding operations. However, as a rule of thumb, a dark blue Prussian blue color
can always be seen after less than 5 min of grinding.

Care must be taken in handling all chemicals. Personal protective equipment (goggles,
gloves, and a laboratory coat) must always be worn. The chemicals used (ferrous sulfate,
ferric chloride, potassium hexacyanoferrate(III), potassium hexacyanoferrate(II)) or pro-
duced in the experiments (Prussian blue, potassium sulfate, potassium chloride) need to
be treated according to the safety measures given by the corresponding safety data sheets.
Waste disposal should follow the appropriate steps including consolidation, labeling, and
delivery to the proper location in the laboratory.

3. Results and Discussion

Figure 3 shows a sequence of 10 photographs of the mechanochemical Prussian blue
formation by grinding together FeIIICl3·xH2O and K4[FeII(CN)6]·3H2O. First, ferric chloride
is placed into the mortar, followed by the addition of potassium hexacyanoferrate(II).
During grinding together, the process of these two compounds forming the blue-colored
Prussian blue can easily be followed. The reaction follows the equation

FeIIICl3·xH2O + K4[FeII(CN)6]·3H2O→ KFeIII[FeII(CN)6]·yH2O + 3KCl·zH2O (2)
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Figure 3. Mechanochemical preparation of Prussian blue from ferric chloride and potassium
hexacyanoferrate(II).

The blue powdery product we see in the last photograph of the series in Figure 3 is a
mixture of Prussian blue, white potassium chloride, and perhaps some unreacted starting
materials. It was shown by Gong et al. that “a certain amount of the crystal water in raw
materials is indispensable” for the formation of Prussian blue [32].

The mechanochemical formation of Prussian blue is also possible by using ferrous
sulfate and potassium hexacyanoferrate(III) as starting materials. Figure 4 shows the
corresponding sequence of 10 photographs for this reaction, which can be described by

FeIISO4·7H2O + K3[FeIII(CN)6]→ KFeIII[FeII(CN)6]·yH2O + K2SO4·zH2O (3)
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Figure 4. Mechanochemical preparation of Prussian blue from ferrous sulfate and potassium
hexacyanoferrate(III).

The product mixture in the last photograph in Figure 4 consists of dark blue Prussian
blue and white potassium sulfate.

Prussian blue is a mixed-valence compound that contains iron in two different oxida-
tion states: iron(II) and iron(III). In the first two experiments, we also used iron compounds
with these two different oxidation states for Prussian blue preparation. In the third experi-
ment, it is shown that Prussian blue is also formed if two iron compounds in the iron(II)
oxidation state are used: ferrous sulfate and potassium hexacyanoferrate(II). Figure 5 shows
how this reaction develops.
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This Prussian blue formation can be described by the next two equations. First,
K2FeII[FeII(CN)6] is formed, also called Prussian white or Everitt’s salt [35].

FeIISO4·7H2O + K4[FeII(CN)6]·3H2O→ K2FeII[FeII(CN)6]·yH2O + K2SO4·zH2O (4)

Prussian white is an uncolored compound that is easily oxidized to Prussian blue by
oxygen (from air). Water is necessary for this reaction, as can be seen from Reaction (5) [36].
This can be crystal water in the solid reaction mixture and/or water from the humidity of
the air.

4K2FeII[FeII(CN)6]·yH2O + O2 → 4KFeIII[FeII(CN)6]·(y − 2)H2O + 4 KOH (5)

This Prussian blue formation from two Fe(II) salts is slower compared to its formation
from iron compounds in different oxidation states. Therefore, in the last picture of Figure 5,
the reaction mixture is not as deeply colored as in the reactions according to Reactions (2)
and (3). After several hours standing in the open air, the reaction mixture was as deeply
blue colored as the other two.

To further slow down the oxidation of Fe(II) to Fe(III), Reguera et al. added solid
hydrazine hydrochloride, a reducing agent, to the solid mixture [30]. Using this method,
they could produce Prussian white, which was stable for some time before it was eventually
oxidized to Prussian blue.

Finally, I want to remark that if ferric chloride and potassium hexacyanoferrate(III),
i.e., the two iron(III) compounds, are ground together, brown Prussian Yellow, iron(III)
hexacyanoferrate(III), is produced. This will also eventually react to Prussian blue. The
first step is the formation of Prussian white according to Reaction (6) as described by de
Wet and Rolle [37].

FeIII[FeIII(CN)6] + 3H2O→ NH4FeII[FeII(CN)5H2O] + CO2 (6)

This is followed by its oxidation to Prussian blue according to Reaction (5). However,
because this reaction is much slower compared with the oxidation of Prussian white
only by oxygen, according to Reaction (5), it is not useful for the demonstration of the
mechanochemical preparation of Prussian blue.

Such a mechanochemical Prussian blue preparation experiment could be part of a
lecture in inorganic chemistry courses, which deal with coordination chemistry and the
transition elements. Here, it could be demonstrated by the lecturer perhaps in comparison to
the precipitation reaction for Prussian blue formation from aqueous precursor solutions as
shown in Figure 1. However, these experiments could also be performed by undergraduate
chemistry students by themselves during the preparative methods in inorganic chemistry
laboratory courses.

4. Conclusions

A simple mortar-and-pestle experiment for teaching green, solvent-free mechanochem-
ical reactions to undergraduate chemistry students was presented. The color change from
brownish-yellowish and/or reddish to dark blue allows an easy assessment of the reaction
progress. This communication updates and extends the topics of Prussian blue formation
and mechanochemistry that were published earlier in chemical education journals inde-
pendently of each other. The reaction described in this communication can be included by
chemistry teachers in their programs for teaching sustainable chemistry.
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