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Abstract: This review was devoted to outlining the use and potential increasing application of the
Design of Experiment (DoE) approach to the rational and planned synthesis of inorganic nanomateri-
als, with a particular focus on polycrystalline nanostructures (metal and alloys, oxides, chalcogenides,
halogenides, etc.) produced by sustainable wet chemistry routes based on a multi-parameter experi-
mental landscape. After having contextualised the stringent need for a rational approach to inorganic
materials’ synthesis, a concise theoretical background on DoE is provided, focusing on its statistical
basis, shortly describing the different sub-methodologies, and outlining the pros and cons of each. In
the second part of the review, a wider section is dedicated to the application of DoE to the rational
synthesis of different kinds of chemical systems, with a specific focus on inorganic materials.
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1. Introduction

Inorganic materials’ synthesis, also remarkably boosted by the requirement for ro-
bust, reproducible, and up-scalable approaches to materials’ development, supporting the
energetic transition and renewable energies’ conversion and storage (e.g., catalysts, fuel
cells, batteries, photovoltaics, etc.), is currently experiencing an actual renaissance aimed
at matching a sustainable and green approach to synthesis with the demand for highly
performing, stable, long-lasting, cost-effective and possibly multifunctional inorganic mate-
rials [1–4]. According to the paradigms of green chemistry [5] and to the emerging issues
of circular chemistry [6–13], currently adopted synthetic requirements [14,15] encompass
(1) a low temperature of processing (<200 ◦C, to pursue energy consumption reduction),
(2) a short processing time (again for time and energy consumption reduction), (3) routes
ensuring high yield and high throughput, (4) the use of environmentally friendly solvents
(e.g., water, polyols) and of earth-abundant precursors (to address materials’ criticality), in
view of the application of these routes at an industrial scale, (5) the easy implementation
of the synthetic procedure, (6) cost effectiveness, (7) reproducibility, and (8) up-scalability.
This, in turn, implies the careful and informed optimisation of the whole experimental
parameters’ landscape, entailing several factors such as (1) pH, (2) temperature and time of
processing, (3) the chemical nature of the solvent (i.e., dielectric constant, polarity, viscos-
ity, density), (4) the structure and composition of the precursors, (5) molar ratios among
the reagents, (6) the nature and amount of additives (i.e., stabilizing ligands, surfactants,
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structure-directing agents, porogens, etc.), (7) ionic strength, and (8) pressure, which are
in many cases also intertwined with and interdependent of each other (e.g., dielectric
constant and temperature/pressure). To avoid time- and resources-consuming approaches,
a methodological paradigm shift in approaching this complexity is urgently needed. The
current research in chemical synthesis is still chiefly relying on traditional inductive ap-
proaches such as “trial and error” methodologies for the development of new drugs,
molecules, materials, or chemical protocols: this approach derives from the researcher’s
expertise, background, and knowledge. In many cases, the chemist approaches the research
to optimise well-established and known recipes by continuously tuning and optimizing
previous results and achievements. This safer approach, although simple and generally
well accepted by literature, is, however, resource and time consuming and experimentally
demanding, particularly when different parameters contribute in an interrelated fashion
to affect the synthesis output, though their specific role is hardly identified. As a work-
ing example, the mentioned combined effect of temperature and pressure on dielectric
constant, viscosity, and density of a suspension used for (even sub-critical) hydrothermal
synthesis [16–18] would firstly require a deep understanding of the relation between tem-
perature and pressure on the mentioned chemical–physical properties of the dispersing
medium and secondly of the influence these experimental parameters have on the dis-
solution/reprecipitation phenomena occurring during the synthesis and eventually on
the outcomes of the synthesis itself, in terms of crystallinity and built crystalline phase,
composition, and yield of the product(s) [14,15,19,20]. The main issue derives from the fact
that, by manually changing one parameter at time, the obtained result does not represent
the unconditional outcome but only a relative maximum in efficiency, causing a reduced
yield for the products. An additional relevant point pushing towards the reduction of
the experimental trials is the need to reduce the use of critical raw materials [2,4,21,22],
and specifically metals [23,24], very often involved in the development of technologically
relevant inorganic nanomaterials, such as catalysts and devices for solar energy conversion,
e-mobility, wind energy production, etc. [2,3]. To reduce the experimental effort required
for the synthesis optimisation, instead of a time- and resources-demanding systematic
screening of all involved experimental parameters, a more rational approach is thus re-
quired. In this regard, a well-established and promising methodology, based on statistics,
is the Design of Experiments (DoE) [25–29] in which an impartial multi-variable analysis
is carried out, thoroughly uncorrelated from user know-how, thus aseptic and focused
only to boost the product yield in terms of sustainability (both environmental as well as
economic) and efficiency, where the full experimental space can be truly explored. DoE
is a well-known approach to optimise different processes and industrial manufacturing
approaches, but its application to the specific field of inorganic materials chemistry is still
relatively unexplored, at least at a scientific literature level, whereas its implementation at
an industrial level is rapidly spreading.

In this review, we aimed at highlighting DoE main features by focusing on its potential
application in the synthesis of inorganic materials, with a specific focus on wet chemistry
and colloidal routes, which are the main methodological approaches of our research group
at the University of Padova [14,15]. Related to this, we would like to explicitly point out that
the choice of the examples reported concerning the DoE experimental methodology were
in this case mainly related to wet inorganic chemistry, but the general considerations might
apply also to solid-state and vapour-based inorganic synthesis methods. In particular, the
DoE approach has been mostly implemented for optimizing the graphene synthesis [30,31]
via chemical vapor deposition (CVD), although some examples concerning the growth of
GaN rods [32] and silicon [33] through CVD could also be retrieved. DoE methodology
has been also applied to support plasma-enhanced chemical vapor deposition (PECVD)
synthesis (for example, of TiS2 [34], SiNx [35], and AlOx [36]), as well as to physical va-
por deposition (PVD) for the synthesis of TiAlN [37], ZrN, TiN [38], and yttria-stabilised
zirconia [39]. Concerning solid-state synthesis, very few examples could be found. DoE
has been successfully applied to accomplish a more rational preparation of alumina-based
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nanocomposites [40], ball-milling synthesis of electrolytes [41]. These few examples are
neither comprehensive nor complete, and interested readers can refer to specialised lit-
erature on this. In addition, other approaches (for example, deep [42] and machine [43]
learning, which will be mentioned later) have been also used to rationalise and optimise
synthesis routes. The choice made in this review was made by the authors, also based on
previous experiences, but does not represent a fully comprehensive view of the approaches
to rationalise syntheses.

First, the theoretical framework underpinning DoE will be concisely described. In the
second part of the review, some selected examples of the application of DoE to the synthe-
sis of inorganic materials are provided and critically discussed. Eventually, perspective
developments in this exciting field are highlighted.

2. Theoretical Background of DoE and Its Application to Inorganic Chemistry

The DoE can be applied in chemistry as a methodology to statistically optimise pro-
cesses and reaction conditions based on different experimental parameters, possibly but not
necessarily interdependent (e.g., temperature and dielectric constant of a solvent). The first
conceptualisation of DoE was introduced by Fisher in 1935 [29], who described a general
problem of experiment design outlining which recurring factors’ combination would best
describe the outcome of an experiment and how the response is influenced by the single
factors. Since the outcome of a chemical reaction is typically the result of multiple reaction
conditions (factors), it is therefore possible, by screening the ‘parameter space’ of a process,
to optimise the desired outcome. Specifically, DoE is a powerful tool that aims (1) to
optimise and minimise the numbers of experiments through a statistical approach, (2) to
identify the effects of the investigated parameters on the outcomes, and (3) to predict the re-
sponse of untested conditions within the range of the explored experimental domains. The
advantage of applying DoE to inorganic synthesis also lies in the possibility of assessing the
synergistic effect of several parameters on the final result of the synthetic pathways, which
would not be possible with a one-variable-at-a-time (OVAT) approach [25]. Therefore, a
Design of Experiment approach will enable a rational planning of the synthetic efforts by
careful screening the experimental parameters that most influence the final features, taking
into account also interaction thereof, to identify the most promising combinations among
them to obtain the desired product. Within this framework, in the field of inorganic syn-
thesis, the possibility to apply the DoE approach to figure out the relationship among the
experimental parameters, the outcomes of the reaction, and the final functional properties
of the inorganic nanomaterials is extremely attractive as well as being an approach that can
lead to a comprehensive exploration of the whole experimental factors. Even if in literature
several examples of a DoE approach so far concern the optimisation of pharmaceutical
processes [44–46], there are some studies related to the inorganic syntheses of different
systems. A relevant disclaimer is that, being a statistical methodology, this approach is
best applicable when large amounts of data can be retrieved. At the same time, it allows a
more complete overview of the reaction conditions and it allows studying the synergistic
and antagonistic interactions of the studied parameters, with an optimised (and limited)
number of experiments, therefore reducing costs, time, and efforts. This approach can be
used by researchers in two phases: (1) during an initial screening of a complex reaction with
multiple parameters, thereby providing the understanding of the key factors impacting the
outcome of a reaction, or (2) during the fine optimisation and tuning of a defined process,
increasing yields or reducing costs.

2.1. Theoretical Background of DoE

In order to study the performance of a process/product and to try to systematically
improve it, Design of Experiments (DoE) could be conducted. DoE deals with accurately
planning, conducting, analyzing, and interpreting experiments so that valid and objective
conclusions can be obtained about the process/product of interest.
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In an experiment we deliberately manipulate some process/product variables, called
factors, to investigate their effect on the desired output properties measured by response
variables. It is worth noting that not all process/product variables are controllable by
the experimenter. For this reason, controllable factors need to be distinguished from the
uncontrollable ones (see Figure 1). For instance, in a synthesis based on the decomposi-
tion/reduction of tailor-made molecular precursor(s) to metal nanoparticles, controllable
factors are, for instance, temperature and concentration of the precursor, whereas a not
controllable factor is the oligomerisation degree and dynamics of the molecular precursor(s).
An experiment is, therefore, a series of trials where the experimenter intentionally varies
one or more controllable factors to observe changes in the output response and determine
which factors affect the response variables.
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Figure 1. Experiment description.

The experimenter needs to choose a few qualitative categories or numeric values,
called levels, of the controllable factors to be tested in the experiment. Responses and
factors are then measured or controlled on a randomised sample of experimental units. Each
combination of factor levels tested on this sample represents an experimental condition, also
called treatment or run. The entire set of runs is the design and its choice is a fundamental
part in Design of Experiments.

The three basic principles [47] of experimental designs are:

• randomisation: both the allocation of the experimental units to treatments and the
order in which the individual runs are to be performed are randomly determined;

• blocking: a technique for dealing with known and controllable nuisance factors
(i.e., factors having an impact on the response, but of no interest to the experimenter),
blocking out their potential effect on the response; and

• replication: each factor combination is, generally, assigned to more than one exper-
imental unit. Replicates are indeed multiple independent executions of the same
experimental conditions, which are processed individually in the experiment and
should be run in random order.

It should be noted that a replicate is not a repeated or duplicate measurement of the
response variable, which, on the other hand, is meant to reflect the inherent variability in
the measurement system.

Let us now focus on the case where we are interested in evaluating the impact of
more than one controllable factor on a specific response. A valuable approach is to plan
a factorial experiment in which factors vary simultaneously, instead of one at a time. A
factorial design indeed allows us to investigate whether each factor has an effect on the
response (main effect) but also whether interactions between/among factors exist, i.e., if
the effect of one factor on the response is not the same for all the levels of the other factor(s).

When the number of factors is particularly high, the experiment becomes too expensive
or time and resources consuming to be performed because the number of required runs
to investigate all possible treatments rapidly increases. In these cases, the experimenter
can decide not to run all possible treatments, focusing on a suitable subset of the runs, by
planning a fractional factorial design [48] instead of a full factorial design [49] (see Figure 2).
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It is worth noting that, in a full factorial design, all main effects and interactions
can be estimated, but large numbers of factors and levels may result in a prohibitive
number of runs. On the other hand, in a fractional factorial design the number of runs is
reduced to a manageable size, minimizing time and cost, but some of the effects will be
confounded (aliased).

Especially in the early stages of an experiment, a situation where many factors need
to be investigated is quite common. Under such circumstances, experimenters commonly
rely on screening experiments with factorial designs considering k factors, each at only two
levels. As a working example, in a chemistry solution-based experiment, it can be chosen
to vary pH and the temperature at two different levels, i.e., pH = 2 and pH = 5, and 100 ◦C
and 150 ◦C, respectively. Screening experiments are widely used to identify the key factors
affecting responses. After conducting them, the experimenter then proceeds with a general
factorial design, increasing the number of levels to optimise factors’ levels according to
process/product targets in response variables.

Full factorials and fractional factorials are only two examples of designs adopted
in the context of response surface methodology (RSM) [50,51]. RSM is an experimental
methodology based on a collection of statistical designs and procedures and has two main
objectives:

• understanding the effect of factors on the response variable(s), possibly identifying
also nonlinear trends, and

• identifying the optimal configuration of the levels of the factors, typically by a max-
imisation or a minimisation of the response variables.

The sequential steps of the RSM procedure are [52]:

(1) Select factors (and their levels) and response variables. A screening experiment can
be run to identify the most relevant factors.

(2) Select an appropriate experimental design (usually an optimal design) and collect data.
(3) Model the relationship between response variables and the factors.
(4) Evaluate the quality of the fitted model.
(5) Find optimal configurations of the factors’ levels.

One of the most common designs used in the response surface methodology is the Cen-
tral Composite Design (CCD). CCDs allow us to estimate first- and second-order terms and
model the response with curvature by adding center and star points to a factorial design [52].

Another particularly relevant design in the chemical field is the mixture design [53].
It is used when the experiment involves a mixture of reagents and/or solvents and/or
additives to form a solution/suspension/formulation. The goal is to determine if there
is a combination of ingredients that improves the response variable according to pre-
defined target values. In this case, a specific constraint needs to be considered differently
from classical designs: The proportions (or molar fraction) all of the ingredients must
add up to 100% (or 1, in the case of molar fraction, respectively). Then, in order to
model the relationships between response variables and the factors, polynomial models
are commonly adopted, but more complex techniques can be also used, such as machine
learning methods [51].
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Sometimes the number of response variables is larger than 1. Several different re-
gression models are, therefore, required, and in the final optimisation step the desirability
approach [52] is usually applied.

2.2. Selected Examples

The DoE methodology requires a specific and robust knowledge of the addressed
topic. The reported examples focused on some of the most important sub-fields of modern
inorganic chemistry that, although multidisciplinary, are at the interface between basic
research and industrial research and development. For this reason, we will first illustrate
the DoE application on a more simple topic such as solvent choice in a reaction and we
will end the discussion by referring to outcomes obtained in the field of flow chemistry,
competing with batch chemistry also in industrial research [54].

2.2.1. Solvent Optimisation

When referring to solution processing and wet chemistry routes to inorganic materials,
solvents and dispersing media play an essential role in the outcome of the synthesis, as
well as in the stabilisation of the resulting product (e.g., nanoparticles). Chemico-physical
properties such as dielectric constant and polarity, presence of protons and hydrogen
bonding properties, viscosity, and density all dramatically affect solubilisation, diffusion,
and precipitation/crystallisation of both precursors and end products. Identifying the most
suitable dispersing medium might be useful to optimise the synthetic pathway, accomplish
polymorph selection, and maximise purity and yield of the targeted material.

The DoE approach can be conveniently used for the choice of a particular solvent
(or mixture thereof) in a new synthetic route [55,56]. First of all, it is convenient to write
down a list of the desired properties that the solvent needs to possess, not limited to
chemical constraints but also including socio-economic issues: (1) the ecological impact on
environment and health, (2) cost, (3) availability on the market, (4) chemical specifications
such as boiling point, vapor pressure, and density, and (5) conditions for possible recy-
cling/reuse, disposal, and/or (if needed) substitution with greener/cheaper alternatives. It
is now possible to realise a principal component analysis (PCA) map in which tabulated
and calculated variables for each solvent are inserted and analysed. The reported map in
Figure 3, for instance, shows a PCA solvent map in which hydrogen bonding properties
and polarity of 136 solvents are correlated, thus allowing the analysis to rationally build a
tri-dimensional “solvent space” (a cuboid) in which at each vertex a solvent class is located:
This class derives from the results of the previous correlation and links several species
that in principle are not connected to each other or do not belong to the same chemical
family. This intriguing analysis allows the researcher to systematically change the solvent
with a rationale: As in this case, hazardous dichloromethane can easily be replaced with
1,4-dioxane or dimethyl carbonate and, likewise, carcinogenic and highly toxic benzene
can be replaced with xylene. It is straightforward to understand that the choice would fall
on the cheaper, the less harmful, and the more convenient one [57].
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Figure 3. (a) The PCA solvent map (top panel) and the cuboid representing the solvent space (bottom
panel) (reproduced from Ref. [57] with permission from the Royal Society of Chemistry). (b) The
perovskite photoluminescence model validation experiment described in the text, where both S1-
normalised PL emission (top panel) and observed vs. predicted wavelength PL, showing design
experiments in green and validation experiments in blue (bottom panel), are presented (reproduced
from Ref. [58] with permission from the Royal Society of Chemistry).

Another recent example of critical solvent choice using DoE was used by a group from
the University of Bath in collaboration with the Paul Marray Catalysis Consulting Ltd.
firm in the UK [58]. In this work, the authors applied DoE for a rational understanding
of the best conditions for designing halide perovskite nanocrystals with tunable emissive
properties by the realisation of an empiric model taking into account a reactant-to-solvent
weight ratio, ligand concentration, ligand-to-metal molar ratio, and non-polar solvent
polarizability, thus obtaining withstanding adherence to experimental data (Figure 3b).

Solvent selection for optimizing the solubilisation process under the desired optimal
reaction temperature is, therefore, a significant challenge in processability [57,59]. One
perspective evolution of DoE would be the use of machine learning for the automatisation
of process development: In a recent paper [60], the authors, starting from a library of
459 solvents, divided them into 17 groups, each one characterised by a specific molecular
descriptor, and obtained different recipes and better reaction conditions for the catalytic
hydrogenation of a lactam.

The ultimate application of machine learning in chemistry design is the implementa-
tion of the Bayesian optimisation algorithm [61] in the exploration of reaction space: Within
this approach, even literature and the operator’s intuition that are already present in DoE
boundary conditions are overcome, allowing us to balance the exploration of areas of un-
certainty and the exploitation of available information. By doing so, Bayesian optimisation
algorithms can be applied to different areas of research, enabling the selection of multiple
experiments in parallel [62].
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2.2.2. Synthesis of Inorganic Nanomaterials and Nanoparticles

The interest in nanomaterials [63] derives from the fact that, at this length scale, new
properties are available and that these properties change drastically depending on nanoma-
terial size and/or shape. Nanoparticles are used in many chemical processes and often as
catalysts with optimised dimensions to maximise efficiency and reduce volumes [64–66].

As far as a Design of Experiment is concerned, it is worth considering its application
in the design of inorganic functional nanomaterials. Nowadays, the possibility to finely op-
timise and control the size, morphology, and size distribution of inorganic nanoparticles is
becoming increasingly relevant to confer tuneable and desired final functional properties to
the nanomaterials. In this regard, a Design of Experiment approach applied to the inorganic
synthesis of nanoparticles will enable assessing the relevant experimental parameters that
most affect the outcomes of the reactions and, therefore, to determine which experimental
conditions, e.g., temperature, concentration of precursor, pH, flow rate, etc., allow us to
obtain the nanomaterials with the desired properties in terms of size, size distribution,
etc. Going more into detail, Barglik-Chory et al. [67] reported a DoE approach for the
adjustment and tuning of the band gap energies of CdS nanoparticles, exploiting a colloidal
synthesis with cysteine and glutathione as biostabilisers. Indeed, it is well known that the
size of the nanoparticles affects their band gap energies, and, therefore, it is of significant
importance to understand the role played by the various experimental parameters on the
final size of the nanoparticles. This can be evaluated, as an output response of the synthesis,
either directly by determining the Feret diameter obtained by direct imaging (i.e., TEM or
SEM images) or indirectly by analyzing UV-Vis absorption spectra.

The discussed study relates to the analysis of the influence of three different experi-
mental parameters, i.e., the pH value and the relative amount of the stabiliser (cysteine or
glutathione) and of the sulfur source (1,1,1,3,3,3-hexamethyl-disi-lathiane) on the band gap
energies of CdS nanoparticles by measuring, as measurable output, the UV-Vis absorption
spectra of samples synthesised with different reaction parameters. As a result, as an ex-
ample of the cysteine-stabilised nanoparticles, it was possible to observe that the position
of the band gap was significantly influenced by the three considered factors of pH value,
the amount of the stabiliser, and the concentration of the sulfur source. In addition, it was
found that the effect of pH on both cysteine and the sulfur source also affects the final band
gap of the nanoparticles. These synergistic parameter interactions, which provide thus
an exciting tool to tune synthesis outcomes, can be identified only by the simultaneous
variation of parameter values as provided by DoE.

A further example of the application of DoE in the inorganic synthesis can be found
in the work of Sadat-Shojai et al. [68]. The study focused on the optimisation of the
hydrothermal synthesis of hydroxyapatite (HAp) nanoparticles, which is a widely exploited
biomaterial due to its biocompatibility, bioactivity, and favorable osteointegration [69].
In particular, the synthesis of particles with optimised size, morphology, crystallinity,
and stoichiometry is becoming a focus of interest in the biomedical fields. Within this
framework, and exploiting a DoE approach, this paper reported the controlled growth
of HAp nanoparticles with tuneable size, morphology, crystallinity, and stoichiometry by
adjusting the experimental parameters. Reactant concentration, pH, temperature, time of
the hydrothermal treatment, and presence of urea in the reaction medium were considered
as the process variables that may influence the characteristics of HAp nanoparticles. As a
conclusion, the paper presented a general methodology to predict the suitable conditions
for the hydrothermal synthesis of shape-controlled HAp nanoparticles by performing a
systematic evaluation of the most influencing variables in the synthesis of HAp by the
hydrothermal method and of their effects on the final HAp properties.

In a further paper, the synthesis of iron oxide nanoparticles to be used as anode
materials in Li-ion batteries via coprecipitation was studied by exploiting a factorial design
of experiment methodology to investigate the influence of pH, medium temperature,
Fe3+/Fe2+ ratio, and reaction time on the crystallite size, taken as an output factor [70]. X-ray
diffraction evidenced as the crystallite size decreased with increased pH and the Fe3+/Fe2+
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molar ratio, therefore enabling the rapid optimisation of a robust and reproducible protocol
for the preparation of monodispersed maghemite nanoparticles.

Analogously, a DoE approach was implemented to prepare pure and chitosan-coated
Fe3O4 nanoparticles [71] for the extraction and green removal of chromium (VI) from
water samples. The optimised experimental parameters’ space encompassed pH, contact
time, adsorbent dosage, and agitation speed, assessed and evaluated by DoE method and
investigated by response surface methodology (RSM).

The same kind of magnetic nanoparticles deposited on a potato peel (PP) was used for
remediation from Pb2+. The L16 (4(boolean AND)4) method of Taguchi DOE was used for
the optimisation of the adsorption condition, showing that at pH 6 with 10 min of contact
time and a dose of 15 g/L can give more than 90% removal efficiency of Pb2+. Contour
maps, Taguchi response analysis, and analysis of variance (ANOVA) suggested that pH
has a dominant contribution in the removal of Pb2+ [72].

DoE can also be used to enhance synthesis reproducibility. A method for the synthesis
of silver nanoparticles (AgNP) using gallic acid as reductant was optimised using DoE
strategies based on response surface methodologies. Fractional factorial design was used
in the screening stage. The obtained AgNP presented improved repetitivity and repro-
ducibility of photophysical properties between batches compared to the synthesis method
reported in literature [73].

Nanosized titanium oxide (TiO2) powders prepared by conventional and microwave
hydrothermal methods by forced hydrolysis of TiOCl2 were followed by DoE and different
characterisation methods. The effects of mixing time, HPC, and TiO2 concentration and
their mutual interactions on shear stress were evaluated with a Design of Experiment
(DoE) approach [74].

In a further study, a one-step custom Design of Experiment was employed for the
simultaneous screening and optimisation of raw yield (Y-1) and percent yield (Y-2) with
heating temperature T (190–220 ◦C) and reaction time t (1.0–2.5 h) as the predictors in a
conventional solvothermal magnetite nanoparticles’ (NPs) synthesis [75].

A further application of DoE to rapid and high-throughput screening of inorganic
nanomaterials relates to the development of new heterogeneous catalysts in industrial
research. The field of catalysts’ design and upscale production is characterised by an
extremely large parameter space, implying that an increase in throughput in the preparation
and testing of candidate substances is mandatory in order to identify a new and effective
catalyst in a reasonable timeframe. In a paper by Duff et al. [76], the authors developed a
workflow in which 10,000 substances per day were synthesised and their activity tested
in a heterogeneously catalysed gas phase reaction (alkene epoxidation). The synthesis
was based on a careful dosing of precursor solutions onto a single substrate, using one
ink-jet printer technology and subsequent thermal treatment. For the activity testing, the
product stream of each candidate was carried out through a detection layer, where the target
product was converted into a fluorescent substance, then detected and assessed by locally
resolved fluorescence spectroscopy. Since even an effective throughput of 10,000 substances
per day does not allow mapping the whole parameter space in a practicable amount of
time, a combination of evolutionary optimisation and data mining was explored.

2.2.3. Precious Metal NP Optimisation for Exhaust Gas After-Treatment

An everyday example of the application of nanomaterials can be taken from the
heterogeneous reactions happening in the exhaust after-treatment systems of fuel vehicles,
where precious metal nanoparticles are used to abate harmful gases resulting from the
fuel combustion inside the engine. Being scarce, expensive, and recognised as critical raw
materials by the European Commission [21], these metals are already used in the form of
nanoparticles (NPs) to maximise the surface available for the reactions, while at the same
time reducing their amount. Nevertheless, smaller does not necessarily mean better, and for
certain applications stability towards sintering/coalescence and durability contribute to the
overall performance throughout time. Within this context, a DoE was used by our group,
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within a collaboration with Umicore AG&Co. KG, to optimise the reaction conditions of
a hydrothermal colloidal synthesis of Pt NPs as a possible approach to tune the resulting
particle size [77].

Indeed, relevant physical properties of water vary under hydrothermal treatments,
such as viscosity, ionic product, and dielectric constant, that change inside the autoclaves
used in the synthesis upon temperature (and consequent autogenous pressure) increase [16,
18,19]. From prior art and researcher experience, the resulting reagent solubilisation and
product crystallisation were known to be functions of the temperature, pH, and molar
ratio of the reagents (precious metal complexes and polymeric stabiliser). Nevertheless,
with the reagents, set of factors, and reaction set up having never been applied before, it
was important to investigate the interplay among the different experimental parameters
involved and to single out the most relevant ones in ruling the synthesis output in terms of
targeted size.

The reduction of the number of experiments to be performed was particularly important
in this case because of the high criticality of the precious metals involved (Pd, Pt) [2,21,22].

In case of a larger number of factors, the experimental cost required tends to be high as
all possible combinations of factors must be taken into account. Usually, fractional factorial
designs are preferred in this case to reduce the size of the design matrix. Various appli-
cations of model-based experimental designs can be found in the review by Franceschini
et al. [78]. When the number of parameter combination leads to an affordable number of
experiments, the so-called full-factorial method can be used, where the additive effects
on a response for each of the input factors, as well as the interaction between them, are
determined. Before setting the experiment and the DoE matrix, a few experiments were
performed to understand the feasibility of the applied reaction conditions in order to choose
upper and lower values in the DoE matrix that would not alter the stability of the colloidal
suspensions. The range of temperatures was known to span between 120 ◦C (temperature
needed to provide enough energy to the system to reduce the Pt metal salt) but lower
than about 200 ◦C, which is the deformation temperature of the Teflon liner (polytetraflu-
oroethylene (PTFE)) inside the autoclave. The pH values below 8 showed the formation
of precipitates (aquo-hydroxo complexes of the chosen Pt precursor) whereas the upper
value of 10 was given by the dilution of the basic Pt solution. Finally, the chosen ranges for
the atomic ratio between the Pt and the polymeric stabiliser (polyvinylpyrrolidone (PVP))
were selected in order to obtain stable suspensions.

Once the applicable parameter space for the hydrothermal syntheses was defined,
to screen the impact of the three selected parameters (temperature, pH, and molar ratio
between precious metal complexes and polymeric stabiliser), each with two possible values
(low or high) in a full-factorial experiment design mode, eight (=23) experiments were
conducted. By measuring the Feret diameter of at least 300 particles for each experiment
(which can be considered as internal replicates of each set of analyzed experimental con-
dition), the average NPs’ diameter was used as the outcome. A model was constructed,
based on an Analysis of Variance (ANOVA) approach, that was able to fit for the selected
DoE design the reaction outcomes [79].

As outlined in Figure 4 (Pareto Chart), only one of the factors resulted as statistically
relevant in determining a size variation of the resulting NPs, whereas the effect of the other
parameters was negligible. Despite the reduced number of experiments, the chosen DoE ap-
proach allowed the identification of the main parameter (the pH, terms B in the Pareto Chart
in Figure 4) responsible for the particle growth under the tested experimental conditions.
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(B) TEM micrograph of Pt NPs obtained at the beginning of the study. (C) The Pareto Chart is
reported, ranking the significance of the different effect as analysed by Minitab. (D) The Residual plot
is also reported, providing an overview of the generated model to fit the experimental results and
presenting the homoscedasticity of the residuals vs different variables. (E) The Factor’s interaction
plot is reported, providing an overview of the impact of the different factors on the overall mean
particle size. (Portions of information contained in this publication/book are printed with permission
of Minitab, LLC. All such material remains the exclusive property and copyright of Minitab, LLC. All
rights reserved. Minitab, LLC (2021), www.minitab.com) (accessed on 29 December 2021).

Instead, temperature and molar ratio between precious metal complexes and poly-
meric stabiliser were evidenced to be less relevant; therefore, their contribution reported
in the Pareto Chart of Figure 4 resulted as below the threshold of statistically relevant
parameters. Likewise, also the mutual interactions pH–temperature, temperature–molar
ratio, and pH–molar ratio did not remarkably affect the reaction output.

As general comments for the performed DoE, the goodness of the generated model
to fit the outcomes was confirmed by the linearity of the regression as reported in the
residual plots in Figure 4. The model assumptions, such as linearity of relations and normal
distribution of residuals, were adequate even if the low number of experiments could not
provide strong evidence for the homoscedasticity (i.e., when all the aleatory variables have
a similar variance) and the independency of errors. Overall, the standard variance for
the values, the random distribution against the sequence of experiments, and the normal
distribution of the residuals resulted in a good regression analysis. At the end of the study,

www.minitab.com
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the Pt NPs obtained with the optimised reaction parameters (Figure 4, TEM B) resulted as
bigger than those obtained at the beginning of the study (Figure 4, TEM A).

2.2.4. Application to Flow Chemistry

Microfluidic and, generally speaking, flow chemistry are branches of research that are
projected for industrial evolution because of the reduction in the experimental volumes and,
accordingly, of the used reactants [80,81]. The opportune designing of starting experimental
conditions is notably well accepted by entrepreneurs who can improve the quality and the
quantity of goods to be sold. Several examples have already been reviewed and presented
in literature [82].

Its application to the field of inorganic chemistry synthesis is largely less impactful
than that to the field of organic chemistry and drug design, but relevant contributions are
emerging in the state of the art [83–89]. Indeed, microfluidic approaches offer a promising
route for the synthesis of high-quality and highly monodisperse inorganic nanoparticles. In
microfluidic reactors, fluids flow in a parallel fashion, providing mixing of the reactants by
diffusion of the molecules across the interface between the fluids [90]. The limited dimen-
sion of the reactor and the large ratio of surface to volume ensures thermal homogeneity
across the reactor as well as a tight control on the mass and heat transfer. Therefore, it can
be assumed that the reaction mixture is homogeneous with respect to the concentration
and temperature [81]. In addition, microfluidic approaches, suitably optimised, allow the
temporal separation of the two steps of nucleation and growth of nanoparticles, since the
nucleation initiates with the efficient rapid mixing of the reactants in the microreactor and
subsequently the growth of particles occurs, allowing the generation of nanoparticles with
highly precise sizes and shapes [80,81].

In relation to microfluidics, and within a colloidal regime framework, DoE approaches
are also useful for smartly controlling the nanoscale interactions of colloidal building
blocks in order to obtain high-throughput functional materials. In particular, supraparticles
(i.e., complex spherical structures obtained by self-assembling of evaporated emulsion
droplets in flow reactors) yield is strongly affected by different physico-chemical properties
(size, dispersity, porosity, and so on) that need rationalisation. In a recent paper [91],
the authors showed the possibility of up-scaling the continuous flow production of these
structures in a defined range size (from 0.1 to 10 micron) by carefully tuning the involved
experimental parameters.

A further contribution [92], concerning a design of experiment approach for flow
synthesis, was applied to the synthesis of citrate functionalised calcium phosphate CaP
NPs aided by sonication using a continuous flow wet chemical precipitation, and the effect
of some of the most relevant process factors (i.e., reactant flow rate, sonication amplitude,
and maturation time) on the physico-chemical properties of the NPs were evaluated. From
the statistical data analysis, the authors evidenced that CaP NP dimensions are influenced
by the reactor flow rate, while the crystalline domain dimensions and product purity are
influenced by the maturation process.

Even metal-organic frameworks (MOFs) are promising candidates for DoE applica-
tion: Indeed, the daily productivity (defined as kg of MOF m−3d−1) by microfluidics
can be boosted by several orders of magnitude by proper optimisation of synthesis pa-
rameters such as residence time, linker concentration, metal/linker volumetric ratio, and
solvent choice [93].

Another interesting example is the effort to optimise the parameters in a reactor flow
during the synthesis of biocatalysts exploiting 3D printed scaffolds [94]: In such a way, the
system automatically chooses the best result of the DoE analysis and runs the experiments
by remote controlling the equipment, saving time and avoiding human intervention.

Other works concerning the application of DoE for flow chemistry reactions, not
necessarily related to inorganic chemistry, are present in the literature: one work reports
on a liquid-phase dehydrogenation, which is strongly influenced by temperature and
liquid flee flow [95]. A further study in which the amount of carcinogenic reagents for
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performing a reaction of hydrogenation is strongly reduced [96] was reported. A simul-
taneous self-optimisation strategy combining IR and mass spectrometry [97] or exotic
nanomole-scale reaction screening optimisation for pharmaceutical purposes [98] were re-
ported. Finally, continuous flow synthesis of an anticancer molecule in which an interesting
synergic double application of DoE and high-throughput experimentation methodologies
was presented [99].

3. Conclusions and Perspectives

The increasing contribution of inorganic materials chemistry for strategically rele-
vant technologies such as CO2 reduction and valorisation, heterogeneous catalysis, energy
conversion and storage, and electric mobility urgently requires the implementation of
rapid, up-scalable, and cost-effective synthetic approaches to highly performing functional
inorganic materials. This in turn relies on the systematic screening of several (and in
many cases interrelated) experimental parameters and, with the experimental parameters’
landscape dramatically influencing size, size distribution, shape, and morphology, a ra-
tional and rapid exploration of these parameters becomes a ruling factor in determining
a possible industrial implementation of a given synthesis route. In this framework, DoE
can rapidly become a relevant methodological tool supporting inorganic materials’ design
and optimisation, also complying with the growing requirement of reducing the water and
carbon footprint of the preparation approaches. Nevertheless, it should be pointed out
that, particularly in complex synthetic systems and in the presence of tightly interrelated
and interdependent parameters, even robust chemical intuition and knowledge are not
always sufficient to support a reliable rationalisation. Since not every reaction is suited to be
simplified in such a manner, whether a high-throughput screening approach is effective or
not has to be considered on a case-by-case basis. In some cases, high throughput becomes
only possible at the cost of abstraction and simplification with a concomitant reduction in
knowledge gain per individual experiment. Finally, from the multidisciplinary point of
view, it is worth noting that robust chemical knowledge and chemical intuition might not
be sufficient to rationally address modern inorganic materials’ synthesis, and support from
statisticians is required to implement reliable and fruitful DoE.
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