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Abstract: Magic angle intensity decay and dynamic fluorescence anisotropy measurements were
made on the binary solvent system composed of ethylammonium nitrate ([N2,0,0,0

+][NO3
−], EAN)

+ methanol (MeOH) across the complete EAN mole fraction range (xIL = 0–1) using the neutral
dipolar solute coumarin 153 (C153) at 295 K. Stokes–Einstein–Debye (SED) hydrodynamic theory
was used as a model framework to assess the C153 rotational reorientation dynamics. Departure
from stick SED prediction was observed (in contrast to literature reports that used cationic or
anionic dyes) and indicated a significant influence of domain nanoheterogeneity on probe dynamics.
Steady-state spectroscopy indicated minimal changes in spectral peak and width with mole fraction,
except at xIL = 0.3 where absorption widths decreased by ~170 cm−1, signaling that C153 sensed
a change in solution heterogeneity. Magic angle intensity decays corroborated the steady-state
observation and the excited-state lifetimes showed a marked change from xIL = 0.2–0.4 where EAN-
EAN interactions became notably more significant. C153 average rotation times (〈τrot〉) showed
significant solvent decoupling with increased EAN. The rotational data were fit to a power law
dependence, 〈τrot〉 ∝

( η
T
)p, where p = 0.82, demonstrating the presence of dynamic heterogeneity

in the EAN/MeOH solutions. With increased EAN, rotation times showed that the heterogeneity
became increasingly more significant since the rotation times systematically decreased away from
the hydrodynamic stick limit.

Keywords: ethylammonium nitrate; ionic liquid; coumarin 153; C153; rotational dynamics;
SED hydrodynamics

1. Introduction

The canonical ionic liquid, ethylammonium nitrate (EAN, Scheme 1), was report-
edly identified by Paul Walden more than a century ago. Since then, room temperature
ionic liquids have been intensively studied and become a very popular medium for syn-
thetic chemistry and various applications [1–5]. Protic ionic liquids (PILs) are among
the most studied and reviews have discussed structure-property relationships, physico-
chemical properties, electrochemical, chromatographic and synthetic applications [3,6].
There is a large body of experimental and computational work that has communicated
physicochemical properties [3,6–13], and described cosolvent interactions with organic
solvents [7–10,12,14,15].

Solvation in ILs is often probed using a dye molecule to measure spectral shift (ab-
sorption or emission) and Stokes shift changes upon solvent reorganization. The time
dependence of the Stokes shift is determined from time-resolved emission spectra (TRES)
and gives some insight on the overall probe solvation dynamics. Dynamic anisotropy
measurements yield a different measure of solute-solvent interactions through examining
the viscosity coupling (microscopic friction) to the solvent system. In IL systems, solvation
dynamics have been described using computer simulations [15–20], Stokes shift measure-
ments [21–28], and rotational dynamics [21,22,29] measurements. The basic starting point
for comparisons from these measurements is to use the results to evaluate the solution
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behavior against simple hydrodynamic theory, e.g., Debye-Stokes-Einstein (DSE) behav-
ior [30]. According to the DSE description, a solute should experience the viscous drag of
the first solvent shell as it moves through solution. Departures from hydrodynamic behav-
ior can be correlated to many phenomena such as specific solute-solvent interactions (e.g.,
hydrogen bonding, electrostatic interactions, solvophobic interactions) [31] and “jump”
mechanisms [32,33] where a molecule moves in a rapid angular (rotational) manner, but
does so with nondiffusive motion, usually on an ultrafast time scale.
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In simple dipolar solvents, reorganization dynamics are linked to solute coupling
primarily through dipole–dipole forces, whereas the dynamics in IL and IL + cosolvent
are more complex resulting from solute, cosolvent, and ion pair interactions. In neat ILs,
ion–dipole (i.e., IL-solute) forces are typically the most significant interactions [26,34,35] but
solvent-solvent interactions such as occurs through ion–ion interactions, dispersion forces,
and dipolar forces also contribute to the overall IL solvation characteristics [14,20,26,36,37].
A molecular cosolvent adds more complexity by introducing additional forces that depends
on the nature of the chosen cosolvent/IL pair, which has been discussed using a theoretical
perspective [27,28]. In both neat ILs and IL/solvent mixtures one expects the solvation
dynamics to be responsive to the varying types of molecular interactions; however, this
is not always the case [24,25,35,38,39]. Samanta, using coumarin 153 (C153, Scheme 1)
reported that nonpolar solvents added to 1-butyl-3-methylimidazolium hexafluorophos-
phate (bmim+PF6

−) resulted in faster C153 rotational dynamics because of an increase
in solution fluidity [38]. While the use of nonpolar solvents might be expected to have
less impact on C153 rotational dynamics (from solvent coupling), one would expect that
polar solvents would strongly influence the dynamics. However, Sarkar observed that
for C153 rotational dynamics the addition of both protic and aprotic type polar solvents
added to 1-hexyl-3-methylimidazolium hexafluorophosphate (hmim+PF6

−) resulted in
faster probe rotational reorganization [39]. Whether the solvent was nonpolar, protic, or
aprotic, it appears that the primary effect was assigned to a viscosity effect as opposed to
invoking specific solute/cosolvent/IL interactions. Nonetheless, it was noted that the C153
rotational dynamics in binary IL + polar solvent mixtures was less pronounced compared
to the binary mixtures of IL + aprotic solvent [39]. In other work, Maroncelli’s group
showed that the C153 solvation times in several IL classes (imidazolium, ammonium, and
phosphonium) follows a well-defined linear correlation with viscosity that was a linear
extension of that observed in conventional dipolar solvents [24,25]. To date, the role that
IL-IL and/or IL + cosolvent interactions play in modified IL solutions remains a topic
interest [2,7,15,16,18,40–44].

While there has been much work done on EAN using experimental and compu-
tational approaches, there are still relatively few reports that have examined the direct
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influence of a simple alcohol cosolvent on the resulting solution dynamics using simple
hydrodynamic theory as a means of assessing the experimental observations. Dynamical
measurements from extrinsic probes provides a useful perspective for determining the
range of effects of the molecular interactions that govern probe-solvent interactions. In a
very recent report, Garrett-Roe and coworkers identified two sub-ensembles in EAN from
SCN− vibrational and rotational relaxation using 2-D IR spectroscopy, giving yet further
evidence of the dynamical heterogeneity that is observed in ILs [43]. Given the inherent
nanoheterogeneity within ILs and IL solutions, we set upon the task of evaluating whether
hydrodynamic theory provided a good description against which we could assess probe
rotational motion in the EAN/MeOH system. We also have examined the influence of
solution organizational changes on probe rotational reorientation dynamics through the
variation of EAN mole fraction using methanol as a diluent. For all optical spectroscopy
reported in this work (both steady-state and time resolved fluorescence), the neutral sol-
vatochromic probe C153 was used to measure the effects of compositional change in the
EAN + methanol (MeOH) binary mixture as the solution was concentrated in EAN. C153
was chosen for its well-characterized emission and its well-known sensitivity to its chemical
environment [30,45,46]. We note here that Sarkar and co-workers have performed similar
measurements in EAN/MeOH, where they examined the solution dynamics using the
cationic dye rhodamine 6G and the anionic dye fluorescein [47]. These probes would be
expected to probe specific regions within the solution structure because they are charged
dyes, and therefore may additionally be influenced by specific interactions. For our mea-
surements, we chose to use the C153 dye for the additional reason that it is a neutral dye,
and although it will experience hydrogen bonding interactions, the added complication
of charged interactions is not present. Herein, we begin with a presentation of the bulk
property characterization in the form of viscosity measurements. We then turn to describe
our spectroscopic observations, where we report the solution effects on the steady-state
spectroscopy and subsequently the time-resolved fluorescence results including magic
angle intensity decays and decays of fluorescence anisotropy (rotational relaxation). The
latter forms the main framework for the solvation dynamics discussion in the EAN/MeOH
solvent system.

2. Materials and Methods

Coumarin 153 (laser grade) was purchased from Exciton, Lockbourne, OH, USA,
stored under desiccation, and used as received. EAN was from IoLiTec, Heilbronn, Ger-
many and dried in a vacuum oven for 48 h at 40 ◦C prior to use. MeOH was HPLC grade
from Fisher Scientific. To prepare a mole fraction solution, an aliquot of a stock 1 mM
C153/MeOH was added to the 1 cm path length 23-Q-10 Spectrosil® quartz cuvette (Starna
Cells, Inc., Atascadero, CA, USA), the desired amount of EAN was added and massed on a
0.1 mg balance (Mettler Toledo, Columbus, OH, USA, model XS104) and then diluted with
MeOH. The C153 concentration was 10 µM (optical density was always less than 0.1). The
cuvette was always kept tightly stoppered to minimize any MeOH evaporative losses. The
cuvette was repeatedly inverted until the solution was single-phased and equilibrated. All
spectroscopic measurements were made on this solution prior to micro-pipetting additions
of either MeOH or EAN to make the next mole fraction solution until the cuvette was
full. In this way, we were able to minimize solution preparation errors and economize on
component consumption. Solutions were always single-phased and optically transparent
at all mole fractions studied. The uncertainty in mole fraction was less than ± 0.5%.

The water content of each solution component was determined by Karl-Fischer coulo-
metric titration using a Mettler Toledo C20 titrator equipped with a DM 143-SC double
platinum pin electrode at 295 K. Measurements were performed in at least triplicate and
average values were MeOH water content was 130 ± 2 ppm and EAN was not more than
500 ± 5% ppm water. Neat and cosolvent modified EAN viscosities were measured using
an Anton-Paar AMVn automated rolling ball viscometer. Rolling angles were accurate to
0.1◦ and temperature was controlled to ±0.02 K. Quartz capillary tubes were calibrated
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with Koehler ISO 17025 Viscosity Reference Standard, type S60 or type S600. A typical vis-
cosity measurement varied temperature from 288 to 323 K and used six replicated (12 total
rolls) at each temperature. Data were collected cyclically starting at low temperature,
increasing to the maximum, and then cooling to the starting temperature. This allowed
us to evaluate reproducibility and spot hysteresis effects. For all measurements, viscosity
uncertainty was typically ±1–2% and reproducibility was ±0.5–1%.

Steady-state absorption and fluorescence were measured with a Perkin-Elmer Lambda
800 UV-Vis spectrometer with 2 nm resolution and a Horiba Scientific (Piscataway, NJ, USA)
Fluorolog-3 fluorescence spectrometer with 2 nm resolution, respectively. The fluorimeter
is equipped with a single grating excitation monochromator and a double grating emission
monochromator for enhanced stray light rejection. All spectra were blank subtracted and
corrected for instrument responses. We have described our time-correlated single photon
counting (TCSPC) instrument previously [21,42]. Briefly, photons from a 405 nm NanoLED
(405-L) high output diode laser were passed through a polarizer prior to entering the
sample. Emission photons were passed through an automated Glan–Thompson polarizer
set at “magic” angle (54.7◦) for lifetime measurements and spectrally resolved with the
double grating monochromator and detected with an air-cooled IBH TBX 850 detector.
For anisotropy measurements, the emission polarization was acquired parallel and per-
pendicular to the excitation polarizer. The instrument response function was measured
using a scattering solution and was on the order of 170 ps. Time calibration of the counting
electronics was 7.16 ps per channel. All decay data were measured at the peak of the
steady-state emission with emission slits between 4–6 nm. Intensity decay data were fit
to a sum of exponentials models using an iterative reconvolution algorithm within the
IBH DAS6 decay analysis software and the estimated effective time resolution was ~50 ps,
which was also confirmed from replicate measurements. Reduced chi-squared values (χr

2)
for a fit was judged to be acceptable if χr

2 < 1.2.

3. Results
3.1. Bulk Properties-Viscosity

Viscosity was measured over a temperature range of 288–323 K and for all mole
solution fractions, xIL = 0 to 1. Figure 1 summarizes the results in two ways; the upper
panel shows the viscosity dependence on EAN mole fraction and the lower panel presents
the temperature dependence for all mole fractions. Both sets of data are typical of what is
observed in IL/cosolvent solutions. The lines in each panel are regressions to the respective
data sets. The mole fraction dependence in the upper panel appears linear only for xIL ≥ 0.6,
where the viscosity decreased by a factor of ~4.5. The linearity in this mole fraction
range was well represented by a linear regression of the form log(η) = (2.883 ± 0.085)
log(xIL) + (1.686 ± 0.011). While it is certain that ion association plays a significant role
in EAN-rich solution interactions, it seems that viscosity itself is not sensitive to any
variations in this region. However, for xIL < 0.6, the viscosity changes by roughly an
order of magnitude and ∆ log(η) shows a significantly non-linear dependence on xIL. It
is important to take note of this non-linearity because this response is indicative of more
substantial changes occurring in dilute EAN solution [20,48,49]. The EAN/MeOH mixture
in the low EAN concentration region is more strongly dominated by hydrogen bonding
between MeOH and the EAN ions and the details from x-ray and neutron scattering
provide ample evidence for this observation [49]. From the data here, viscosity appears to
vary uniformly above xIL = 0.6. In other words, dilution with MeOH seems to result in a
predictable, systematic variation of solution organization, but with an increase in fluidity
that is particularly effective below 50 mol% EAN. For completeness, we include the excess
viscosities in Supplementary Materials Figure S1. These data were computed from:

ηE = ηmix − [xEANηEAN + (1− xEAN)ηMeOH ] (1)

where ηmix is the measured EAN/MeOH mixture viscosity, ηEAN and ηMeOH are the pure
component viscosities, and xEAN is the EAN mole fraction. ηE values were fitted to a
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two component Redlich-Kister polynomial (see Supplementary Materials) [50]. Excess
viscosities showed negative deviations for all mole fractions with the greatest deviation
occurring at xIL = 0.6. Our results are in excellent agreement with results from Sarkar, who
also observed a minimum in excess viscosity at exactly xIL = 0.6 in EAN/MeOH [47]. While
we cannot infer any specific differentiation between the competing interactions from these
data, we can be sure that there is a significant change in bulk composition xIL = 0.6 that
likely signals that the MeOH impact has reached a climax as the mixture richens in EAN.
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Figure 1. Upper panel: viscosity dependence on IL mole fraction for EAN/MeOH solutions at 295 K.
Line shown is a second order polynomial regression of the data and fits to the functional form:
ln(η) = (−1.40 ± 0.25) xIL

2 + (5.7 ± 0.26) xIL − (0.47 ± 0.055), r2 = 0.998. Lower panel: temperature
dependent viscosities for each xIL solution. Mole fraction is increasing upward across the data set.

In contrast to the mole fraction results, the temperature dependence of viscosity is
linear for all mole fractions and at all temperatures (see lower panel of Figure 1). Although
we do not examine the temperature dependence of the spectroscopy and dynamics in this
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report, we are currently working on this as part of an extension to this work. Nonetheless,
we have included the temperature dependent viscosity data in part to show that for
any single mole fraction the viscosity suggests no obvious temperature effect, e.g., the
temperature variation is linear at all mole fractions. It is interesting to note that for a given
solution composition (xIL) there seems to be no specific influence from temperature except
to increase solution fluidity. The ηE data also show little variation in the overall pattern as
a function of temperature, with the observed minimum remaining consistent at xIL = 0.6.
However, in addition to the viscosity data, it is useful to examine the activation energies
for viscous flow. To compute these values, the viscosity data were modeled using the
Arrhenius activation model:

ln(η/mPa · s) =
(
−Ea

R

)
1

T/K
+ ln(η0/mPa · s) (2)

where Ea is the activation energy for viscous flow, R is the gas constant and T is temperature
in Kelvins. From these regression slopes, we have computed the activation energy for
viscous flow at each solution mole fraction and summarized the results in Figure 2. The
linearity of the EAN activation energy is in stark contrast to the non-linear behavior
that we observed for the trihexyltetradecylphosphonium chloride (P14,6,6,6

+ Cl−)/MeOH
system [50]. The structural contrast between these ILs is clearly different and demonstrates
the significant contribution of long alkyl chains, which results in substantially enhanced
entanglement as neat IL is approached in P14,6,6,6

+ Cl− compared to the EAN C2 chains.
EAN has comparatively weaker interactions with MeOH than does the phosphonium
example as Ea, EAN is approximately 50% that of P14,6,6,6

+ Cl−/MeOH at comparable mole
fraction solutions. The increase in activation energy with mole fraction supports the
perspective of a general increase in dipolar interactions (e.g., ion–ion or ion-molecule
association) the bulk solution effect scales well with composition. We note one further
point of interest. Closer examination of the activation energies reveals that at xIL = 0.2 and
0.3 the values lie above the linear regression and the uncertainty in these values shows
that this deviation is significant. Although the viscosity data do not reveal any extreme
deviation, it is clear from the activation energy that the solution composition does reveal
subtle differences for these mole fractions.
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3.2. Steady State Spectroscopy

Steady-state absorption and emission spectra of neat EAN and C153/EAN/MeOH
solutions were measured as a function of xIL in MeOH. A set of representative steady-state
emission spectra are presented in Figure 3 for xIL = 0.1, 0.4, 0.6, and 1.0 EAN in MeOH.
The spectra here are consistent with what is observed in simple dipolar solvents, and
moreover are similar to what is observed in various ILs independent of cation/anion
pairings [39,51–53]. As usual, spectra are featureless, and the spectra produce the typical
log-normal line shapes. The set of spectra shown indicate that on first pass the microen-
vironment about the C153 probe appear to change very little in either peak position (νpk)
or in spectral width. Subsequent analysis results for νpk and full width at half maximum
(FWHM) for absorption and emission are presented in Figure 4 The upper panel gives
results νpk value for both absorbance (red symbols) and emission (green symbols) confirm
this general observation. In the context of experimental uncertainty (~100 cm−1), there is a
significant, though subtle, bathochromic shift in both spectral measures of ~450 cm-1 for
absorbance and 290 cm−1. With regard to spectral widths, the absorption FWHM suggests
a modest decrease in solution heterogeneity at xIL ~ 0.3. The change in dipole moment
upon C153 excitation is ~8 D based on in-house electronic structure calculations and in
good agreement with literature reports [45]. Evidently, the increased polarity of the C153
excited state is sensitive to what, from our data, appears to be compositional changes as
EAN is added to solution. Interestingly, excess volumes reported for EAN in cosolvents,
including MeOH and acetonitrile, show a minimum at xIL = 0.3 and scattering studies
therein confirmed the presence of mesoscopic solution organization [7,14,20,36]. EAN
structural organization seems to be independent of the specific diluent. At the same time,
x-ray and neutron scattering showed that alcohol addition to EAN in small amounts does
not alter the mesoscopic structure of neat EAN [20]. Finally, our activation energy results
also confirm solution variation in the dilute EAN region. We also report the results of
steady-state absorption and emission for C153 in neat EAN as a function of temperature
(288 K–323 K), which are presented as arrows at the right edge of Figure 4. The values
across the temperature range were constant to within experimental uncertainty. From
our C153 spectroscopic perspective, either temperature variation seems to be an ineffec-
tive means of influencing the EAN solution structure or C153 does not adequately probe
temperature effects.
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Figure 4. Steady-state spectral parameters for C153/EAN/MeOH. Red symbols are absorbance data
and blue circles are emission data. Arrows indicate the spectral maxima and widths of C153/EAN
temperature dependent data. The values indicated by the arrows were invariant over the temperature
range measured (see text).

3.3. Time-Resolved Spectroscopy

We turn to the measured intensity decays for C153 in the binary mixtures at 295 K.
Here, the decays were measured at the peak of the spectral emission. Figure 5 shows two
examples of the intensity decays (blue and green dotted symbols) in the bottom panel
along with fits to those decays represented as solid lines. Weighted residuals of the fits are
presented in the middle and upper panels. The data shown here are for xIL = 0.1 (curve
a, blue) and 0.8 (curve b. green). We note a few points from these data. First, as the
amount of EAN in solution is increased, the decays move to shorter time. Second, the
residuals for the fits to simple sum of exponential models indicates that for dilute EAN
solution (blue traces) it is difficult to appreciate the improvement in the quality of the
fits with additional time constants. At higher xIL, here 0.8 EAN, the C153 decay is clearly
non-exponential, and requires more than a single time constant to adequately represent the
intensity decay (note the residual comparison in panel (b) for time <5 ns). Residuals are
typically the metric of assessing quality of fits, but importantly, in addition to using the
residuals as a metric for quality of fits we also examined the autocorrelation of the residuals
(see Supplementary Materials Figure S2), which is more sensitive to variations in the fitting
parameters. From the autocorrelations, in concert with residuals, we were able to make
more confident determinations as to whether we included an additional time constant.
Criteria that are used to determine if the data require additional time constants are (1) a
threshold of 10% improvement in χr

2; (2) a significant improvement in the randomness of
the residuals; and (3) significant improvement in the autocorrelations of the residuals.
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Figure 5. Examples of magic angle fluorescence intensity decays for C153 in EAN / MeOH at 295 K. 
The bottom panel shows decay data for (a, blue) xIL = 0.1 and (b, green) xIL = 0.8. Data are thinned 
by a factor of 10 for added clarity. The dashed line labeled “IF” is the instrument response function. 
The upper panels show the weighted residuals (thinned by 10 ×) at each of the mole fractions: (a) xIL 

Figure 5. Examples of magic angle fluorescence intensity decays for C153 in EAN / MeOH at 295 K.
The bottom panel shows decay data for (a, blue) xIL = 0.1 and (b, green) xIL = 0.8. Data are thinned
by a factor of 10 for added clarity. The dashed line labeled “IF” is the instrument response function.
The upper panels show the weighted residuals (thinned by 10 ×) at each of the mole fractions:
(a) xIL = 0.1, blue line, using two time constants in the decay model and (b) xIL = 0.8, green line, using
three time constants in the decay model. The black line in panel (b) shows the residuals for two
time constants.

To begin, we note that within our time resolution C153/MeOH exhibits a monoexpo-
nential decay and C153 senses only a bulk MeOH environment. The results of the intensity
decay fits for the EAN/MeOH solutions are compiled in Table 1 and are presented in
Figure 6, with lifetimes in the lower panel and associated fractional contributions in the
upper panel.

Table 1. Results of EAN/MeOH Intensity Decay Fits at 295 K.

xIL f 1 f 2 τ1/ns τ2/ns χr
2 〈τ〉/ns a

0 3.91 ± 0.05 3.91
0.1 0.031 ± 0.005 0.968 ± 0.006 2.09 ± 0.36 3.70 ± 0.01 1.1 3.66
0.2 0.448 ± 0.024 0.551 ± 0.013 3.11 ± 0.15 3.92 ± 0.02 1.1 3.56
0.3 0.704 ± 0.089 0.295 ± 0.021 3.24 ± 0.33 3.99 ± 0.04 1.2 3.47
0.4 0.589 ± 0.018 0.410 ± 0.008 3.04 ± 0.07 3.89 ± 0.03 1.1 3.39
0.5 0.118 ± 0.016 0.881 ± 0.014 2.28 ± 0.30 3.49 ± 0.01 1.1 3.35
0.6 0.021 ± 0.001 0.978 ± 0.002 0.56 ± 0.03 3.35 ± 0.01 1.1 3.30
0.7 0.018 ± 0.001 0.981 ± 0.002 0.53 ± 0.04 3.31 ± 0.01 1.1 3.26
0.8 0.022 ± 0.001 0.977 ± 0.002 0.54 ± 0.03 3.28 ± 0.01 1.1 3.22
0.9 0.019 ± 0.001 0.980 ± 0.001 0.44 ± 0.01 3.24 ± 0.01 1.2 3.19
1 0.028 ± 0.002 0.971 ± 0.002 0.70 ± 0.05 3.25 ± 0.01 1.2 3.19

a The average lifetime is calculated using Equation (4).
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Figure 6. Time resolved intensity decay parameters for C153 in EAN/MeOH solutions at 295 K. Frac-
tional contributions and time constants from best fits to the intensity decays (#, ). Average lifetimes
(N) calculated using Equation (4). The line is a second order polynomial regression, τfl = (0.49 ± 0.07)
xIL

2−(1.06 ± 0.08) xIL + (3.76 ± 0.02), r2 = 0.992, that is included primarily as a visual aid.

Here, we include two representations of the data, the lifetime-weighted fractions
and time constants (blue symbols) and the average lifetimes (red symbols) for each mole
fraction. Fractions were calculated as:

fi =
aiτi

∑
i

aiτi
, (3)

and weighted average lifetimes were computed using:

〈τ〉 =
∑
i

aiτ
2
i

∑
i

aiτi
, (4)

where ai is the normalized un-weighted pre-exponential factors determined from the DAS-6
fitting parameters and τi is the component lifetime.

The C153 lifetime in neat MeOH is adequately described by a single time constant
3.9 ns and agrees with previous literature [21,54]. As is typical in dipolar solvents such
as MeOH and ILs, the ~4 ns shows that substantial non-radiative relaxation is present,
compared to gas phase intensity decay where the representative time constant is on the
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order of ~6 ns [51]. We observe that for EAN/MeOH mixture data two time constants
were required for all mole fractions. On initial addition of EAN (xIL = 0.1) about 3% of
the decay was contributed from the faster time constant. Between xIL = 0.2–0.5 there is
a more substantial contribution from each of the two time constants, with a minimum
that appears at xIL = 0.3. This minimum in the lifetime results is in good agreement with
our steady-state results and aforementioned literature reports of EAN/MeOH solution
organization [7,14,20,36]. Moreover, the lifetimes are suggestive that C153 interactions are
differentiating between solution components and reflective of C153-EAN and C153-MeOH.
Note that in the range xIL = 0.2–0.5 the faster time constant is ~3 ns, similar to the value of
~3.2 ns for xIL = 1, and the slower time constant is consistent with the C153/MeOH lifetime
of ~4 ns. The relative contributions (fractions) give a commentary on the variation of
these interactions. For solution compositions greater than xIL = 0.6 the decays were nearly
exponential, requiring only ~2% of a ~0.5 ns time constant. Intensity decay in neat ILs is
typically non-exponential [24,35,51,53,55], and the scope and complexity of interactions in
neat ILs has been shown to require up to five exponentials to fully and adequately describe
the intensity decay data [55]. Reports have suggested that ion translational/diffusional
motions are collectively described by sub-picosecond dynamics and slower solvent dy-
namics [18,20,40,41,43,47]. Samanta described additional contributions to solute-solvent
interactions, such as solvent shell reorganization, orientational relaxation, dipolar interac-
tions, aggregate translation and rotation, etc., that will also influence the C153 emission [35].
For EAN/MeOH, as the solution is enriched in EAN (xIL > 0.5) it is interesting to note that
from the lifetime data alone one might infer that there appears to be little if any change in
component interactions. This perspective is corroborated from diffraction measurements
reported by Triolo and co-workers, where they show that at low alcohol concentration
(here, larger xIL values) there is minimal influence by MeOH on the IL structure. Rather,
it is on MeOH where there is significant impact to its microenvironment in that it is the
methanol-methanol correlation that is significantly impacted [20]. The C153 radiative rates
and fractions at smaller xIL values gives clear evidence that solute-solvent interactions
are changing significantly as the complexity of the system is increased with added EAN.
Finally, it is interesting to consider the average lifetime (triangles) data. These data are per-
haps a bit deceiving in that they suggest a smooth variation in solute-solvent interactions
across the compositional range. By that measure, one would miss the clear pattern shift
at xIL ~0.3. However, the average value does give the correct view for EAN at larger xIL
values and indicates a nearly invariant lifetime as the influence of MeOH on EAN-MeOH
interactions diminishes. Whatever specific micro- or nanoscopic organization (e.g., caging)
drives the interactions that are attributable to the 0.5 ns contribution to the lifetime beyond
xIL = 0.5, this time constant contributes at most 2.5% to the C153 decay kinetics. We now
examine the C153 rotational dynamics for the EAN/MeOH binary solutions.

3.4. Rotational Dynamics

Fluorescence decays of anisotropy were measured at the emission maxima for each
mole fraction. Supplementary Materials Figure S3 shows representative polarized intensity
decay data at xIL = 0.2 and 0.9. The polarized intensity decays were fit using a reconvolution
sum of exponentials model:

r(t) = r0

[
n

∑
i=1

fi exp
(
−t

τrot,i

)]
, (5)

where r0 is the initial anisotropy, fi is the normalized pre-exponential factor and τrot,i is
the rotation time. C153 limiting anisotropy values have been measured and discussed in
detail elsewhere [30]. The accepted r0 value is 0.373 but was shown to range from 0.33 to
0.39. We used r0 as a variable fitting parameter in our analysis to test whether our data are
capturing the entire anisotropy decay. Results of the fits are noted in Table 2. The values
for r0 indicate that for the two most dilute EAN solutions, we are missing ~ 22% initial
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decay because our time resolution is unable to detect the faster ps and sub-ps motions that
are surely in the dynamics. When fixing r0 to 0.37 the rotation times are 75 and 135 ps for
xIL = 0.1 and 0.2, respectively, a decrease in the reported times of about 30% each. However,
this does not change the observed trend. Further, we note that for xIL > 0.2 the recovered
r0 values are within uncertainty of the expected range, showing that we are capturing the
rotational diffusion that occurs within the ml153 lifetime. For xIL values 0.6 and greater,
the C153 rotational dynamics require two time constants to model the decay and this is
consistent with an the increased solution complexity of interactions. Table 2 also reports
the average rotation times (〈τrot〉) and uncertainties in these data are at most 6%. Figure 7
depicts the rotation time dependence on solution viscosity and we observe that at first
glance the increase in time constants parallels increasing viscosity.

Table 2. Results of EAN/MeOH Anisotropy Decay Fits at 295 K.

xIL η/mPa·s r0 f 1
a τ1/ns τ2/ns χr

2 〈τ〉/ns b Cobs

0 0.54 1.00 b 0.04 ± 0.01 0.61 ± 0.09
0.1 1.2 0.28 1.00 ± 0.04 0.11 ± 0.01 1.02 0.11 0.90 ± 0.04
0.2 2.0 0.29 1.00 ± 0.02 0.18 ± 0.01 1.11 0.19 0.89 ± 0.04
0.3 3.2 0.36 1.00 ± 0.01 0.28 ± 0.01 0.98 0.28 0.87 ± 0.04
0.4 5.1 0.32 1.00 ± 0.01 0.43 ± 0.01 1.08 0.44 0.83 ± 0.03
0.5 7.2 0.32 1.00 ± 0.01 0.58 ± 0.01 1.14 0.59 0.79 ± 0.03
0.6 11.4 0.38 0.24 ± 0.04 0.47 ± 0.07 1.04 ± 0.02 1.07 0.91 0.77 ± 0.04
0.7 16.6 0.35 0.11 ± 0.01 0.50 ± 0.06 1.34 ± 0.01 0.95 1.25 0.73 ± 0.03
0.8 26.0 0.34 0.03 ± 0.01 0.42 ± 0.08 1.65 ± 0.01 1.00 1.51 0.56 ± 0.02
0.9 35.2 0.36 0.02 ± 0.01 0.35 ± 0.03 2.10 ± 0.01 1.06 2.07 0.57 ± 0.02
1 49.2 0.38 0.01 ± 0.01 0.24 ± 0.03 2.24 ± 0.01 1.09 2.22 0.44 ± 0.02

a Fractional contributions sum to 1, and f 2 = 1 − f 1 and where two time constants are reported uncertainties in f 2 were identical to those of
f 1. b The average rotation time is calculated using ∑

i
fiτi .

The red triangles below xIL = 0.6 are the monoexponential times whereas the blue
spheres indicate the mole fractions requiring two rotation times. In addition to the smaller
mole fractions, red triangles at xIL = 0.6 and above represent the average rotation times.
Figure 7 also includes the computed hydrodynamic times for stick and slip boundary
conditions, where the stick limit is reflective of the probe’s rotation including the first
solvent shell and in the extreme slip limit the lack of solvent drag [56,57]. Stick and slip
hydrodynamic limits for rotational diffusion are computed using the relation:

τhyd =
ηV
kBT

f C, (6)

where V is C153 volume, f is a shape factor, and C is a coupling factor. Molecular parameters
were determined by modeling C153 as an ellipsoid with semi-axis dimensions of 2.0, 4.8,
and 6.1 Å, yielding a molecular volume V = 246 Å3, and with f = 1.71. The coupling factor
C = 1 and C = 0.24 are for the stick and slip limits, respectively [30]. The average rotation
times are lie near the stick limit up to xIL = ~0.6, after which the values decrease more
substantially from the hydrodynamic limit. The correlation to hydrodynamic behavior is
quantified from Cobs as:

Cobs =
kBT
ηV f

=
〈τrot〉
τstick

, (7)

and are presented in the upper panel of Figure 7. The open square is C153 in neat MeOH
measured at 22 ◦C using femtosecond up-conversion [30]. Immediately upon addition of
EAN C153 rotations times show a distinct difference compared to MeOH and even with
the initial addition follow the stick limit hydrodynamic prediction. Cobs shows that the
dynamics are nearly hydrodynamic at ~90% of the stick limit and drop precipitously as
EAN is added. At the split in rotation times the faster time contributes ~25% to the decay
and steadily decreases to a 1% contribution in EAN. It appears that C153 experiences a
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solution heterogeneity, which becomes very prominent at about 50 mol% and remains
detectable even in neat EAN. The rotation data give evidence that the solution complexity
is consistently increasing as the deviation from hydrodynamic becomes significant as
evidenced by Cobs → 0.4.
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Figure 7. Lower Panel: Rotation times of C153 in EAN/MeOH at 295 K. Symbols represent time 
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Figure 7. Lower Panel: Rotation times of C153 in EAN/MeOH at 295 K. Symbols represent time
constants for fits to the anisotropy decays. Data sets that required one time constant are shown
with triangles (N), but only for xIL < 0.6, and data sets that required two time constants are the
circles ( , #). Triangles over the entire range are weighted average rotation time constants. The
red line is a regression fit to these data only. The black lines show the predictions for stick and slip
hydrodynamics. Upper Panel: Coupling factor, C, that indicates the fractional average rotation times
relative to the stick prediction (see Equation (7)). The open square shows the values for C153/MeOH.

As a final point of analysis, we evaluated the rotational diffusion coupling to solution
viscosity. Assuming the Stokes–Einstein–Debye hydrodynamic behavior in Equation (6),
one expects that τhyd ∝

( η
T
)p where p = 1 in the stick limit and rotation correlates directly

viscosity. Since the average rotation time seems to provide a reasonable estimate at all mole
fractions, we regressed those times accordingly and found that the fit yielded a p value of
0.82 ± 0.03, indicating the EAN/MeOH solution is exhibiting dynamic heterogeneity. ILs
nano- and microstructure tends to form polar and non-polar domains in varying degrees
depending on solution constituents and the varieties of interactions that occur, which leads
to both spatial (structural) and dynamic heterogeneities [10,11,18,43,47]. As a consequence
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of solution heterogeneity, we expect a distribution of microenvironments that manifest as
viscosity variations in the bulk solution. Of particular interest for this work is the excess
viscosity (Supplementary Materials Figure S2 and ref) that showed a substantial depression
in the EAN/MeOH solution viscosity, with a decrease of about −7 cP at 298 K and as much
as −20 cP at 278 K. The change in our rotational dynamics from one-to-two time constants
aligns well with the change in excess viscosity and it appears that from the perspective of
heterogeneity the solution structure at xIL = 0.6 and above is significantly different. We
attribute this observation to the existence of multiple IL domains that include both polar
and apolar micro- and nanodomains.

4. Discussion

An extensive amount of experimental and simulation evidence exists in the literature
supporting the structural heterogeneity of ILs and IL solutions, the source of which may
arise from ion pair associations in neat IL and dilution effects in cosolvent modified
ILs [58–62]. Extended aggregation also drives heterogeneity in ILs especially when the
cation possesses longer alkyl chains [21,63,64]. For EAN with only a C2 chain, aggregation
is not a significant consideration, so what governs structural variation? Formation of
hydrogen bonds between EAN, MeOH and C153 collectively would seem to account for
the slowed hydrodynamic-like rotational dynamics as well as the formation of polar and
apolar domains within the EAN structure, and these interactions have been discussed in
detail elsewhere (and references above) [18,31,36,65,66]. Another point of importance is
the various correlation lengths that exist in solution, including anion-anion, cation-anion,
cation-cation interactions, that not only persist spatially but dynamically as well [31,66].
Correlation lengths in EAN were reported to be on the order of ~10 Å [31,66], and given
that the semi-axes dimensions of the C153 ellipsoid are estimated to be 6.0 Å and 4.8 Å the
C153 will fit within any local domains that may form within the 3-D solution structure.
Therefore, we expect that these short-range interactions may cage C153 and thereby in part
govern the observed dynamics and result in fast reorientation. Rotational time correlation
functions (TCFs) were also reported for EAN cations and anions and fit to a two-time
constant model that showed at 300 K anion organization persists at most on the order of
a few hundred ps with a weighted average of 88 ps whereas cation persistence is much
greater with a weighted average of 2500 ps. Considering that our results were measured at
295 K and these time constants were at 300 K there is reasonable agreement with a difference
of ~10%. From ultrafast vibrational measurements using SCN−, dynamical heterogeneity
was also confirmed with the observation of two populations that described the solute
rotational dynamics [43]. However, the associated rotation times for the populations
were reported to be the same within the experimental uncertainty at ~2.5 ps. Additional
slower reorientations of ~30 ps were suggested that deplete any remaining anisotropy. The
authors posited a set of domains, “charge-depleted” and “charge dense”, to account for
the two observed populations [43]. These ultrafast measurements agree with the general
consensus from the literature regarding EAN spatial and dynamic heterogeneity, but the
SCN− ultrafast dynamics are well beyond our time resolution.

In dilute EAN solution at xIL = 0.1 the bulk solution viscosity increases by ~0.5 mPa s
(about a 2-fold increase) but the even though absolute viscosity change is relatively small
it is substantial enough that the viscous drag on C153 increases the rotational dynamics
from ~60% of the stick limit in MeOH to ~90%. Although we cannot assess the individual
contributions from this data, the effect on the C153 rotational dynamics is evident. Further,
for diluted EAN solutions the rotation times clearly demonstrate that with successively
added EAN the solution is organizing with a predictable, smooth hydrodynamic-like
variation. It is interesting to note that the rotation times steadily move away from the stick
hydrodynamic prediction with increased EAN, although from our data the reason is not
completely clear. Beyond xIL = 0.6 we noted that the rotational dynamics showed two
time constants, with the faster time’s relative weighting decreasing from ~20% to ~2% in
neat EAN. Evidently, at xIL = 0.5–0.6 there is a ‘balancing’ point among all the competing
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effects of ion concentration and associated changes in ion mobility. Certainly, ion–ion
interactions, hydrogen bond variations among the solution constituents, nanodomain
formation all contribute to the solution heterogeneity that is sensed by C153. For our
data, this is clearly manifested by the decreased value of the exponent p (=0.82) from unity
in the fitting of the average rotational time constants. Such a deviation has been shown
in many ILs (including deep eutectic solvents, DESs) and explained as clear evidence of
solution heterogeneity [42,67,68]. Cobs values clearly show the extent of deviation from ideal
(Cobs = 1) and we note that the solvent coupling is less than 50% of the stick limit in neat
EAN. The most reasonable explanation would seem to be that C153 is in an environment
where hydrogen bonding among ions is much stronger than hydrogen bond interactions
with C153. Whether this is a simple caging effect or polar/apolar domain effect is not clear
from our data and is most likely some combination of both. A report of rotational dynamics
using rhodamine 6G (cationic dye) and fluorescein (anionic dye) showed that for charged
dyes the rotational dynamics we not less than the stick limit and were super-stick at lower
viscosity [47]. However, the authors did not present an analysis that determined the non-
linearity of the rotational data, e.g., a computed p-value, so we are unable to comment on
this aspect in comparison to our C153 p-value. One final point to address is the reason why
we only see two time constants for the EAN-rich solutions. We conjecture two possibilities
here. First, it is reasonable to suggest that in the MeOH-rich solutions we simply do not
have sufficient time resolution to resolve multiple time constants at these smaller mole
fractions. Second, it is plausible that C153 is in a relatively rigid environment wherein
the hydrogen bond interactions are such that the sum of all interactions between the ions,
MeOH and C153 essentially lock C153 into a tight EAN/MeOH solvent shell. However, it is
interesting to note that the magic-angle intensity decay is sensitive to solution composition
near xIL ~ 0.3, which underscores the importance of using various measurement strategies
to study these complex systems. To resolve these questions further measurements are
needed to examine more carefully the complexities of EAN/MeOH solutions and we will be
reporting on our findings for temperature dependent measurement in a subsequent report.

5. Summary and Conclusions

We have studied the EAN/MeOH binary solvent system over the entire range of
IL mole fraction using the well-known, solvent sensitive, neutral fluorescent molecule
C153. The interests here were to use SED hydrodynamics as a framework wherein we
characterized the inherent heterogeneity of EAN and the EAN + methanol cosolvent system.
C153 was chosen for this task, in part because as a neutral dye it reported on locales within
the IL solution there were not associated with charged interactions, thereby avoiding
the invocation of specific solvent-probe interactions that are not reasonably described
by SED theory. As a diluent, MeOH solvates the EAN ions and viscosity measurements
show that MeOH disrupts the EAN organization, as evidenced by an increased fluidity
(η−1). Steady-state fluorescence results indicate that across the complete mole fraction
range that the average energetics as measured by the emission maximum red shifted by
~300 cm−1 and the emission width (FWHM) was invariant. The absorption peak maximum
showed a 450 cm−1 red shift with a distinctive 170 cm−1 narrowing of the width at xIL = 0.3.
Magic-angle intensity decays also indicated that the solution composition at xIL = 0.3
was significantly different but beyond xIL = 0.5 there was little change in time dependent
emission. Fluorescence anisotropy decays yielded a single time constant for xIL < 0.5 and
the rotation times were upwards of 90% stick hydrodynamics, which decreased to ~80%
stick at xIL = 0.5. For xIL > 0.5 the anisotropy decay was described by two time constants,
and the faster time decreased from 500 to 240 ps with a concomitant change in fractional
contribution from 20% down to 2%. The slower time constant showed a steady increase
from 1.0 to 2.2 ns, but systematically deviated further away from the stick hydrodynamic
limit as indicated by the continually decreased Cobs value that was 43% of the stick limit in
neat EAN. The power law fit to the rotation times yielded a p value of 0.82, signifying the
presence of dynamic heterogeneity in the EAN/MeOH solution. Heterogeneity arises from
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the composite EAN ion–ion, ion–dipole (EAN–MeOH), ion solute (EAN–C153), and dipole
solute (MeOH–EAN) interactions.
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