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Abstract: Synthetic polymers have a key role in modern society as they have allowed for great
technological advancement since their discovery. However, the use of fossil-fuel-based raw materials
and the pollution derived from plastics accumulation in the environment raised enormous concern,
driving research efforts toward the identification of more sustainable alternatives. Bio-based func-
tional molecules susceptible to ring-opening (co)polymerisation [RO(C)OP], such as lactones, cyclic
carbonates, and oxiranes, represent an attractive source of monomers for the synthesis of more sus-
tainable polymers. In this review, we describe the main advancement in this research field reported
during the last seven years. In particular, we describe the preparation of monomers from (renewable)
bio-sources such as sugars, terpenes, fatty acids, and carbon dioxide with a focus on structurally
novel substrates. Both metal-mediated and organo-catalytic RO(CO)P methods are described, and
the properties of derived functional polymers are discussed when relevant.

Keywords: ring-opening (co)polymerisation; catalysis; bio-based; monomer; polyether; polyester;
polycarbonate

1. Introduction

Technological and material advancements have been used to classify certain periods
of human history, from ancient stone, bronze, and iron ages to the closer in time atomic,
space and information ages [1]. There can be no doubt that synthetic plastics represent one
of the greatest technological advancements in the modern era. Unfortunately, their use is
accompanied by environmental pollution at such a level that the presence of plastic in non-
bioturbated sediment could be used as a stratigraphic indicator for the Anthropocene [2].

Environmental accumulation of plastics due to the high stability of most commonly
used polymers represents a priority problem and, at the same time, the vast majority of
currently used polymers are based on non-renewable, fossil resources [3]. In the attempt to
find a solution, besides recycling, the upcycling of waste polymers is emerging as highly
promising strategy for mitigating plastic pollution [4]. In parallel, great attention has been
directed to the identification of new, renewable alternative feedstocks for the production
of (more) sustainable polymers [5]. In particular, the creation of renewable monomers
has been proposed from numerous bio-sources such as terpenes [6], sugars [7], vegetable
oils [8], lignin [9], cellulose [10], and starch [11].

Different classes of bio-based polymers have been obtained by means of several
polymerisation techniques such as: polyhydroxyalkanoates (PHBs) by fermentation [12],
polyolefins by anionic [13], and coordination-insertion polymerisation [14], polyacrilates
by (controlled) radical polymerisation [15], and poly(hydroxyurethane)s by polyaddition
reactions [16].

Among other polymerisation techniques, ring-opening (co)polymerisation [RO(CO)P]
has been largely investigated in the last decades, and numerous catalytic systems have been
developed to promote this reaction [17–24]. In particular, systems based on environmentally
benign metals such as aluminium, zinc, magnesium, and iron are attracting high interest.
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Depending on the chemical identity of the starting monomers, RO(CO)P gives access to the
synthesis of polyethers, polyesters, and polycarbonates.

In this review, we summarize the major advancements in RO(CO)P application for the
conversion of bio-based monomers. In particular, the description is divided on the basis of
the polymer product identity. We mainly covered the period from 2015 to the beginning of
2022, to avoid overlapping with other exhaustive review papers.

2. Polyesters

One of the most appealing classes of sustainable polymers is represented by aliphatic
polyesters (APEs), because of their general biocompatibility combined with a relatively
easy hydrolytic degradation [25,26]. The synthesis of APEs can be conveniently performed
via ROP of cyclic esters or ROCOP of cyclic anhydrides and epoxides (Scheme 1). Notwith-
standing these methods have been deeply investigated, there is still a lack of suitable
monomers from renewable resources. Hence, in this section, we divide the description of
sustainable APEs into those obtained from bio-based lactones and those obtained from
bio-based epoxides and cyclic anhydrides.
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Scheme 1. General scheme for the ROP of cyclic esters (a) and ROCOP of epoxides with cyclic
anhydrides (b).

2.1. Polyesters from ROP of Lactones

Monomers deriving from renewable biomass feedstocks, such as terpenes, sugars, and
fatty acids, have been recognized as ideal candidates for the development of sustainable
materials (Figure 1) [6,27,28].

Although lactide (LA) and ε-caprolactone (CL) are undoubtedly the most studied of
the series, their congeners such as δ-hexalactone (HA) and β-lactones (BLs) have been less
investigated [29,30]. The corresponding polyesters are used in many fields, in particular for
medicinal and pharmaceutical applications [31,32]. For this reason, important efforts have
been dedicated to the development of catalytic systems based on non-toxic metals. Cur-
rently, the industrial production of polylactide (PLA) employs tin(II) octanoate (Sn(Oct)2)
as the catalyst, also approved by the U.S. Food and Drug Administration (FDA) [33]. Nev-
ertheless, alternative systems capable of outperforming such catalysts have been developed
during the past two decades. In this scenario, complexes based on Al, Mg, and Zn exhibit
outstanding catalytic performances and have been extensively reviewed [34–36].
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Along with these metals, Fe-based catalysts represent ideal candidates; nonetheless,
applications of such systems as ROP catalysts are scant. Indeed, after the early reports by
Tolman [37,38], and Gibson [39,40], the field has remained largely unexplored for almost a
decade. In 2013, Byers et al. reported on the ROP of lactide promoted by bis(imino)pyridine
Fe(II) bis(alkoxide) complexes [41]. The catalyst activity proved highly dependent on the
nature of the exogenous alcohol employed as the co-activator. The obtained PLAs had
relatively narrow molecular weight distribution (dispersity, Ð, between 1.06 and 1.45),
and the process exhibited a rather living character. Nevertheless, the systems proved
poorly active, allowing for 60% conversion of 100 equivalents of monomer in 24 h. The
analogous ferric compound was completely inactive, enabling the possibility of an on/off
redox switchable process. Later, the same group disclosed analogue ferrous species bearing
a bis(amidinato)-N-hetero-cyclic carbene ligand [42]. Compared to the previously reported
bis(imino)pyridine-based congener, PLAs with higher Mn were achieved in shorter reaction
times. This was accounted to faster activation rates granted by the more electron-donating
NHC scaffold.

Tetradentate bis(imino)pyridine iron(II) complexes active in the ROP of lactide were
lately reported by Herres-Pawlis et al. (Fe1–3, Figure 2) [43]. Such species allowed for high
conversion (87%) of technical grade monomer within 30 h under solvent-free conditions,
affording PLAs with a number average molecular weight (Mn) lower than the theoretical
values and rather large dispersity (1.5≤ Ð≤ 1.9). Two years later, the same group disclosed
novel iron-guanidine complexes exhibiting superior catalytic activity in the ROP of lactide
(Fe4–6, Figure 2) [44]. Remarkably, such species outperformed Sn(Oct)2 under industrially
relevant conditions (i.e., technical grade monomer and bulk), affording high molecular
weight PLA (Mn > 90 kDa) having thermal properties matching those reported in the
literature. Analysis of the polymer chain ends indicated that, in the absence of an external
co-activators (alcohol), the reaction could be initiated either by adventitious water or by
the guanidine moiety of the complex.
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of lactide.

In 2017, a Fe(η6-C6H6)-bis(arylimino)-acenaphthene (BIAN) system was reported by
Long et al. (Fe7, Figure 3) [45].
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Figure 3. Synthesis of Fe(η6-C6H6)-bis(arylimino)-acenaphthene complex Fe7.

Complex Fe7 was tested in the ROP of L-LA, affording high molecular weight PLLA
(Mn up to 300 kDa) in the absence of exogeneous alcohol with moderate dispersity values
(Ð = 1.7). Upon introducing 4-methoxyphenol as the co-activator, a drop of polymer Mn
consistent with the concentration of alcohol was observed. In turn, 1H NMR spectroscopy
analysis revealed the presence of 4-methoxyphenoxy-terminal groups, indicating the alco-
hol as the actual initiator of the process. Nevertheless, no clear evidence of in situ formation
of iron alkoxide species was obtained. The actual polymerisation mechanism, as well as
the role of the iron complex, could not be clarified due to the formation of paramagnetic
species hampering in-depth NMR spectroscopy analyses.

Concomitantly, Pang et al. disclosed a series of air-stable Fe(III)-salen catalysts for the
ROP of r-LA and CL (Fe8–15, Figure 4) [46,47].
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Although no polymerisation was achieved in toluene, all complexes proved active
upon using propylene oxide (PO) as the solvent. MALDI-ToF analysis of the polymers
revealed chain terminations compatible with chloropropanol moieties, suggesting that the
catalyst activation proceeds by ring-opening of the epoxide affording a Fe-alkoxide species.
Remarkably, the presence of poly(propylene oxide) blocks was not observed, indicating
that, aside from the activation step, the epoxide remains completely unreacted. This was in
striking contrast with the reactivity observed with analogues Al-complexes. In addition,
the Fe-compounds proved better performing than Al-systems with similar structures. This
was accounted for by a stronger donor property of the Fe(III) centre. The activity of Fe9
was higher than that of Fe8, possibly because of the greater flexibility of the C3 bridging
unit. On the other hand, all polymers exhibited comparable Mn and Ð. The unsubstituted
complex Fe11 exhibited the lowest activity, while the presence of an electron-withdrawing
substituent in Fe14–15 determined an improvement of the catalytic performance due
to the reduced electronic density around the metal centre. In turn, tert-Bu substituted
complexes Fe12–13 allowed for narrow polydispersity and moderate Mn (1.13 and 10.5 kDa,
respectively). The obtained PLAs were somewhat isotactic (0.68 < Pm < 0.78) or heterotactic
depending on the ligand structure. In particular, hindered aromatic moieties granted
higher isotacticity. Extensive mechanistic studies indicated that the stereoselectivity of r-LA
polymerisation proceeds according to a chain-end control mechanism.

Along with linear polyesters, polymers with cyclic structures are attractive materi-
als due to their interesting properties and absence of terminations [48]. Although rel-
evant examples are present in the literature [49–51] the synthesis of cyclic polyesters
remains challenging. For example, Sn-based species allowed for the synthesis of cyclic
poly(L-lactide) (cPLA) displaying Mn as high as 31 kDa, albeit with very broad dispersity
(Ð > 6) [52,53]. Remarkably, the industrial catalyst Sn(Oct)2 also proved to produce cPLA
with good activity under specific conditions [54].

In this scenario, Capacchione and co-workers showed that the bis-thioether-bis-
phenolate [OSSO]-type Fe(III) complex Fe16 (Figure 5) is capable of producing cPLA
at 80 ◦C with LA:Fe ratios as high as 10,000 in either PO or cyclohexene oxide (CHO)
as the solvent [55]. Moreover, in this case, the epoxide acted as the co-activator of the
polymerisation. In fact, the first step of the mechanism was proposed to be the activation of
the epoxide by the Fe-catalyst, as previously observed with the same system [56,57]. The
Mn’s of the polymers were as high as 6.4 kDa with rather narrow dispersity (1.16 < Ð <1.45).
Interestingly, kinetic investigations indicated a zero-order dependence on the monomer
concentration. The complex was also capable of affording cyclic poly(ε-caprolactone)
(cPCL)and cyclic poly(β-butyrolactone) (cPBL).
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Figure 5. Fe-complex Fe16, and Ce-complexes Ce1–2 affording cyclic polyesters.

Lately, Williams, Arnold et al. reported on the synthesis of cPLA promoted by N-
heterocyclic carbene (NHC) Ce(III) complexes (Ce1–2, Figure 5) [58].

Complex Ce2, bearing a saturated NHC backbone, proved more active than its unsat-
urated congener Ce1. Nevertheless, both complexes exhibited high polymerisation rates
at very low catalyst loading (200 ppm), allowing for the isolation of cPLA displaying Mn
up to 250 kDa and rather narrow polydispersity (Ð = 1.59). In addition, CL and BL were
also successfully converted into cyclic polyesters. Interestingly, liner polymers could be
obtained upon introducing exogenous alcohol (iPrOH), albeit with a lack of control and
lower Mn (73 kDa)

Homo- and hetero-multimetallic complexes have often exhibited higher activities in
the ROP of LA and CL when compared to their monometallic counterparts [59,60]. Such
difference is thought to arise from cooperative effects between the different metal centres.
A comprehensive overview of such systems has been recently reported by Garden and
Gruszka [61].

Polyesters derived from the homo/copolymerisation of larger lactones
(i.e.,ω-pentadecalactone, PDL), have been proposed as viable biodegradable alternatives
to polyolefins. Indeed, the mechanical and thermal properties of poly(pentadecalactone)
(PPDL) were found to be comparable to that of low-density polyethylene (LDPE) [62]. As
for LA and CL, most of the catalytic systems employed in the ROP of PDL are based on
Al- [63], Zn- [64], and Mg-complexes [65,66].

Very recently, a family of sodium complexes bearing a dibenzhydryl-substituted
phenoxide and 15-crown-5-ether ligands exhibited interesting activity in the ROP of PDL
(Na1–4, Figure 6) [67].
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Such systems allowed for a complete conversion of 100 equiv. of monomer within 5 h in
the presence benzhydrol as co-activator. In terms of catalytic activity, all complexes proved
equally performing, affording polymers with Mn as high as 50 kDa and polydispersity
values spanning from 1.69 to 2.57. The size of the crown-ether cavity was thought to allow
only for the polymer chain growth, inhibiting undesired transesterification processes.

With respect to organocatalyzed routes, phosphazane superbases proved viable ROP
promoters [68,69]. Indeed, PPDL having Mn matching the theoretical values has been
obtained with moderate to good conversions even at room temperature in the presence of
exogeneous alcohol (BnOH) as the co-activator. Interestingly, the melting temperatures of
the polymers (spanning from 90 to 93 ◦C) were found close to that of liner PE.

A dual catalyst approach involving an organic base in combination with a Lewis acid
has been developed by Dove et al. [70]. In this case, N-heterocyclic carbenes (NHC1–3),
1,8-diazabicycloundec-7-ene (DBU) and 4-dimethylaminopyridine (DMAP) were selected
as the bases (Figure 7), while MgX2 (X = Cl, Br, I), FeCl3, ZnCl2, B(Ph)3, Bi(OTf)3, YCl3 and
AlCl3 were employed as the Lewis acids. For the latter, the activity order was found to
be Mg > Y > Al, while the other species proved completely unreactive. Such trend was
tentatively explained considering the moderate solubility of such reactants in the reaction
medium (toluene); nevertheless, the occurrence of processes leading to the saturation
of the electronic vacancy of the Lewis acid in competition with monomer coordination
was not excluded. In turn, MgI2 proved more active than its bromide- and chloride
analogues, allegedly because of its cationic character resulting from the dissociation of one
iodine ligand.

Concerning the organic base different NHCs, in combination with MgX2, allowed for
similar reaction rates and monomer conversions. Nevertheless, the use of the more donating
carbene NHC3 led to a broadening of the molecular weight distribution, indicating a lack
of control. Finally, the combination of MgI2 and DBU exhibited the highest catalytic activity,
allowing for a complete conversion of 200 equiv. of PDL within 30 min at 110 ◦C in the
presence of BnOH as the co-activator, affording a polymer having Mn and Ð of 71 kDa and
1.80, respectively.
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2.2. Polyesters from ROCOP of Epoxides and Cyclic Anhydrides

The ROCOP of epoxides and cyclic anhydrides is another effective approach to access
polyesters [20,71]. Aside from benchmark monomers such as propylene oxide (PO), cy-
clohexene oxide (CHO) and phthalic anhydride (PA), terpene-anhydrides and epoxides
have been gaining increasing attention (Figure 8). An example of fully terpene-based
polyester was reported by Thomas et al. in 2011 [72]. Indeed, the ROCOP of camphoric
anhydride (CA) and limonene oxide (LO) was achieved in the presence of Al-salen complex
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Al1 (Figure 9). Attempts to post-functionalize the polymer by olefin cross-metathesis were
unsuccessful [73].

Sustain. Chem. 2022, 3, FOR PEER REVIEW 8 
 

 

Tricyclic anhydrides AH1 and AH2, derived from α-pinene and α-phellandrene, re-

spectively, have been employed in the ROCOP with PO to afford polyesters exhibiting 

high Tg [74]. Catalysts investigated in such a study were Cr-, Co- and Al-complexes bear-

ing a salphen scaffold (Figure 9). Improved thermal properties (higher Tg values) have 

been achieved upon replacing PO with a more rigid epoxide such as CHO [75]. Reports 

concerning the use of terpene-derived epoxides (i.e., APO, LO, Figure 8b) remain scant 

since their reactivity is generally hampered by steric congestion. 

 

Figure 8. Terpene-based anhydrides (a) and epoxides (b). 

 

Figure 9. Complexes employed in the ROCOP of epoxides and anhydrides. 

Early examples of LO copolymerisation with phthalic anhydride catalysed by Cr1 

required high temperatures [76]. In turn, the use of the Fe-aminotriphenolate complex 

Fe17 allowed for the copolymerisation of PA with various terpene-derived epoxides (Fig-

ure 8b) under mild reaction conditions, both in solution and in bulk [77]. 

Figure 8. Terpene-based anhydrides (a) and epoxides (b).

Sustain. Chem. 2022, 3, FOR PEER REVIEW 8 
 

 

Tricyclic anhydrides AH1 and AH2, derived from α-pinene and α-phellandrene, re-

spectively, have been employed in the ROCOP with PO to afford polyesters exhibiting 

high Tg [74]. Catalysts investigated in such a study were Cr-, Co- and Al-complexes bear-

ing a salphen scaffold (Figure 9). Improved thermal properties (higher Tg values) have 

been achieved upon replacing PO with a more rigid epoxide such as CHO [75]. Reports 

concerning the use of terpene-derived epoxides (i.e., APO, LO, Figure 8b) remain scant 

since their reactivity is generally hampered by steric congestion. 

 

Figure 8. Terpene-based anhydrides (a) and epoxides (b). 

 

Figure 9. Complexes employed in the ROCOP of epoxides and anhydrides. 

Early examples of LO copolymerisation with phthalic anhydride catalysed by Cr1 

required high temperatures [76]. In turn, the use of the Fe-aminotriphenolate complex 

Fe17 allowed for the copolymerisation of PA with various terpene-derived epoxides (Fig-

ure 8b) under mild reaction conditions, both in solution and in bulk [77]. 

Figure 9. Complexes employed in the ROCOP of epoxides and anhydrides.

Tricyclic anhydrides AH1 and AH2, derived from α-pinene and α-phellandrene,
respectively, have been employed in the ROCOP with PO to afford polyesters exhibiting
high Tg [74]. Catalysts investigated in such a study were Cr-, Co- and Al-complexes
bearing a salphen scaffold (Figure 9). Improved thermal properties (higher Tg values) have
been achieved upon replacing PO with a more rigid epoxide such as CHO [75]. Reports
concerning the use of terpene-derived epoxides (i.e., APO, LO, Figure 8b) remain scant
since their reactivity is generally hampered by steric congestion.

Early examples of LO copolymerisation with phthalic anhydride catalysed by Cr1
required high temperatures [76]. In turn, the use of the Fe-aminotriphenolate complex Fe17
allowed for the copolymerisation of PA with various terpene-derived epoxides (Figure 8b)
under mild reaction conditions, both in solution and in bulk [77].
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In 2020, Della Monica and Kleij reported the ROCOP of new terpene-based epoxides
obtained from β-elemene in the synthesis of highly functional semi-aromatic polyesters
(Figure 10) [78]. This terpene, naturally occurring in citrus fruit, is usually extracted from
ginger root and demonstrated to have anticancer activity [79]. Thanks to the different
reactivity of the double bonds in β-elemene, it was possible to obtain the corresponding
mono-, di- and tri-epoxides (BEM, BED, and BET respectively). In particular, BED was
obtained as a regio-isomers mixture in a 7:3 composition. Copolymerisation of BEM with
PA was investigated using complexes Fe17 and Al3, activated by (triphenylphosphine)-
iminium chloride (PPNCl), obtaining poly(BEM-alt-PA) with 3.5 ≤ Mn ≤ 8 kDa and
1.13 ≤ Ð ≤ 1.28.

The functional polyester poly(BEM-alt-PA), bearing two pendant double bonds with
different reactivity, was subject to post-functionalization via epoxidation, obtaining the
corresponding poly(BED-alt-PA) and poly(BET-alt-PA) that cannot be prepared by direct
reaction of BED or BET (Figure 9). Indeed, ROCOP of BED with PA was also performed
under conditions similar to BEM, but an insoluble, crosslinked polyester was obtained,
with a Tg of 125 ◦C. Notably, the post-synthetic epoxidation affects the thermal properties,
with the Tg raising from 68 to 121 ◦C.

Fatty acids represent a highly attractive renewable feedstock for chemical indus-
tries [80] and became interesting also for the development of sustainable polymers [81,82].
For example, an efficient approach is the valorisation of epoxidized-products derived from
fatty acids [83–85].
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Figure 10. Synthesis of β-elemene-based epoxides, corresponding functional semi-aromatic polyester
poly(BEM-alt-PA), and its post-modification.

In this regard, very recently the ROCOP of epoxidized fatty acids esters for the
synthesis of functional polyesters was also described [86]. First, copolymerisation of methyl
oleate oxide (MOO) with PA was investigated, using combinations of Fe17 and Al3 with
PPNCl and DMAP as the catalytic system, obtaining polyesters with 4 ≤Mn ≤ 12 kDa and
1.15 ≤ Ð ≤ 1.19. Notably, the reaction was also possible using MOO based on oleic acid
obtained from food industry waste. Structurally different polyesters were obtained starting
from various epoxides/cyclic anhydrides combinations (Figure 11), and the flexible nature
of the pendant side-chains resulted in materials with −45 ≤ Tg ≤ −5 ◦C.
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In addition, two different methods were used for the creation of thermally stable,
and thermo-reversible cross-linking networks. In the first case, the polymer based on
allyl oleate oxide (AOO) was reacted with a bis-azide via Cu(I)-catalyzed azide−alkyne
cycloaddition, obtaining an insoluble material with Tg of 37 ◦C, higher than that of the
pristine polyester (Tg = −22 ◦C). In the second case, the polymer based on furfuryl oleate
oxide (FOO) was reacted with bis-maleimide in Diels-Alder (DA) reaction. In this case, the
crosslinked polyester also showed an increase in Tg (from −19 to 95 ◦C), however thermal
curing at 160 ◦C for 16 h induced a retro-DA reaction giving PE with the same properties
as the original sample.

3. Polycarbonates

Polycarbonates (PCs) are classified into aromatic PCs and aliphatic PCs. Commercial
aromatic PCs are known as BPA-PCs, based on bis-phenol A (BPA) structural motif. In
recent years, concern has arisen regarding BPA-PC because it degrades under environ-
mental temperature and normal pH, releasing BPA which is known to act as an endocrine
disruptor [87]. In addition, industrial PC production relies on the use of highly toxic
phosgene. On the contrary, aliphatic PCs seem to represent a more sustainable alternative,
due to their general biodegradability and biocompatibility [88,89]. However, most common
aliphatic PCs, such as poly(propylene carbonate), suffer from scarce material properties
limiting their possible applications [90]. In this context, the successful synthesis of aliphatic
polycarbonates achieved either via direct ROP of cyclic carbonates (CCs) or ROCOP of
epoxides and carbon dioxide is highly attractive (Scheme 2) [17–22,91,92].
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Notwithstanding these methods are highly attractive, they both present some critical
aspects to be considered when designing new monomers. In the case of CCs, it is important
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to notice that not all CCs can be polymerised, and the success of the reaction often depends
on ring-size, substitution pattern and stereochemistry of the monomer. For example, it is
well known that the trans-form of cyclohexene carbonate can be polymerised while the
cis-isomer is inert toward polymerisation [93,94]. In the case of ROCOP, the epoxide nature
also plays an important role in directing the reaction toward the formation of PC or CC [95].
In addition, the search for catalytic systems based on sustainable metals is still highly
active since the most active systems producing PCs are based on metals such as Co and
Cr. Hence, in this section, we divide the description of sustainable PCs into those obtained
from bio-based CCs and those obtained from bio-based epoxides.

3.1. ROP of Cyclic Carbonates

The synthesis of bio-based cyclic carbonates for application in ROP is largely based
on sugars, which are converted into cyclic carbonates thanks to the presence of multiple
hydroxyl groups. Thanks to their large availability and biocompatibility, carbohydrates
represent one of the more attractive feedstocks in sustainable polymer chemistry [96]. In-
deed, they combine a wide structural diversity with the presence of oxygenated functional
groups, ideally offering the possibility to design materials with enhanced material prop-
erties and biodegradability. In the last years, the research groups of Wooley and Buchard
reported the synthesis of several sugar-based CC monomers for PC synthesis. Bicyclic and
tricyclic structures were obtained, containing cyclic carbonates moieties with both cis-and
trans-configuration. This results in good reactivity of such sugar-based monomers, which
can be polymerised in the presence of simple organocatalysts.

In 2017, the multistep synthesis of D-glucose-based monomer CC1 was described
(Figure 12) [97].
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Figure 12. Synthesis of D-glucose-based monomer CC1 and corresponding polycarbonate PCC1.
Organo-catalysts structures are also shown for clarity.

The procedure involves the Ferrier rearrangement of starting tri-O-acetyl-D-glucal to
yield intermediate a, followed by deprotection of the alcohol groups. Finally, the 1,3-diol
b was converted into the desired monomer CC1 using triphosgene in the presence of
pyridine. The corresponding polycarbonate PCC1 was successfully obtained via ROP of
CC1 by using 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU), 1,5,7-triazabicyclo[4.4.0]dec-5-ene
(TBD) and 1-(3,5-bis-(trifluoromethyl)-phenyl)-3-cyclohexyl-2-thiourea (TU) in the presence
of 4-methylbenzyl alcohol (MBA) as the initiator. Almost complete conversion was achieved
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in short times (1–10 min) with all the catalysts, obtaining the highest Mn of about 10 kDa
with TBD. However, bimodal molecular weights distribution was observed in this case,
probably due to trans-carbonation side-reaction. The PCC1 shows a relatively high Tg of
about 69 ◦C, likely due to the presence of a rigid six-membered ring. Interestingly, this
sugar-based polymer presents a double-bond that could be further used in post-synthetic
transformations.

Soon after, direct synthesis of the five-membered cyclic carbonate monomer CC2 was
described by reaction of a commercially available D-glucopyranoside derivative with the
same procedure reported for CC1, but a very high yield (95%) was obtained in this case
(Figure 13) [98].
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Figure 13. Synthesis of D-glucose-based monomer CC2 and corresponding polycarbonate PCC2,
followed by post-functionalization toward hydroxylated- and acetate-polycarbonates PCC2-OH and
PCC2-OAc, respectively.

It is important to note that, in general, five-membered CCs do not react under ROP cat-
alytic conditions. On the contrary, in this case, the combination of trans stereochemistry with
the presence of fused rings provided enough ring-strain for a successful ROP. Indeed, poly-
carbonate PCC2 was readily obtained under conditions similar to PCC1. However, a longer
reaction time of 5 h was needed and Mn in the range of 3–6 kDa were obtained. Interestingly,
PCC2 was modified by post-synthetic reactions. Indeed, removing the benzylidene protect-
ing groups under acidic conditions led to the formation of hydroxy-functionalized PCC2-
OH, which was further converted into the acyl protected PCC2-OAc using acetic anhydride.
Measurement of water contact angle revealed, as expected, that the hydroxy-functionalized
polycarbonate PCC2-OH is significantly more hydrophilic (38◦ ≤ contact angle ≤ 58◦) than
the protected polycarbonates (94◦ ≤ contact angle ≤ 128◦).

More recently, the synthesis of a series of differently substituted six-membered CCs
(CC3-R, Figure 14) was described, starting from the same glucopyranose derivative used
for the preparation of CC2 [99]. In this case, the initial hydroxyl groups were converted
into linear carbonates c by reaction with various chloroformates. Removal of benzylidene
acetal protecting group, forming 1,3-diols d, followed by cyclic carbonate formation with
triphosgene yield the desired CC3-R monomers. The ROP of CC3-R led to the formation of
the corresponding PCC-R polycarbonates with narrow distributions (1.04 ≤ Ð ≤ 1.06) and
similar molecular weights (15 ≤Mn ≤ 16 kDa). Remarkably, the presence of structurally
different substituents resulted in the fine-tuning of Tg in a wide thermal window, from
38 to 125 ◦C. Very interestingly, the authors were able to analyse the relationship between
Tg and molecular weight for two selected polycarbonates, PCC-neoP and PCC-EtHex. In
detail, the analysis was conducted at the level of discrete oligomers (from monomers to
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tetramers) and polymers with a polymerisation degree from 10 to 40, finding that the
variation of Tg with Mn is very well described by the Flory-Fox theory [100].
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Figure 14. Synthesis of D-glucose-based monomer CC3-R and corresponding polycarbonate PCC3-R.

Notably, the same research group analysed the regio-chemistry of CC3-R ROP, combin-
ing NMR analyses and DFT investigations, finding that the presence of carbonate pendant
groups is crucial for the formation of regio-regular polymers [101]. Indeed, analogous
monomers bearing ether pendant groups were also polymerized but in a regio-irregular
fashion, and the pendant carbonate moieties seem to be involved in the stabilization of the
transition state via intermolecular hydrogen-bonding with TBD.

All the examples of sugar-based CCs described so far demonstrated the high potential
of this class of monomers but, unfortunately, their preparation is based on the use of
phosgene derivatives. Consequently, the search for more sustainable reaction procedures
for the synthesis of structurally complex cyclic carbonates is a topic of high interest [83].
In this regard, Buchard’s research group reported a new method for the synthesis of six-
membered CCs from diols, using carbon dioxide, an organic base, and tosyl chloride
(TsCl) [102,103]. This procedure was successfully applied for the synthesis of sugar-based
cyclic carbonate monomers.

In 2016, the synthesis of D-mannose-based monomer CC4 was described, and its
structure was also confirmed by X-ray analysis (Figure 15) [104].
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As previously described, also in this case the trans-stereochemistry and the presence
of a fused tricyclic structure resulted in a good reactivity of CC4 in the organocatalytic ROP
promoted by TBD. The resulting PCC4 was obtained with Mn in the range 6–33 kDa and
with narrow distributions (1.10 ≤ Ð ≤ 1.19). However, using CC4/TBD ratio higher than
150 and reaching Mn > 15 kDa, back-biting of the polymer chain forming smaller cyclic
species was observed, supported by MALDI analysis. Notably, the ROP of CC4 proceeds
in a regioselective manner probably due to the steric hindrance of the 2,3-O-isopropylidene
protecting group. In addition, PCC4 exhibits a high Tg of 152 ◦C likely due to the rigidity
of its structure. Deprotection of the 1,2-hydroxyl groups was also explored, and it was
possible to remove 70% of protecting groups by treating with CF3COOH/H2O mixture.

Later, the same group investigated the use of thymidine in polycarbonate synthe-
sis [105]. Attempts to obtain a cyclic carbonate monomer using both phosgene-reagents
and the CO2 method described before were unsuccessful. This result was attributed to
the high strain of the thymidine-base carbonate in the trans-configuration. Interestingly,
a different multistep approach was adopted involving the protection of the secondary
alcohol moiety with a tosyl group, followed by an SN2-type intramolecular reaction that, by
involving the stereochemistry inversion in a 3′ position, yielded the desired CC5 monomer
(Figure 16).
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The ROP of CC5 to obtain the corresponding PCC5 was achieved in the presence of
TBD, and the polymerisation proceeds until the establishment of the monomer–polymer
equilibrium (e.g., 80% conversion at 25 ◦C), so the temperature dependence of the equilib-
rium was studied, and the polymerisation thermodynamic parameters determined equal to
∆Hp = −12.3 ± 0.4 kJ ·mol−1 and ∆Sp = −29 ± 1.1 J mol−1 · K−1. As for the case of CC4,
back-biting of the polymer chain was observed, however Mn up to 17 kDa with Ð = 1.3 were
obtained. The hydrolytic stability of PCC5 was also investigated and, while stable in 1 M
HCl for one week, the polymer hydrolyses in 1 M NaOH in 4 h to the cis-diol of 3-N-methyl
thymidine. A cell attachment study was conducted with a human osteoblast cancer cell line
(MG-63) to explore the possibility to use PCC5 as a tissue engineering scaffold indicating
promising results, but further structural modifications are needed to obtain better results.

Soon after, the synthesis of 2-deoxy-D-ribose-based monomer CC6 was reported with
a procedure similar to that used for monomer CC5 [106]. Using this method, the desired
carbonate was obtained in 80% yield in the two α and β anomeric forms (Figure 17).
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Figure 17. Synthesis of 2-deoxy-D-ribose-based monomer CC6 and corresponding polycarbonate PCC6.

Polymerisation studies conducted with TBD as the catalyst revealed that only the
α-form of CC6 is susceptible to ROP, yielding the insoluble polycarbonate PCC6 with
Mn as high as 26 kDa, while the β-form cannot polymerise. This difference was ra-
tionalized by DFT investigations, finding that the overall thermodynamics of β-CC6
ROP is unfavourable (∆∆G = +1.4/+2.0 kcal · mol−1) compared with that of α-CC6
(∆∆G = −0.9 to −1.9 kcal ·mol−1). MALDI analyses of PCC6 revealed the presence of
cyclic species in high concentrations (≈ 50%). Copolymerisation of CC6 with trimethy-
lene carbonate (TMC) was investigated, obtaining random copolymers with CC6:TMC
composition from 93:7 to 14:86, 43 ≤ Mn ≤ 57 kDa and 1.37 ≤ Ð ≤ 1.35. The poly(CC6-
co-TMC) copolymers showed Tg values comprised between those of PCC6 and PTMC
homopolymers (58 and −25 ◦C, respectively), depending on composition in agreement
with the Fox equation.

In 2019, Buchard et al. demonstrated that monomer CC7, prepared from glucose-
derived erythritol, can be used in two different stereoselective polymerisation processes
(Figure 18) [107]. In the case of TBD-mediated ROP, the original stereochemistry of the dou-
ble bond is retained, yielding P-cis-CC7. In contrast, the ring-opening metathesis polymeri-
sation (ROMP) performed with the Grubbs second-generation catalyst (GII, Figure 17) in-
verts the original stereochemistry, producing P-trans-CC7 with stereoselectivity up to 95%.

Sustain. Chem. 2022, 3, FOR PEER REVIEW 16 
 

 

 

Figure 18. Synthesis of erythritol based monomer CC7 and corresponding polycarbonates P-cis-

CC7 and P-trans-CC7. 

The two polymers have different material properties, indeed P-trans-CC7 is a soft 

amorphous material (Tg = −22 °C) while P-cis-CC7 is a hard, semicrystalline material (Tg = 

−24 °C; Tm = 115 °C). 

Another interesting sugar-based precursor is represented by (R)-(-)-1,3-butanediol, 

obtained via glucose fermentation with very high stereoselectivity [108]. Recently 

Hillmyer et al. reported the preparation of carbonate monomer (R)-CC8, based on (R)-(-)-

1,3-butanediol, and its ROP toward polycarbonate PCC8 (Figure 19) [109]. 

 

Figure 19. Synthesis of bio-1,3-butylene glycol-based monomer CC8 and corresponding polycar-

bonate PCC8. Structures of catalysts Zn1, Al3 and Al4 are also shown on the bottom. 

The ROP of CC8 was already reported before, however, only amorphous polycar-

bonates were obtained because of the scarce regiochemistry control [110,111], or the use 

of racemic monomer mixtures leading to atactic PCC8 [112,113]. On the contrary, the 

polymerisation of (R)-CC8 promoted by bulky Zn-β-diiminate, and Al-salen complexes 

(Zn1, and Al4–5, Figure 18) proceeds with virtually perfect regioselectivity (99%) under 

operationally simple reaction conditions (bulk, 70 °C), with Mn up to 150 kDa and Đ = 1.2 

in the case of Al4. The PCC8 obtained in this way is semicrystalline, with a Tm = 73 °C. 

Figure 18. Synthesis of erythritol based monomer CC7 and corresponding polycarbonates P-cis-CC7
and P-trans-CC7.
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The two polymers have different material properties, indeed P-trans-CC7 is a soft
amorphous material (Tg = −22 ◦C) while P-cis-CC7 is a hard, semicrystalline material
(Tg = −24 ◦C; Tm = 115 ◦C).

Another interesting sugar-based precursor is represented by (R)-(-)-1,3-butanediol,
obtained via glucose fermentation with very high stereoselectivity [108]. Recently Hillmyer
et al. reported the preparation of carbonate monomer (R)-CC8, based on (R)-(-)-1,3-
butanediol, and its ROP toward polycarbonate PCC8 (Figure 19) [109].
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Figure 19. Synthesis of bio-1,3-butylene glycol-based monomer CC8 and corresponding polycarbon-
ate PCC8. Structures of catalysts Zn1, Al3 and Al4 are also shown on the bottom.

The ROP of CC8 was already reported before, however, only amorphous polycar-
bonates were obtained because of the scarce regiochemistry control [110,111], or the use
of racemic monomer mixtures leading to atactic PCC8 [112,113]. On the contrary, the
polymerisation of (R)-CC8 promoted by bulky Zn-β-diiminate, and Al-salen complexes
(Zn1, and Al4–5, Figure 18) proceeds with virtually perfect regioselectivity (99%) under
operationally simple reaction conditions (bulk, 70 ◦C), with Mn up to 150 kDa and Ð = 1.2
in the case of Al4. The PCC8 obtained in this way is semicrystalline, with a Tm = 73 ◦C.
Interestingly, an attempt to form a stereocomplex by mixing PCC8 prepared from (R)- and
(S)-CC8 only resulted in a little enhancement with Tm = 80 ◦C.

Replacing CO2 with CS2 in the DBU-based procedure described above discloses the
access to structurally related thiocarbonate monomers TC1–3, derived from 2-deoxy-D-
ribose or D-xylofuranose (Figure 20) [114]. Poly-thiocarbonates PTC1–3, were obtained
by organocatalytic ROP of TC1–3, with 3 ≤Mn ≤ 31 kDa and 1.3 ≤ Ð ≤ 2.2. The interest
in these polycarbonate analogues is based on the observation that the substitution of
some oxygen atoms with sulphur ones may result in the enhancement of certain material
properties [115–117]. However, in this case, the Tg were similar to or lower than those of
the corresponding sugar-based polycarbonates.



Sustain. Chem. 2022, 3 275

Sustain. Chem. 2022, 3, FOR PEER REVIEW 17 
 

 

Interestingly, an attempt to form a stereocomplex by mixing PCC8 prepared from (R)- 

and (S)-CC8 only resulted in a little enhancement with Tm = 80 °C. 

Replacing CO2 with CS2 in the DBU-based procedure described above discloses the 

access to structurally related thiocarbonate monomers TC1–3, derived from 2-deoxy-D-

ribose or D-xylofuranose (Figure 20) [114]. Poly-thiocarbonates PTC1–3, were obtained by 

organocatalytic ROP of TC1–3, with 3 ≤ Mn ≤ 31 kDa and 1.3 ≤ Đ ≤ 2.2. The interest in these 

polycarbonate analogues is based on the observation that the substitution of some oxygen 

atoms with sulphur ones may result in the enhancement of certain material properties 

[115–117]. However, in this case, the Tg were similar to or lower than those of the corre-

sponding sugar-based polycarbonates. 

 

Figure 20. Synthesis of 2-deoxy-D-ribose-based monomer TC1 (a), D-xylofuranose-based monomers 

TC2 and TC3 (b), and corresponding poly-thiocarbonates PTC1, PTC2 and PTC3. 

3.2. ROCOP of Carbon Dioxide and Oxiranes 

The sustainable synthesis of polycarbonates via the direct use of carbon dioxide in-

volves the identification of suitable bio-based co-monomers. As mentioned in the intro-

ductory paragraph, not all oxiranes can be copolymerized with CO2, because of the pref-

erential formation of the corresponding cyclic carbonates. Consequently, the use of bio-

sourced epoxides is quite limited and an exemplary case is given by limonene oxide (LO) 

for which, to date, only two catalytic systems are known to promote the formation of the 

corresponding poly(limonene carbonate) (PLC) (Figure 21) [118,119]. This topic has been 

recently reviewed by some of us [6]. 

However, in the last few years, some interesting cases of bio-based PC obtained from 

the ROCOP of CO2 with properly designed monomers have been reported. 

In 2020, Greiner et al. reported the synthesis of menth-2-ene oxide (MO) and its co-

polymerisation with CO2 promoted by a zinc β-diiminato catalyst (Zn2), obtaining the 

new poly(menthane carbonate) PMC (Figure 22) [120]. 
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TC2 and TC3 (b), and corresponding poly-thiocarbonates PTC1, PTC2 and PTC3.

3.2. ROCOP of Carbon Dioxide and Oxiranes

The sustainable synthesis of polycarbonates via the direct use of carbon dioxide
involves the identification of suitable bio-based co-monomers. As mentioned in the in-
troductory paragraph, not all oxiranes can be copolymerized with CO2, because of the
preferential formation of the corresponding cyclic carbonates. Consequently, the use of
bio-sourced epoxides is quite limited and an exemplary case is given by limonene oxide
(LO) for which, to date, only two catalytic systems are known to promote the formation
of the corresponding poly(limonene carbonate) (PLC) (Figure 21) [118,119]. This topic has
been recently reviewed by some of us [6].
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However, in the last few years, some interesting cases of bio-based PC obtained from
the ROCOP of CO2 with properly designed monomers have been reported.
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In 2020, Greiner et al. reported the synthesis of menth-2-ene oxide (MO) and its
copolymerisation with CO2 promoted by a zinc β-diiminato catalyst (Zn2), obtaining the
new poly(menthane carbonate) PMC (Figure 22) [120].
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Figure 22. Synthesis L-menthol-based epoxide MO, and corresponding polycarbonate PMC. Struc-
ture of catalyst Zn2 is also shown.

The monomer was obtained starting from L-menthol, which was first converted to
menth-2-ene j, and then epoxidized to the desired MO obtaining a mixture of the two
possible stereoisomers in a 3:7 ratio. Using catalyst Zn2, copolymerisation of MO with CO2
at 25 bar and 25 ◦C in toluene gave good results, yielding PMC with 7 ≤Mn ≤ 23 kDa and
1.11 ≤ Ð ≤ 1.23. Bulk polymerisation was also possible, but with a lower degree of control
over the copolymerisation process obtaining bimodal molecular weights distributions.
Importantly, both MO isomers were incorporated in PMC, as confirmed by NMR analyses
of polycarbonate hydrolysis products. This is in contrast with the case of Zn2-promoted
LO/CO2 ROCOP where the trans-epoxide is preferentially converted. The PMC has a high
Tg of 144 ◦C and did not show any crystallinity. However, this polycarbonate exhibits a
particularly high decomposition temperature (Td = 308 ◦C) if compared with structurally
related PLC (Td = 229 ◦C) prepared with the same catalyst.

Very recently, Wooley et al. described the use of a D-xylose derived oxetane in poly-
carbonate synthesis using an interesting dual-pathway approach [121]. First, the desired
xylose oxetane (XO) was prepared via intramolecular cyclization of intermediate l, obtained
from D-xylose as in Figure 23.

At this point, the first approach was based on the copolymerisation of XO and
carbon dioxide promoted by the combination of Cr-salen complex Cr2 with a suitable
cocatalyst, which is known to catalyse this reaction for structurally related substrates
(Figure 24) [122,123]. Under the best conditions (i.e., 140 ◦C, and 3 MPa of CO2), it was pos-
sible to obtain PXC with 80% selectivity, Mn = 7.4 kDa, and Ð = 1.12. In parallel, the xylene
carbonate XC is also formed during the reaction. In order to maximise the polycarbonate
selectivity, a second approach was adopted based on the initial formation of XC followed
by ROP (Figure 24). The cycloaddition reaction of CO2 to XO was performed, using ZnI2
and tetra-butylammonium iodide as the catalytic system, obtaining XC with 99% selectivity.
Next, the ROP of XC catalysed by TBD in the presence of MBA gave PXC with Mn = 10 kDa
and Ð < 1.2. The polycarbonate obtained with the two different approaches has the same
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structure and shows similar thermal behaviour (122 ≤ Tg ≤ 125 ◦C). However, MALDI
analyses showed that different chain-end groups are present depending on the approach
employed. In the XO/CO2 ROCOP case, PXC was initiated with a halide group, while a
4-methylbenzyl group was observed in the case of XC ROP.
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Figure 24. Synthesis D-xylose-based carbonate XC, and corresponding polycarbonate PCC via
XO/CO2 ROCOP (top), and XC ROP (bottom). Structure of catalyst Cr2, and cocatalysts are
also shown.

4. Polyethers

Polyethers and polyols are commonly synthesized via ROP of cyclic esters. With
respect to sustainable monomers, terpene-derived epoxides represent excellent candidates
for green polyethers. In this scenario, limonene oxide is widely explored, since it can be
easily produced from limonene, an abundant monoterpene readily extracted from the
peel of citrus fruits. However, studies regarding the homo-polymerisation of LO are scant
as only a few catalysts can overcome the kinetic barrier for the activation of its internal
trisubstituted epoxide group.

The cationic photoinitiated ROP of LO using diaryliodonium or triarylsulphonium
salts as photoinitiators was reported by Crivello et al. [124]. Nonetheless, the process
led to a mixture of low molecular weight products derived from several side reactions.
In turn, α-pinene oxide (α-PO) displayed higher reactivity compared to LO, allegedly
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because of the simultaneous double ring-opening reaction involving both its epoxide and
cyclobutene rings. However, side reactions occur also, in this case, limiting the use of α-PO
in homopolymers production.

More recently, the aluminium-based catalyst Al6 was successfully employed in the
synthesis of poly(limonene oxide) (PLO) by coordination/insertion ROP (Figure 25) [125].
The produced polyether shows low molecular weights, up to 1300 Da, and moderate
dispersity (1.37 ≤ Ð ≤ 1.42).
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Figure 25. Polymerisation of LO to PLC catalysed by Al6.

However, despite the scarce literature on LO homo-polymerisation, several studies
are reported on the ROCOP of anhydrides and terpene-derived epoxides (vide supra).

Another attractive bio-based monomer for polyethers synthesis is isosorbide, a molecule
derived from sorbitol. Reineke et al. reported on a cationic and quasi-zwitterionic ROP
of an annulated isosorbide derivative (1,4:2,5:3,6-trianhydro-D-mannitol) in the presence
of Sc(OTf)3 and propylene oxide. Depending on the reaction conditions, it was possible
to selectively direct the polymerisation towards either linear or cyclic macromolecular
architectures (Figure 26) [126].
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Vares and co-workers reported on the synthesis of isosorbide mono-epoxides with the
remaining hydroxyl group capped as a methyl ether, in order to avoid difficulties in subse-
quent polymerisations to linear polymers. The novel isosorbide epoxides, polymerised by
anionic ROP, afforded polyethers with Tg around 10–15◦C and molecular weights in the
range of 13–17 kDa (Figure 27) [127].
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Most polyether polyols are synthesized via ROP of oxiranes such as ethylene oxide
(EO), propylene oxide (PO) or butylene oxide (BO). When oxiranes are obtained from
renewable sources, they are considered bio-based monomers. To this end, EO can be
synthesized from biomass-derived ethanol (e.g., from sugar cane), PO and BO can be
bio-synthesized using a multistep process from glucose or via fermentation of biomasses,
respectively [128,129]. Oxiranes can be polymerised via anionic, coordination, and cationic
ROP as well as by metal-free ROP. PEO and PPO are mainly synthesized by oxyanionic
polymerisation. However, due to the drawbacks of such a process, studies on the coordina-
tion polymerisation reaction aiming to achieve high molecular weight polymers have been
carried out. In this regard, the effect of many initiators on kinetics and molecular weight
control has been investigated. Excellent overviews are reported on the polymerisation of
EO, PO and other alkylene oxides, classically considered non-bio-based monomers, hence
out of the scope of this review [130].

Similarly, THF can also be considered a bio-based monomer polymerisable by ROP to
produce a polyether polyol. The preparation of poly(tetrahydrofuran) (PTHF) is known
since the 1930s but nowadays, PolyTHF® commercialized by BASF is produced using THF
obtained from the bio-based 1,4 butanediol cyclisation [131].

5. Conclusions

We discussed the synthesis of different classes of bio-based polymeric materials by
ring-opening (co)polymerisation, with a high focus on polyesters, polycarbonates and
polyethers. In particular, the great tolerance toward the presence of various functional
groups on the starting monomers allows for the synthesis of structurally complex and
functional materials. This, in turn, offers a wide range of possibilities in terms of possible
applications, from commodity plastics to fine applications such as tissue engineering.
Nevertheless, several significant aspects still need to be addressed.

With respect to the polylactones, relevant monomers such as ε-caprolactone and
δ-valerolactone are still synthesized mainly from petrochemicals while polylactide, de-
spite being biodegradable and biomass-derived, finds limited applications due to its poor
mechanical properties. Polyesters derived from fully renewable higher lactones (i.e., ω-
pentadecalactone) are considered possible solutions to these issues, albeit their large-scale
production is still limited. Moreover, the biodegradation behaviour of this class of polymers
is still widely unexplored; indeed, further insights are required to evaluate the long-term
impact of such materials on the natural environment.

In the case of the polyethers, the identification of suitable monomers exhibiting good
reactivity also in homopolymerisation reactions is highly desirable. This problem is related
to that of polycarbonates. Indeed, in the latter case, bio-based epoxides could serve as
starting material for the production of bio-based PCs. In addition, the amount of bio-based
cyclic carbonates suitable for ring-opening polymerisation is still limited.

In general, there is still a tremendous lack of concrete sustainable monomers for the
synthesis of oxygenated polymers.
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Another aspect is related to the possibility to obtain controlled molecular weights
suitable for real applications. Indeed, molecular weights are often reported in the range
from 2 to 20 kg/mol and, notwithstanding these values are sufficient for certain uses like
polyols in polyurethane production [132], they are too low for other applications. For
example, industrial production of PLA by ROP with Sn(Oct)2 gives Mn spanning from
20 to 220 kg/mol with Ð = 1.6–2.0 [133,134].

In conclusion, with this review, we demonstrated that the use of ring-opening
(co)polymerisation processes is a highly promising approach for the assessment of new
sustainable polymers obtained from bio-based, renewable feedstocks, and we hope that
this will trigger more significant advancements in this direction.
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