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Abstract: Education plays a critical role in society as it promotes economic development through
human capital, reduces crime, and improves general well-being. In any country, especially in
the developing ones, its presence on the political agenda is necessary. Despite recent educational
advances, those developing countries have increased enrollments, but academic performance has
fallen far short of expectations. According to international evaluations, Latin American countries have
made little progress in recent years, considering the level of investment in education. Thus, Artificial
Intelligence (AI) models, which deal with data differently from traditional analysis methods, can be
an option to better understand educational dynamics and detect patterns. Through a literature review
using the PRISMA methodology, we investigated how AI has been used to evaluate educational
performance in basic education (elementary and high school) in several countries. We searched five
platforms, resulting in a total of 19,114 works retrieved, and 70 articles included in the review. Among
the main findings of this study, we can mention: (i) low adherence to the use of AI methodology
in education for practical actions; (ii) restriction of analyzes to specific datasets; (iii) most studies
focus on computational methodology and not on the meaning of the results for education; and (iv) a
less trend to use AI methods, especially in Latin America. The COVID-19 pandemic has exacerbated
educational challenges, highlighting the need for innovative solutions. Given the gap in the use of AI
in education, we propose its methods for global academic evaluation as a means of supporting public
policy-making and resource allocation. We estimate that these methods may yield better results more
quickly, enabling us to better address the urgent needs of students and educators worldwide.

Keywords: assessment; educational indicators; educational system; data science; machine learning;
artificial intelligence

1. Introduction

Education has been associated with better use of economic growth that a country
achieves in a period. In part, the association stems from the accumulation of human capital
generated by investments in education [1,2]. To maintain the positive impacts of these
dynamics, efforts must be made through constant monitoring of the educational system.
One of the main challenges in evaluating the educational system refers to the type of metrics
to be used.

Indicators, which are defined as “a measure used to compare quantities”, are one of
the ways to assess the state of the educational system [3]. Simple and composite indicators
are two types of indicators that can be used: simple indicators provide direct information
about the educational system (e.g., the number of graduates in a given school cycle, total
enrollment per school year, and the number of students in a classroom). Composites, on the
other hand, link multiple variables at once (e.g., the number of professors per 1000 students
and the number of graduates in relation to enrollment) [4,5].

There is no single simplified measure capable of evaluating the educational system
globally, where all schools could be classified and ordered using a single measure. There
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are indicators for certain aspects so far, but they are insufficient to measure the different
factors of the educational system. Considering this limitation, another choice is to combine
several indicators, which will naturally increase the complexity of the analyses but may
provide a more informative educational perspective.

In recent years, the educational structure in Latin America (LA) has undergone signifi-
cant modifications, including an increase in the number of students enrolled in elementary
and secondary school [6,7]. However, despite this progress, school performance in many
LA countries continues to fall below expectations when compared with countries with sim-
ilar levels of Gross Domestic Product (GDP) and educational expenditure [8]. Addressing
this performance gap remains a critical challenge for the region.

As not all children are assured attendance, the benefits associated with school insertion
are not universal, and low-income families find it more difficult to participate in this
expansion [9,10]. There are other aspects such as ethnicity, gender, and geographic location
that make it impossible to access the advancements seen in LA countries in recent years;
therefore, examining the traits that help students to perform better in school and focusing
resources on these factors is critical.

In international assessments such as the Programme for International Student Assess-
ment (PISA), all LA countries score lower than the Organization for Economic Co-operation
and Development (OECD) average in all three areas assessed by the test (science, reading,
and mathematics). Latin America has a history of deficient performance and low participa-
tion in international assessments. For countries such as Bolivia, French Guiana, Guyana,
Suriname, and Venezuela, data referring to academic evaluation were not identified, which
can be compared on the same basis, meaning that they are applied in a uniform way as the
evaluations carried out by the OECD or Progress in International Reading Literacy Study
(PIRLS) and Trends in International Mathematics and Science Study (TIMSS), for example.
Thus, a robust and comparative assessment of LA countries is unfeasible. In a brief analysis
of the PISA results, the scores in the assessments have barely increased during the last
decade. On average for this period, the increase in performance for LA countries did not
exceed seven points [11], consolidating a scenario of stagnation. In some nations, the scores
of the last exam (2018) were lower than the scores of the 2009 exam. Of the LA countries
participating in the PISA, only Peru maintains a continued increase in assessments.

It should be noted that concomitantly with restrictive education, LA countries in
general also have low values for development indicators, such as the Human Development
Index (HDI), one of the main metrics used to assess and compare the development of coun-
tries [12]. The next three sections focus on the main references of the revised bibliographic
review, where the role of education as a fundamental element for economic growth via
human capital, the main characteristic applications of Artificial Intelligence (AI) and AI in
the educational scope, and its aspects were considered. Then, the method to develop this
systematic review is detailed, and we present the main results to support the discussion,
conclusions, and future trends. The main contributions of this study include an overview
of the application of AI models in the evaluation of educational performance in basic
education (elementary and high school), the main characteristics of the studies included,
and some contributions to the application of AI methods in education.

2. Economic Growth: Human Capital

Human capital can be defined as a set of skills intrinsic to the individual (e.g., formal
education, experience, creativity, and health consolidate aspects that increase the produc-
tivity of workers and companies) [1,2,13]. The accumulation of human capital brings
numerous social benefits, in addition to contributing to an increase in GDP and wage levels,
a reduction in crime, and greater social welfare which are conditions positively related
to social capital. One of the main reasons for government officials and other workers to
incorporate education into their political agendas is the strong link to human capital, seen
as a relevant factor for sustained economic development [14–16].
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In recent studies, new characteristics have become associated with human capital,
such as energy, capacity for innovation, and lifestyle, as they would be associated with
greater companies’ efficiency. However, as these characteristics are difficult to be identified
and measured, few studies assess them directly. Therefore, to include the human capital
variable in economic growth models, those associated with education become a more
reliable estimate [17].

Years of schooling, as well as school performance, are often associated with increased
individual earnings, which would be an indication of greater economic activity. Recently,
some studies have suggested that cognitive skills would have a greater impact on wages
than school performance [18]. However, this association incorporates a series of elements
linked to the students’ family and cultural environment, a condition that makes it difficult to
analyze the real effect of this condition on economic growth, according to salary levels, for
example. Thus, currently for some countries, as these data are unavailable, alternative prox-
ies for assessing economic growth and development are traditional educational indicators.

Among the main challenges in education, we highlight the reduction of school
dropouts, an increase in academic performance, a reduction of failures, and the universal-
ization of education, financing, and resources for the educational system. Several countries
have their indicators at stable levels, with no increase or decrease in academic perfor-
mance. Some issues (classified as basic in developed countries) can be crucial barriers in
the developing world, which are reflected in elements of delay for school development
(e.g., difficulty with means of transportation or even the limitations in the distribution of
water and sewage).

Therefore, for developing countries, a variable that represents cognitive abilities in a
national scenario becomes unfeasible [19]. An alternative is an analysis that is based on
existing data, such as government research analyses referring to basic education, as it is a
fundamental educational level in the composition of the Human Capital of a country. The
next section elucidates some of the main elements concerning AI and some of the benefits
obtained with the use of its techniques in different areas of knowledge.

3. Artificial Intelligence Applications

Artificial Intelligence is a field of study where agents can perceive the environment
and make decisions [20,21]. In this case, computers perform cognitive functions similar
to human ones considering the ways of learning, understanding, reasoning, and interact-
ing [22]. Different methods and algorithms are used in product development and different
forms of data analysis. To improve the efficiency of processes, AI methods help decision-
making, simplifying the process of analyzing information, and making it more agile, even
with exhaustive amounts of data. In this sense, the utilization of AI-supported actions is
believed to be crucial for fostering economic growth.

The existence of such data in different origins and structures defines a complex ap-
proach, which takes us to the perspective of Big Data, which can be defined by the foun-
dations, also called “Vs” of Big Data [23]: (i) volume—the amount of information that is
handled, processed, and interpreted; (ii) variety—the number and complexity of the types
of information contained in the database; and, (iii) velocity—the data flow, that is, the
rate of entry and exit of new information [23–25]. It is noteworthy that other factors are
important, and new “Vs” are added to show the entire structure of Big Data. For this work,
another element should be mentioned: the value of data: through them, several companies
have generated positive results that outweigh any cost of information management [23,25].

Some studies indicate that the use of AI techniques can increase world economic
production by between 14 and 16% by 2030 [26–28]. Historically, technological innovations
can increase the GDP of economies; however, the changes are not immediate. It will be
necessary to adapt the structure of the production to the new scenario, either with the
acquisition of new technological devices (e.g., computers, servers, etc.)—which require
investment, or even in the hiring of trained professionals, who will need to acquire new
skills, due to market demands and job reallocations.
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In recent years, the growth in the use of AI methods has been so great that it has now
become the basis of several processes. The range of algorithms used in problem-solving
has increased, and old techniques have been improved thanks to recent computations.
Compared with previous processes, it is noted that the introduction of AI has revolutionized
several areas of knowledge with the addition of new tools that maximize economic gains,
mitigate errors, and increase productivity and efficiency [27].

Among the most diverse fields, we highlight the improvement in communication and
languages due to translation tools (e.g., Google Neural Machine Translation) that convert
human speech into text, which consequently generated the “voice search” tool, enabling the
development of virtual assistants such as Alexa, Cortana, and Siri that have revolutionized
the Internet of Things (IoT) and smart home market [29], and ChatGPT, a recently available
tool that has the ability to talk to the user, answering various questions, and with the ability
to perform complex search tasks, among other functions involving language [30].

In economics, advances in the use of AI took place in two contexts: the recommen-
dation of products according to the profile of users and the forecasting of asset prices in
the stock market [31,32]. By directing product advertising to customers based on research
carried out by them, the chances of making sales are greater. On the other hand, the stock
market, designated by the high volatility of stock prices, which are priced according to
numerous factors, usually when using machine learning methods, tends to make better
predictions than traditional models. The banking system has used this type of resource
to assess credit granting or predict defaults. Due to the associated benefits, it has become
increasingly common in the practices of financial institutions to generate ratings and fore-
casts to offer any product to their customers. In electronic commerce, a common strategy in
virtual media (email, social networks, browser ads) is based on different AI methods, which
can learn the user’s tastes and generate more relevant suggestions for a specific profile.

Another prominent field is fraud detection (e.g., emails have a system to filter messages
received by importance and the possibility of being spam). With the evaluation of an initial
set of frauds, it is possible to assess the similarity with new messages, filtering incoming
messages and, consequently, establishing a greater degree of security for the user [33].
Finally, applications of AI models are image recognition methods with the potential to
aid clinical diagnoses. The function of this analysis feature is not to replace healthcare
professionals, but to assist with the early detection of comorbidities which facilitates
diagnostics, saves resources, and increases the speed of the process [34,35].

Among the main challenges in education, we can list the reduction of school dropouts,
in which the recognition of the conditions that are reflected in dropping out of school is
fundamental for the improvement of the educational system as a whole [35]. So, to design
proper policies, it is necessary to identify the main factors that are associated with better
student outcomes, on which policymakers should specifically act, mitigating financial and
time losses, and increasing the chances of success. Thus, the implementation of related
policies needs to be improved through efforts so that financial, physical, and resources
can be managed with greater efficiency and quality. This encourages the use of original
approaches for evaluating educational performance, to form new insights into the creation
of public policies. It is essential to understand what are the factors and main characteristics
of students’ success in the educational decision-making process.

The goal of this research is not to list all applications of AI, but rather to emphasize
those that have had the biggest positive effects across a variety of domains and the ways
in which they relate to various modern scientific and technological developments. Con-
sidering these facts, why not employ similar strategies to encourage educational changes,
considering the unique characteristics of the areas where improved educational perfor-
mance is needed?

4. AI for Education: New Methods of Analysis

Currently, different methods of AI are used in the field of education [36]. In searches
for surveys and recent reviews in the area [37–39], we found that the main objectives of
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studies that use AI data exploration methods as the main methodology are: (i) predicting
performance, and permanence in distance learning courses [40–42], (ii) identifying the
probability of school dropout [43–45], (iii) predicting grades in written assignments [46],
(iv) assessing student profiles [47] and, (v) school management [48].

However, few studies include data for large geographic scales, such as countries or
macro-regions. In general, they tend to evaluate data for states and cities and data that
do not have geographic dependence as data from Massive Open Online Courses (MOOC)
where there are no defined limits. Thus, the spatial component associated with education
is no longer incorporated into the models, and the geographic importance may be related
to public policies committed in these places.

Despite the growing use of AI in education, few studies have been proposed that
aim to foster the development of educational public policies based on insights from this
methodological approach [49]. Most educational quality assessment studies are based on
traditional statistical methods [50] which use limited data sets, as the structure of some
methods does not allow the inclusion of an exhaustive number of variables without loss of
performance of the analysis. The reduction of data complexity can consequently lead to
loss of information or loss of analytical insights.

It is worth mentioning that there is currently a significant increase in the amount of
data that is generated every day, as well as the temporal accumulation of information, which
encourages the use of new analysis methods that are already used in other areas of knowl-
edge [51,52]. In education, the process would not be different, whether by government
research or by data generated by teaching platforms and learning environments.

The scenario becomes even more limited when the searches are restricted to LA coun-
tries. The implementation of AI methods is severely restricted in developing countries. On
the other hand, the participation of those countries in this process is essential, and those
that are less close to the AI may present a lower degree of economic growth, which will
increase inequalities. Traditionally, developing countries already have less technological
infrastructure and skilled labor, and will have to make greater efforts not to further accen-
tuate the difference from developed economies. Maia et al. [53] mention numerous gaps in
the examination of a data set of more than 90% of Brazilian public schools. A comparison
of traditional and AI approaches was carried out to measure the educational and socioe-
conomic aspects that are related to school achievement, with the latter having the best
performance–considering error metrics and determination coefficient. The distinctiveness
of each school period evaluated and the distinction of the relevance of variables in the
school stage became clear, making such specifications vital to incorporate in projects and
public policies that decision-makers and other workers come to carry out [53].

As a result, incorporating more data into analysis has become a critical issue, not
only to generate value but also to save resources, as public policies can be enhanced with
new interpretations of the school setting. Highly valuable approaches can be utilized
for this, as datasets in education can be simply integrated within the scope of AI [54].
Different AI approaches can generate more precise and consistent results when applied
to traditional methodologies [53,55]. However, there are still a few projects in education
that benefit from AI, Data Science, and Machine Learning resources. When we consider
the significant increase identified in other disciplines [56], the situation for developing
countries becomes much worse. Aware of this gap and the educational emergency in the
region, an inquiry into the existing scenario of school performance evaluation studies in
the region becomes necessary.

Nevertheless, the adaptations will have to be implemented gradually in each country,
and there will be several challenges, but it is unlikely that AI will not be explored. Due to
the complexity of the data, different computational structures end up being necessary. This
condition hinders the rapid expansion in LA, as in some countries, the access to certain
equipment is restricted.
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5. Methodology

We conducted a systematic review of the literature using the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) standards [57,58], PRISMA checklist,
available in the Supplementary Material. Academic works using AI models to evaluate
school performance were identified, selected, and critically evaluated. The main stages of
the methodology applied in this study are summarized in Figure 1.
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5.1. Research Questions and Objectives

The research question in this study was: how AI models are used to evaluate educa-
tional performance? From this perspective, the following questions were asked: (i) how
have AI models been used to assess school performance?; (ii) what educational level do
the studies assess?; (iii) what is the geographic origin of the data used in the articles?; and
(iv) what are the main methods used to assess school academic performance?

To answer these questions, we aimed to find the main articles that addressed educa-
tional evaluation from 2000 to 2021, using AI methods to promote public policy or resource
allocation and to evaluate the existence of educational performance evaluation studies
using AI methods with data from LA countries.

5.2. Search Strategy

The Population, Intervention, Comparison, and Outcome (PICO) strategy [59,60] was
used to conduct the review (Table 1). The population in our study was characterized as
publications assessing basic education (i.e., primary, secondary, and high school levels).
Initially, all studies that were within the established criteria were selected. Subsequently,
those located in LA would be unified in a distinct group, but due to the small number of
studies, only one group was created without distinction of the region. The intervention was
considered the performance prediction assessments that incorporated at least one AI model.
The comparison was based on the evaluation of the models using comparable metrics such
as error metrics, accuracy, sensitivity, and so on, whereas the outcomes referred to the
results of the predictor of interest: prediction of school performance.
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Table 1. Main characteristics of the PICO protocol adopted by this study.

Stage Description

Population/Problem Studies predicting the performance of Basic Education students
(elementary school, primary school, secondary school, and high school)

Intervention Artificial Intelligence models

Comparison Comparison between the models used

Outcome Model performance and predictive/classifier quality

Study type Quantitative studies

The search terms (Table 2) were applied to multiple journal platforms, including the
Education Resources Information Center (ERIC), Institute of Electrical and Electronics Engi-
neers (IEEE), Scopus, Science Direct (SD), and Web of Science (WoS). The databases were ac-
cessed via Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) journal
network, with remote access provided by the Comunidade Acadêmica Federada (CAFe).

Table 2. Search terms used by journal platforms.

N Stage Terms

1 School Levels
TITLE-ABS-KEY ((“primary education” OR “secondary school” OR “high school”) AND (“computer

science” OR “big data” OR “data science” OR “data mining” OR “deep learning” OR “artificial
intelligence” OR “machine learning”))

2 Academic
achievement

TITLE-ABS-KEY ((“academic assessment” OR “academic performance” OR “academic achievement” OR
“academic intervention” OR “academic trajectories” OR “academic analytics”) AND (“computer science”
OR “big data” OR “data science” OR “data mining” OR “deep learning” OR “artificial intelligence” OR

“machine learning”))

3 Education
TITLE-ABS-KEY ((education NOT (“medicine” OR “higher education”)) AND (“computer science” OR

“big data” OR “data science” OR “data mining” OR “deep learning” OR “artificial intelligence” OR
“machine learning”))

5.3. Eligibility Criteria

The inclusion criteria were pre-established, and the key results of the selected studies
were coded and extracted to synthesize and answer the question: how the AI used to
evaluate educational performance helps in decision-making and public policy conceptions?
Furthermore, because the goal of this study was to promote practical actions (e.g., manage
public policies capable of optimizing school performance in a shorter period), studies that
advocated these activities were sought.

The searches were conducted in September 2021 and were limited to articles published
between January 2000 and September 2021. We limited the presence of keywords to titles
and abstracts because of the large number of articles not being associated with the scope of
work, in addition to the quantity not being subject to analysis due to the small sample size
retrieved (Table 3).

5.4. Selection Process

The results of each database were combined into a single .csv file, and duplicates were
removed. The Rayyan® tool was used to select articles based on titles and abstracts [61,62].
The authors JSZM and APAB participated in the selection of articles independently. In the
event of a disagreement between the two reviewers, a third reviewer (JRS) was involved.
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (Figure 2) sum-
marizes the selection of articles.
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Table 3. List of criteria for inclusion and exclusion of articles in the review.

Inclusion Criteria Exclusion Criteria

They must be published in english. Articles published in a language other than English.

Articles must have been published after 2000. Articles published before 2000.

Articles related to basic education—primary, secondary, and
high school.

Articles related to higher education, children, extracurricular
courses, and MOOCS.

Articles related to academic performance.

Articles related to education, but unrelated to the objectives:
gamification, teacher training, salary forecasting, vocational

tests, college admissions, distance education, an indication of
courses for college, simulation of activities correction, digital

literacy, the perspective of parents, teacher analysis, salary
prediction, and vocational testing.

Consist of scholarly articles and reviews. Papers referring to conferences, events, and book chapters.

Articles must be available in full. Not being peer-reviewed

Studies should be limited to the areas: education, and
artificial intelligence.

Studies outside the broad area of this study, for example:
medicine, nursing, etc.
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Using the words present in the titles and abstracts of the articles selected for full
reading, a graph was generated using the VOSViewer® software, a tool developed for
bibliographic analysis and capable of generating networks with the selected words [63].

Figure 3 summarizes the searches carried out on the different platforms, presents the
structure of the topics discussed in the articles, and the relationship between them. Each
circle is called a node, which represents a keyword, and whose size indicates the frequency
in titles and abstracts. The connection between the nodes is given by the lines that represent
the co-occurrence between the keywords, which occur simultaneously. The thickness of the
line that connects the nodes indicates the number of times that the keywords occur together
in the same article. Each color represents a thematic cluster, and the cluster elements are
used to identify the main subjects of the studies. We can identify 3 clusters: (i) red—the
main terms referring to the school and subjects are combined; (ii) blue—consolidated by
the main models of AI; and (iii) green—composed of model response elements, such as
classification and feature selection.
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6. Results

The searches in all databases resulted in a total of 19,114 references. After removing
duplicates, there were 13,847 articles to be screened by title and abstract (Table 4). Subse-
quently, a total of 182 studies were identified for full reading and 70 articles fulfilled the
inclusion criteria (for a list of articles included, see Table A1).

The following paragraphs summarize the main findings of this study: (i) number
of publications; (ii) countries with the most data analyzed; (iii) the origin of the data;
(iv) education level; (v) goals of articles; (vi) most common methods; and (vii) resource
used for data analysis.

The interest in the subject has increased over the years (Figure 4). In 2000, the number
of publications did not exceed 100. After 10 years, the number of papers increased to 265,
and from 2020 onwards, an increase in studies that evaluate the educational situation as AI
models have become evident.
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Table 4. Results of bibliographic search.

Rounds Descriptions Eric IEEE Scopus SD WoS

Round 1 School Levels 890 152 911 116 416
Academic achievement 803 148 1288 170 824

Education 651 555 7396 1166 3628

Total 2344 855 9595 1452 4868

Initial data 19,114

Round 2 After duplicate records removed 13,847

Round 3 Scanning the title and abstract 182

Round 4 Select articles after reading the full text 70
Note: Education Resources Information Center (Eric), Institute of Electrical and Electronics Engineers (IEEE),
Science Direct (SD) and, Web of Science (WoS).
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We observed that the year with the highest productivity in the last years of the studied
period (2000–2021) was 2020, with 27 studies (Figure 5). We found that there has been an
increase in interest in the evaluation of basic education in recent years, with at least one AI
model considered in the analysis. Although it was not one of our objectives, there was a
noticeable increase in interest in the evaluation of higher education and MOOC courses
during this study. We understand that this finding may be related to several factors, includ-
ing economic issues, as they are non-mandatory and usually not free educational levels.
Identifying whether the student has low performance is critical as academic achievement is
a proxy for dropout, which is mostly observed in these teaching modalities.

The origin of the data used was one of the conditions observed in this study. The
majority of the articles used previously known data (e.g., data that was available in reposi-
tories or published in reference articles in the field of Machine Learning [64]. Those works,
in general, focused on strict model comparison; thus, the use of popular data was common,
as the primary goal was to validate the performance of the models. Figure 6 depicts the
number of publications based on the origin of the datasets analyzed by the articles. Portugal
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had the highest number of articles (14), followed by Turkey (12), and Brazil (5). Another
distinguishing feature was that they frequently used data from surveys such as PISA and
TIMSS, with the goal of predicting educational insights.
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Because each country follows its own classifications between the first and final grades
of elementary school, and because some models include data from more than one school, it
was frequently difficult to determine which school level the data were addressed at. The
two levels could overlap in the same research during one year of this educational cycle, and
both school levels were categorized as elementary schools with respect to the other works.
The level was maintained because high school was better inside the articles themselves.
Figure 7 reveals that elementary school data had the highest weight, followed by high
school data, with only two researches using data from both educational cycles.
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After classifying the objectives of the included articles, we found two alternatives
with the general scope of the studies: (i) Model Comparison (N = 34)—in these studies
the core was based on the comparison of models, which were evaluated according with
the main performance metrics: Root-mean-square deviation, Determination Coefficient,
accuracy, and others. Thus, the authors prioritized the performance of the models and not
the educational results; (ii) Education Performance Forecast (N = 36), with a greater chance
of mentioning the use of results found during practical actions (Figure 8).
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When it comes to the methodologies used in the studies, classificatory models came
on top, followed by Deep Learning methods, notably neural networks. Regression models
were the third most popular type of model, while clustering was a less prevalent sort
of approach with K-Nearest Neighbors being the most common. Several models were
categorized as “others” since they occurred less often and were not part of the approach
groupings (Figure 9).
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Considering the location where the analyzes were performed, we found that R (N = 20)
was the preferred analysis platform, followed by Weka and Python. In the other category,
we found the following types of software: SPSS, Matlab, SAS, and Statistica. For 20% of the
included articles (N = 14), it was not possible to identify the resource where the analyzes
were performed (Figure 10).

World 2023, 4, FOR PEER REVIEW 14 
 

 
Figure 9. Types of methods used by the included articles in predicting academic performance. 

Considering the location where the analyzes were performed, we found that R (N = 
20) was the preferred analysis platform, followed by Weka and Python. In the other 
category, we found the following types of software: SPSS, Matlab, SAS, and Statistica. For 
20% of the included articles (N = 14), it was not possible to identify the resource where the 
analyzes were performed (Figure 10). 

 
Figure 10. The number of articles considering the analysis platform, software, and programming 
environment. 

The evaluation of the accuracy and precision of IA model performance in various 
studies� major goals is to pinpoint the model that performs best. As a result, education 
ends up serving as nothing more than a source of data for computer experiments. 
Although such studies may not have been aimed specifically at educators, school workers, 

Figure 10. The number of articles considering the analysis platform, software, and programming
environment.



World 2023, 4 301

The evaluation of the accuracy and precision of IA model performance in various
studies’ major goals is to pinpoint the model that performs best. As a result, education ends
up serving as nothing more than a source of data for computer experiments. Although such
studies may not have been aimed specifically at educators, school workers, and decision-
makers, their results can still be useful in improving our understanding of education, albeit
as a secondary objective of these works. However, due to the technical nature of this type
of research, the implementation of practical actions may be more challenging.

7. Discussion

Despite the large number of articles identified by the initial searches and the growing
popularity of the subject, no more than 70 articles were included in this work. Analyzing the
connection of key terms (Figure 3), we obtained some insights for identifying characteristics
of the reviewed articles, including (i) the main methodologies used, (ii) the level of schooling
analyzed, and (iii) how terms related to school, subject, and assessment connect to AI
models and their response elements, such as classification, prediction, and feature selection.
However, only during the reading of the articles, it became evident some of the patterns
and the best way to summarize and classify the analysis of the included studies.

The recent increase in the number of publications can be attributed to a growing need
to adapt to new analysis methodologies and cope with the larger volume of data available.
Despite the rising trajectory in the number of publications, the process is not homogeneous
since no works were discovered with educational data for any country in Oceania, in
addition to a high restriction for developing countries in Asia, Africa, and LA.

The works mostly use data referring to the elementary school level. The availability of
data for this educational level may be higher, as many countries measure literacy levels,
for example. Some authors reinforce that greater investment in initial education brings
greater public income [65,66], thus, this may be another reason for the higher incidence of
studies at this educational level. On the other hand, it is estimated that there is a series of
data that are subject to analysis and subsidy for monitoring the high school, since there
are many tests for university admission, which could serve as indicators or as a proxy of
educational quality, and therefore the evaluation of these data can add value to future
educational perspectives.

With regards to the application of AI methodology in education, one reason for
the lower popularity of the methods is the complexity of the calculations, dynamics of
the algorithms, implementation of the analyses, and interpretation of the results. These
conditions make them be called “black boxes” [67,68]. Although the process for detecting
patterns used in forecasts and classifications stands out due to its performance, it does not
make the models transparent and easy to understand. Without a detailed and cautious
analysis, which requires a certain degree of technical knowledge, it is not possible to readily
understand the results without understanding the preceding structure of the model [67,68].

The difficulty in understanding all stages of the process can inhibit the use of such
methods for formulating public policies and decision-making, but it is a condition that must
be overcome. Currently, several resources can be used to increase the understanding of
these models. The standard approach is based on a comparison of performance metrics, in
which it is possible to identify the best-performing performance and aid the use of graphs
to facilitate the understanding of the analysis.

Recently, techniques such as Local Interpretable Model-Agnostic Explanations (LIME)
and SHapley Additive exPlanations (SHAP) are model interpretation techniques that seek
to simplify the interpretation of model results. In LIME, the central objective is to identify
the most important features that the original model uses to make its prediction, and for
this, a simple linear model is performed based on only one prediction at a time. SHAP is
a method that computes the contribution of each variable in the model, which is based
on game theory to assign a value to each feature [69–72]. Both methods aim to identify
the relevance of independent variables in the final prediction of the initial models. Thus,
the best approach to promoting the use of techniques in educational analysis that aim
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at the design of public policies is to consider the use of these techniques together with
performance metrics and with the study of the importance of variables. This approach
increases the ability to interpret such models [69–71,73].

The perspective of AI models enables analyses that were previously not feasible in
terms of techniques and computational processing. Through this approach, it is possible
to process and analyze large amounts of data, allowing the detection of patterns that
were previously unidentifiable through traditional statistical methods. Therefore, it is
argued that student performance can be better understood thanks to the potential of these
techniques, which are already used in several economic sectors, resulting not only in
process improvements but also in cost reduction and more efficient allocation of resources.

Several studies were based on surveys collected throughout the country, in which the
majority mention the educational system and policy concepts, in terms of time, interven-
tions materialize only in the long term (defined as Macro studies; N = 40). On the other
hand, many studies focused on a smaller scale, prioritizing the student, the teacher, and
the schools, and in which the results of interventions could be perceived in the short term
(studies that we define as Micro studies; N = 30).

We understand that the use of AI can help in the educational field from a macro
perspective: AI modeling can increase knowledge about the processes that manifest them-
selves in education at the national, state, and local levels, helping to formulate policies
and allocate resources to characteristics identified as relevant to educational performance;
and from a micro-scale: it would be possible to conduct more specific investigations of
individual students, teachers, and schools. In this context, a greater level of personalization
of actions would be possible, predicting more immediate results since they would not
depend on other governmental spheres. Thus, the analyses can consider the short-term
effects of interventions, evaluating the feasibility of pedagogical strategies that have greater
adherence in each subject and class [74], probability of failure [44,75] and referring students
to an intelligent tutoring system [76,77]. These approaches have already been explored
more frequently, possibly due to the ease of implementing interventions when compared
with issues on a broader scale, such as the elaboration of public policies.

School dynamics had different levels of datasets, whether in the school or the educa-
tional system, it is also relevant to consider the responsibilities of students and effective
teaching techniques, the skills of teachers, and classroom management [78]. When thinking
about countries with lower educational performance, such as those in LA, interventions
must be conducted at the country and school levels, simultaneously, so that the processes
of change can result in faster gain of performance.

The analyzes carried out in the included articles were conducted mostly in free soft-
ware, indicating a trend in the field of analysis that is also observed in other areas of study.
The preferred AI models for analysis within classifications and regression were decision
trees (N = 40), followed by regression models (N = 27), Support Vector Machines (SVMs,
N = 27), and Random Forest (N = 22) some of the main methods of supervised learning.
We found a strong presence in the analysis of neural network models (N = 32), an approach
within the domain of Deep Learning.

These models tend to outperform traditional models in terms of performance, which
generally contribute to more accurate and assertive predictions. Thus, the use of methods
linked to AI can help to detect precise trends in terms of positive or negative correlations
between some key factors and academic performance in schools [79]. Therefore, the
detection of the relevance of these elements can be calculated (e.g., by calculating the
importance of variables), which will help in the selection of characteristics during the
elaboration of public policies or local management actions. The following example situation
is assumed: the government of a state enacts a law in which all schools must have sports
courts; however, the inclusion of complementary activities, which are less costly in financial
terms, have a greater impact on the educational performance, this kind of fact should be
known by managers, stakeholders, and politicians.
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Despite the importance of using AI methods, few studies encourage the application
of the findings into practical actions. Only 31.4% (N = 22) of the revised articles men-
tion the elaboration of public policies, considering the results from studies applying AI
models [75,79–82]. On the other hand, it is also known that it is a great challenge to iden-
tify insights to promote immediate results since data from some surveys take time to be
processed [81].

When it comes to the utilization of massive data sets, Martnez-Abad et al. [35] said
that Data Mining in education approaches is a major tool for finding patterns in Big Data,
which can then be used to transfer knowledge to help the formulation of educational
policy [35]. Artificial Intelligence methods offer the ability to efficiently process large
amounts of complex and heterogeneous data, making them powerful tools to assist in the
elaboration of practical actions in the field of education. By using AI models, it is possible to
identify patterns and trends in student performance, as well as in the education system as
a whole, which can help the development of policies and interventions tailored to specific
needs and challenges.

Finally, the application of more rigorous analyzes can mitigate unfounded discussions,
as cited by Cruz-Jesus et al. [56], the classroom size—defined by the total number of
students in the class, does not influence the school performance, at least not significantly.
Therefore, in times of budget constraints, this finding could help in resource allocation,
shedding some light on classroom size, which is recurrent in the educational field [56].
Costa-Mendes et al. [80] defend the use of accurate and robust predictive models as essential
in the elaboration of public policies, in which they highlight the relevance of data collection
so that there is support for the National Educational System, through the collection of
data from long-term academic achievement. In relation to educational research, Brazil
stands out as there are numerous surveys that are regularly published. They include the
School Census [83], which focuses on school characteristics and is released annually, as
well as the Basic Education Evaluation System [84], which is released every three years and
evaluates school performance. National school assessment systems are used in LA nations
like Argentina, Chile, and others, and they are examined. There is a gap, though, as there
are not many in-depth studies conducted despite the data being available.

An important consideration regarding the use of AI models in education is the quality
of the data. Insufficient or incomplete data, including the presence of null values, can lead
to inaccurate and unreliable patterns. Artificial Intelligence models require large amounts
of high-quality data in order to generate accurate and meaningful insights. However,
given the limited availability of data at the level of individual public schools, it may be
necessary to broaden the scope of analysis to include data from larger geographic areas,
such as municipalities or states. This can help ensure that the data used for AI analysis is
sufficiently robust and representative of the education system as a whole. As an alternative
to the lack of data from governmental and institutional educational surveys, studies can
be based on consolidated surveys such as PISA, TIMSS, Laboratorio Latinoamericano de
Evaluación de la Calidad de la Educación, and others [85]. Since they have a quantity of
data, which can be grouped in several scales considering different aspects of education,
they can be considered as a mined source of data [86], which includes valuable information
for the administration, elaboration, and school management in the micro and macro scale.

Considering the availability of data, the low popularity of the subject is still more
pronounced in LA countries (N = 8): Brazil (N = 5), Mexico (N = 3), and Colombia (N = 1). It
is expected that the trend of increasing work considering data in education and AI models
will continue to grow, in addition to the increase in popularity, and in fact, there has already
been a boom in data generation in recent years. It should be mentioned that the scenario is
different when referring to higher education, where a greater number of studies aimed at
assessing the impact of AI on various aspects of education can be noted [87].

As a result, various indicators are required to assess the state of the educational systems
in developing countries. Enrollment registration stands out as one of the main metrics
in quantitative terms as it is a simple statistic that allows for cross-country comparisons.
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The number of children in an educational system can indicate a variety of benefits for
the country [88], so it is one of the foundations for educational policy research. Although
a school year does not always have the same impact in different countries in terms of
influencing school performance [89] it is an evaluative measure and, in any case, considered
as an indicator of human capital [90].

In addition to PISA, some LA countries participate in studies carried out by Evaluación
de la Calidad de la Educación en América Latina [91] that aim to: (i) provide evidence for
educational policy; and (ii) develop capacities in educational assessment in LA (UNESCO,
2020). Few countries, such as Brazil and Chile, have specific metrics to monitor the
development of the educational system. An increasing concern related to the educational
system can be identified by the diversity of indicators that have been used. Currently,
access to information makes it possible to assess a series of issues that were previously less
explored. Investigations into educational data from these countries are warranted, since
this exercise can provide a new perspective on the main difficulties that are imposed and,
consequently, have an impact on the low rate of school performance. This type of analysis
can help to manage new educational policies aimed at maximizing school performance
and structure.

The number of studies in LA that uses AI resources for educational analysis may be
low due to a lack of familiarity with the methods, but AI methodologies are becoming
more accessible, whether through MOOC courses or platforms like Google Colab, where
complex analyses can be performed remotely. Our searches point to Brazil as a separate
case in this scenario, as some studies are promoting a new direction for the results obtained
via AI [53,75]. Studies from Colombia go in the same direction [92].

Many LA countries lack priority on educational public policy. Without a national
development plan or one on the way to being finalized, several countries do not have
strategies to increase school performance. The huge expansion in long-distance education,
which accompanies the technological advances of the last decades, is given by the insertion
of IoT tools, augmented virtual reality, and different learning platforms. There is also an
increase in the use of personal computers and cell phones in activities related to education
that are not necessarily linked to the modality. Such conditions cross geographical barriers
and are certainly present in several countries in LA, so we have a range of datasets to
be explored.

Finally, we mention the abrupt necessity to react to the diversities linked with the
COVID-19 pandemic, as most schools in LA had to be partially or completely closed,
leaving more than 110 million pupils out of school [93]. At this time, inequalities and
access to resources have become even more visible, increasing educational challenges in
LA, where rapid efforts will be needed to compensate for the losses that happened during
the COVID-19 pandemic.

Each day that passes away from face-to-face teaching, the possibility of returning
to school becomes reduced. According to UNESCO, around 24 million students, from
pre-primary to university levels, may have not returned to school in 2020 after the pan-
demic [93]. Although the advancements of recent years are clear, education has changed
distinctively [94]. Post-pandemic efforts will be vast, and any resources saved will be sub-
stantial in the future. With the availability of existing data before the pandemic, it would
be feasible to aggregate multiple investigations into the educational system to evaluate the
best techniques. Knowledge about the impact of the pandemic has become crucial for the
creation of policies that support the restart of educational growth.

8. Future Perspectives

We highlight a few studies that have taken advantage of AI methodologies to compre-
hend the educational system at geographic scales that allow the design of public policies.
This can be reversed. Therefore, it is proposed to utilize techniques that can enhance the
interpretability of AI models, such as LIME, SHAP, and others, to mitigate the issue of black
boxes in AI. This can be achieved through longitudinal data analysis, which allows for
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assessing the consistency of predictors and identifying changes resulting from disruptive
events, such as the COVID-19 pandemic, for example. Therefore, in future studies, we will
focus on analyzing longitudinal data to better understand the patterns in education.

However, the availability of data alone is not enough to generate improvements in
education, it is necessary to explore the information so that new knowledge is produced,
and insights can be applied in the real world. We emphasize the importance of developing
public policies and management actions based on information from analyses carried out
with methodologies capable of dealing with a large set of data. This situation has already
been observed in several areas of knowledge.

The maximization of investments, better resource allocation, and process optimization
have all been noted in the areas where educational performance has already been predicted
using computational techniques of machine learning and data mining. It might represent
deliberate macro- or micro-management intervention or even educational intervention. By
concentrating on areas that are important and linked to students’ academic performance,
supplying a general interpretation of the data in the context of the classroom can accelerate
educational progress.

Future research should investigate a variety of methodologies, the use of traditional
survey data as well as data derived from the recent explosion of educational technologies
for policy-making. The use of new analysis methodologies should be used to extract
pertinent and more individualized information about education. This will open up the
possibility for practical actions through subsidies for educational projects that are not
linked to partisan plans and exclusively political purposes but rather are based on public
demands and the best allocation of resources, allowing educational performance to be
maintained and improved over time. Artificial intelligence can promote changes at all
levels of education, not being restricted to teaching, but also to school management and
administration processes. Thus, at the level of the educational system, there is the possibility
of creating more efficient and assertive educational policies.

The use of research, reports, and other documents produced by bodies such as the
OECD, The World Bank, Unesco, Unicef, and others are an alternative to performing studies
to evaluate education in those countries with limited data. In addition, it is possible to
evaluate the data longitudinally and offer a more precise diagnosis of the educational
system. Thus, filling in gaps is encouraged by carrying out studies with the already
existing range of data, but little explored. The identification of insights can contribute to the
development of education in these countries, favoring the accumulation of human capital
and sustained economic growth.

The educational policy agenda must be aggressively prioritized as one of the cor-
nerstones of economic development. Actions based on facts will be vital for economic
revival, especially in LA countries. The problems imposed by the COVID-19 pandemic
further revealed the political and economic vulnerabilities of the countries in this region
and the discrepancy between them and the industrialized nations. It is envisaged that the
benefits coming from AI technologies can generate fresh perceptions of this circumstance,
contributing to more forceful and targeted decision-making.
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Using Data Mining to Predict K-12 Students’
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Related to Energy

The Journal of Research in
Science Teaching

2011 Alsultanny, Y. Selecting a suitable method of data mining for
successful forecasting

The Journal of Targeting,
Measurement, and Analysis

for Marketing

2012 Şen, B., Uçar, E., & Delen, D. Predicting and analyzing secondary education
placement-test scores: A data mining approach Expert Systems with Applications

2014 Osmanbegović, E., Agić, H.,
& Suljić, M.
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