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Abstract: Land use and land cover (LULC) mapping initiatives are essential to support decision
making related to the implementation of different policies. There is a need for timely and accurate
LULC maps. However, building them is challenging. LULC changes affect natural areas and local
biodiversity. When they cause landscape fragmentation, the mapping and monitoring of changes
are affected. Due to this situation, improving the efforts for LULC mapping and monitoring in
fragmented biomes and ecosystems is crucial, and the adequate separability of classes is a key factor
in this process. We believe that combining multidimensional Earth observation (EO) data cubes and
spectral vegetation indices (VIs) derived from the red edge, near-infrared, and shortwave infrared
bands provided by the Sentinel-2/MultiSpectral Instrument (S2/MSI) mission reduces uncertainties
in area estimation, leading toward more automated mappings. Here, we present a low-cost semi-
automated classification scheme created to identify croplands, pasturelands, natural grasslands, and
shrublands from EO data cubes and the Surface Reflectance to Vegetation Indexes (sr2vgi) tool to
automate spectral index calculation, with both produced in the scope of the Brazil Data Cube (BDC)
project. We used this combination of data and tools to improve LULC mapping in the Brazilian
Cerrado biome during the 2018–2019 crop season. The overall accuracy (OA) of our results is 88%,
indicating the potential of the proposed approach to provide timely and accurate LULC mapping
from the detection of different vegetation patterns in time series.

Keywords: LULC mapping; machine learning; python; semi-automated mapping; time series

1. Introduction

Brazil is a relevant global producer and exporter of commodities such as soybeans,
cotton, coffee, and maize. Within Brazil, the Cerrado biome is a prominent producer region
at the center of the country’s recent agricultural boom [1]. This biome has experienced
cropland expansion in recent decades and, in some cases, over natural vegetation, inducing
illegal deforestation. The MATOPIBA, a region in the Cerrado biome which includes parts
of the states of Maranhão, Tocantins, Piauí, and Bahia, is at the forefront of agricultural
expansion, accounting for 25% of the soybean produced in the biome [2]. The expansion of
monocultures has been affecting natural vegetation areas and threatening local biodiversity.
Given this, accurate land use and land cover (LULC) information of this agricultural frontier
is needed to support decision making regarding agriculture dynamics, climate change,
deforestation, and food security [2].

Information of this magnitude can be obtained via maps. Worldwide, highly accurate
LULC classification has strategic value for reducing uncertainties and supporting the im-
plementation of policies [3–5]. This context reinforces the need for detailed mappings [6].
Free and open access data, analysis-ready data (ARD), and high-performance computing
created a new era for LULC analysis [7]. However, accurate LULC classification remains a
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challenge influenced by many factors [8]. Major factors are related to the use of time series
for LULC classification at the regional or global level [9], algorithms and input data [8], re-
quirements, user-defined parameters, and computational costs [10], Earth observation (EO)
platforms and datasets, the spatial-spectral-temporal characteristics of satellite data, and
approaches to change detection [11], web-based workflows [12], accurate spatiotemporal
event detection [13], and estimation of the general and species-specific phenological stages
[14]. The state of the art for extracting land surface information from remote sensing-based
techniques indicates that LULC classifications are migrating from exclusively human-based
to semi-automated approaches [14,15]. In this scenario, the use of multidimensional ARD
and spectral vegetation indices (VIs) from medium-resolution EO images for detecting
subtle differences in vegetation types and improving LULC classification can be automated.
However, sample collection, which configures the semi-automated nature of many LULC
classification approaches, remains a task that is difficult to automate.

In Brazil, improving the efforts for LULC mapping and monitoring in this region
is crucial, and the adequate separability of classes is a key factor in this process. Some
initiatives engaged in LULC classification in the Brazilian Cerrado and other biomes face
indiscernible patterns in crop phenology classes as a limiting factor, which shows the value
of accurate and precise separability of classes when detecting subtle differences in vege-
tation. The TerraClass [16], for example, is developed by the Brazilian National Institute
for Space Research (INPE) and the Brazilian Agriculture Research Corporation (Embrapa).
It complements the Brazilian Amazon Deforestation Monitoring Program (PRODES) by
adding information about the previous LULC spatial distribution and regional statistics
in deforested areas in the Brazilian Legal Amazon and Cerrado biomes [16]. The project
proposes a mapping project for the whole country. For this, it has been trying to adopt
automated mapping processes. Therefore, there is a need for timely and accurate crop
mapping initiatives, which require automation in learning systems and applications.

The launch of the Sentinel-2A (2015) and Sentinel-2B (2017) satellites by the European
Space Agency (ESA) provided new possibilities for this purpose [17]. Sentinel-2 carries the
MultiSpectral Instrument (MSI), a sensor able to record radiance in 13 spectral bands with
spatial resolutions varying between 10 m and 60 m, from the visible to shortwave infrared
(SWIR) portions of the electromagnetic spectrum [18]. Sentinel’s MSI (S2/MSI) sensor has
three bands in the red edge region which are useful for vegetation discrimination and LULC
mapping [15]. This is due to its sensitivity to chlorophyll and subtle variations among
different crops and phenological states [19]. This characteristic is useful for deriving VIs
and metrics to evaluate vegetation [20]. Considering open science and data-sharing policies,
S2/MSI has strategic value as a cost-effective analytical instrument of global cooperation for
elaborating precise and timely map pings [7]. However, managing and taking advantage
of the large collection available is challenging [21]. Likewise, cloud or shadow interference
and geometric and atmospheric noise hinder analysis [22]. An alternative to overcome this
limitation is modeling images as data cubes and uniform spatiotemporal tessellation of EO
data with common temporal and spatial reference systems determined for a specific region
over a defined time interval, which allows efficient storage and access in ARD arrangements
[23]. This configuration enables the production of timely and accurate LULC maps. The
Brazil Data Cube (BDC) project [24], also developed by the INPE, creates multidimensional
data cubes from medium-resolution satellite imagery from the satellite missions Landsat,
CBERS, and Sentinel for Brazil.

Worldwide, different initiatives have been using ARD, which greatly simplifies large-
area analyses to improve the level of detail of LULC classifications. For environmental
applications, in Australia, Landsat and S2/MSI data cubes are being used to generate
burned area and severity maps, providing information about change characterization [25].
In Europe, they provide information about protected areas [26]. In Canada, detailed infor-
mation on the land cover dynamics and forest developments following disturbance events
support science-based policies, forest inventories, and forest management programs [27].
In South America, they allow monitoring of deforestation at sub-annual scales [28]. For
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croplands, a precise and accurate Landsat 30 m-derived cropland product was developed
for Australia and China [25]. In the Cerrado, phenological shifts and interannual cropping
practice changes were identified using time series [29]. The potential of this is advanta-
geous for the implementation of public policies, especially those related to food security,
conservation of natural landscapes, and agricultural prices.

Within MATOPIBA, the Extremo Oeste Baiano is a mesoregion of the Bahia state that can
be more efficiently analyzed by using data cubes [30]. Therefore, the goal of this study was
to show how to use S2/MSI-derived data cubes and VIs to detect different vegetation types
in the Extremo Oeste Baiano mesoregion. Our hypothesis is that we can identify different
vegetation classes and improve LULC mapping by exploring the electromagnetic spectrum
through a semi-automated approach that uses data cubes and pattern recognition to detect
subtle differences in vegetation. This permits the automation of a workflow to optimize
LULC mapping approaches. In the case of this study, our approach made possible the
automation of many steps of LULC classification (ARD access, VIs calculation, and accuracy
assessment), except for sample collection, which configures the semi-automated nature
of this LULC classification approach. We believe our approach eases the identification of
LULC or, more specifically, vegetation. The success of our approach is mainly due to two
things: the use of machine learning and the automation of the processing of large amounts
of satellite imagery, which is performed during data cube building [24]. Before the use of
data cubes, satellite images were processed individually to achieve a correct interpretation
of the spatial and spectral characteristics of each image, which was both time-consuming
and computer-intensive. This constrained analysis to specific regions in space and time.
However, we still rely on using training samples taken by specialists in remote sensing,
and for this reason, our approach is not fully automated. To perform the analysis, we
used an S2/MSI data cube developed by the BDC project, which was accessed via the
SpatioTemporal Asset Catalog [31], and five VIs derived from combinations including
the red edge, near-infrared (NIR), and SWIR spectral bands, which were correlated with
complementary constituents of the plants.

2. Materials and Methods
2.1. Study Area

A case study was conducted in an area located in the leading crop producer and
prominent exporter zone of the MATOPIBA: the Extremo Oeste Baiano mesoregion in the
state of Bahia. This study area corresponds to an S2/MSI tile of a BDC grid (Figure 1).

This mesoregion has a heterogeneous landscape resulting from a modern and active
pioneer frontier shaped by the abrupt expansion of distinct summer crops (corn, cotton, and
mainly soybean) at the expense of native vegetation [1] and varying natural conditions [32].
Coffee, essentially cultivated in central pivots, is the main perennial crop produced in
the region, albeit in a smaller area than summer agricultural crops [33]. Aside from
that, the landscape covers other crops and a natural mosaic of vegetation that can be
divided into forestlands (ciliary, dry forests, gallery, and Cerradão), shrublands and savanna
(Cerrado sensu stricto, palm, park savanna, and vereda), grasslands (campo rupestre, campo
limpo, and campo sujo, notably), and pasturelands [34]. The climate type in the site is Aw
(tropical savanna marked by dry winters) [35], with an average annual temperature of 24
°C and average annual precipitation of 1145 mm [36]. The main local rainfed crops are
soybean, corn, and cotton. In areas with irrigated systems, farmers rotate soybean with
cotton and, occasionally, corn during the second growing seasons [36]. In the west, the
study area borders the Goiás and Tocantins states, where the landscape combines inner
ecosystems and subtypes of the abovementioned pasturelands, shrublands and savanna,
and grasslands [37]. This scenario characterizes this region as suitable to analyze the
relevance of S2/MSI bands for detecting subtle changes in phenologies. Then, four broad
LULC classes were considered in this study: Croplands, Shrublands, Natural Grasslands,
and Pasturelands.
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Figure 1. Location of the study area from the perspective of (a) South America, Brazil, Cerrado biome,
and Bahia state and (b) landscape composition, with croplands, pasturelands, natural grasslands,
and shrublands.

2.2. Method

Our methodological procedures (Figure 2) included satellite data accessing, sample
filtering, temporal analysis, VIs calculation, mapping, and accuracy evaluation.

Figure 2. Data workflow to generate the LULC classification from S2/MSI data cubes and LULC
samples.

2.3. Satellite Data and Classification Approach

The data cube used (S2/MSI) is composed of VIs with a spatial resolution of 10 m
projected and clipped to a previously defined reference grid [24]. It covers part of the 23LLF,
23LMF, 23LLG, and 23LMG tiles of the Military Grid Reference System (MGRS) used by the
ESA, and it was formed by monthly composites corresponding to the 2018–2019 crop season
(from 1 September 2018 to 1 August 2019). We excluded the period between 2 August
2019 and 31 August 2019 to reduce dimensionality, as it represents a transition to the next
crop season or agricultural year in the region. During this period, the harvest process was
already concluded, and the sanitary emptiness (Vazio Sanitário, in Portuguese) is in effect
[38]. The selected VIs correlated with the vegetation characteristics, being measures of the
chlorophyll content and vegetation health [39]. They were selected based on tests with
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more than 80 VIs made available in the Surface Reflectance to Vegetation Indexes (sr2vgi)
Python package [40]. Each test analyzed their ability to identify land surface characteristics
and assess the heterogeneous and continuous nature of the landscape composition and
cover type-specific LULC change processes. VIs formulated with combinations including
red edge bands can reduce saturation compared with those derived from red ones [19].
Previous research has successfully used most of these VIs to map croplands [17,41] and
natural vegetation [37,42] in semi-automated approaches.

To explore this potential, we used five VIs (Table 1) formulated from a combination
among the red edge, NIR, and SWIR spectral bands. These spectral bands are corre-
lated with the chlorophyll and biomass conditions and permit more accurate detection
of the temporal behavior of vegetation [20]. The VIs used to detect subtle differences in
their inter-relation were the Normalized Multi-Band Drought Index (NMDI) [43], Nor-
malized Difference Vegetation Index Red Edge (NDVIre) [44], Red Edge Vegetation Index
(RERVI) [45], Core Red Edge Triangular Vegetation Index (RTVIcore) [46], and Vegetation
Index 700 (VI700) [47]. The NMDI assesses the effect of drought on vegetation [43] and
estimates the vegetation moisture and soil moisture content [48]. NDVIre is a red edge-
based VI that has the potential to identify and enhance the characterization of crop [49]
and bare land [50] patterns. The RERVI correlates with the nitrogen status [51] and canopy
chlorophyll content [52]. The RTVIcore has linear relationships with the chlorophyll content
and leaf biomass, with reduced saturation in high-biomass areas [53]. The VI700 assesses
the vegetation status and differentiates crops from other vegetation types [54].

Table 1. VIs that comprised the data cube. S2/MSI spectral bands: b3 (green), b4 (red), b5 (red edge 1),
b8 (NIR), b8a (NIR narrow), b11 (SWIR 1), and b12 (SWIR 2).

VI Formula with Sentinel-2 Bands

NMDI (b8a − (b11 − b12))/(b8a + (b11 − b12))
NDVIre b8 − b5/b8 + b5
RERVI b8/b5

RTVIcore 100 ∗ (b8a − b5)− 10 ∗ (b8a − b3)
VI700 (b5 − b4)/(b5 + b4)

These VIs were automatically calculated by our tool, sr2vgi, in the processing chain
step of the classification scheme represented in Figure 2. The automatic calculation of
complementary VIs allows the classifier algorithm to detect subtle variations, and it is
useful for improving classifications [41]. To train the classifier, we used a dataset of 360
samples, including the following LULC classes: (1) Croplands (220 samples), (2) Natural
Grasslands (9 samples), (3) Pasturelands (90 samples), and (4) Shrublands (41 samples).
These samples were previously taken by experts on remote sensing via visual inspection of
S2/MSI images, time series analysis from S2/MSI data cubes, and the Temporal Vegetation
Analysis System (SATVeg), a free web-based tool designed to provide instantaneous access
to MODIS VIs time series in South America [55]. To the best of our knowledge, there are not
statistics for all LULC classes assessed. Therefore, we did not follow a methodology that
considered the area proportion of each class or stratified random sampling. While the area
of Croplands is prominent in the region, that of Natural Grasslands is small. Consequently,
the total samples for each one was uneven. Collecting samples for landscape analysis,
represented in Figure 2, is the only non-automated step of our LULC classification scheme
and is what defines its supervised (semi-automated) nature.

We used the random forest (RF) classification algorithm [56], available in the scikit-learn
Python package [57]. RF is an ensemble classifier widely used for LULC classification using
remote sensing data [9]. It constructs a set of decision trees (DTs) to make a prediction
using a randomly selected subset of training samples and variables (Nvar). When the forest
grows to a user-defined number of trees (Ntree), the RF creates trees with a high variance
but low bias. The classification results from the average class assignment probabilities
calculated across all trees. The RF evaluates unlabeled data inputs against all DT created
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in the ensemble, and each tree votes to define the class membership. The one with the
most votes is selected [58]. Here, we used 500 trees to perform the classification. We also
used stratified proportional sampling. The train and test dataset ratio was 70/30; that
is, we had 252 training and 108 testing samples. The configuration of these parameters
was implemented in the classification and assessment step of the scheme represented in
Figure 2.

3. Results
3.1. VIs Temporal Patterns of the Assessed LULC Classes

Among all the VIs used, NDVIre presented the most representative behavior in the
time series analysis extracted from the samples used for each assessed LULC class. This
time series analysis is a relevant step for the RF algorithm in the supervised step to generate
the semi-automated LULC classification. The time series in this VI indicates the differences
and similarities between the patterns of each class (Figure 3), including subtle changes
that permit their differentiation. Croplands and Pasturelands presented distinct temporal
patterns, while Natural Grasslands and Shrublands presented similarities, which indicates
the source of possible confusion for the RF algorithm in the classification process.

Figure 3. Time series derived from samples of the four assessed LULC classes: (a) Croplands,
(b) Pasturelands, (c) Natural Grasslands, and (d) Shrublands in NDVIre, showing the median profile
with the blue line and all values in a blue shadow.

3.2. Croplands and Pasturelands

Despite presenting differences in NDVIre, the time series of Croplands and Pasture-
lands showed similarities in some VIs. The time series analysis of the NMDI, for example,
illustrated this. Even so, it was possible to note subtle differences between both LULC
classes (Figure 4), such as differences in amplitude, the peak of maximum vegetative vigor,
the duration of this peak, and the natural decrease as a consequence of the senescence
of the vegetation and the harvest, in the case of Croplands. This LULC class presented
a peak (between January and February) with higher values in comparison with Pasture-
lands. These differences may have helped the RF algorithm detect differences that permit
their separation.
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Figure 4. Time series derived from the samples of the (a) Croplands and (b) Pasturelands LULC
classes in NMDI, showing the median profile in the blue line and all values in a blue shadow.

3.3. Shrublands and Natural Grasslands

Considering the spectro-temporal profiles automatically extracted from all samples
used for each LULC class, the time series of Natural Grasslands and Shrublands showed
more similarities. The time series of the VI700 showed the potential of VIs to distinguish
these two LULC classes (Figure 5), which can help the RF algorithm to detect differences
that permit their separation among profiles of vegetation. From using this VI, it was
possible to detect differences in amplitude, peak, and duration of the peak, as well as
the natural decrease as a consequence of the senescence of the vegetation. Both LULC
classes presented two peaks: between November and January and between March and
April, interrupted by abrupt minimum values that could be associated with outliers. These
could have been caused by noises produced by clouds during the rainy period. In this case,
outliers represent the discontinuity of VI signals in the time series, an effect derived from
the covering of the land by clouds. In general, the Shrublands presented higher values in
comparison with Natural Grasslands.

Figure 5. Time series derived from the samples of the (a) Shrublands and (b) Natural Grasslands
LULC classes in the VI700, showing the median profile with a blue line and all values in a blue shadow.

3.4. LULC Classification

The semi-automated LULC classification resulting from our data cube-derived ap-
proach emphasizes the heterogeneity of the vegetational component of the mesoregion’s
landscape (Figure 6). Overall, the time series patterns of the VIs provided sufficient informa-
tion for LULC classification. The target classes were distinguished, despite the occurrence
of granular effects and confusion involving Croplands and Pasturelands (western portion)
as well as Shrublands and Natural Grasslands (eastern portion).

The overall accuracy (OA) of the LULC classification was 88%. Most of the errors were
derived from confusion between Croplands and Pasturelands (especially in the western
portion of the study area) as well as between Natural Grasslands and Shrublands (especially
in the eastern portion of the study area). A plausible explanation, aside from the similarities
in time series, is the uneven amount of samples used to train the RF algorithm in the
semi-automated LULC classification approach. To represent the accuracy of individual
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classes, we also evaluated the producer (PA) and user (UA) accuracies of each class. Figure 7
presents the error matrix derived from the LULC classification.

Figure 6. Land use and land cover classification of the assessed study area in the 2018–2019
crop season.

Figure 7. Error matrix derived from comparing the classification and the 30% share of the data used
for validation.



Automation 2023, 4 102

The UA and PA values were as follows: Croplands (UA = 97% and PA = 90%),
Shrublands (UA = 90% and PA = 82%), Natural Grasslands (UA = 25% and PA = 100%),
and Pasturelands (UA = 78% and PA = 86%). To assess and determine the contribution of
each VI for discriminating the four assessed LULC classes, we calculated the Gini index
(Table 2). The analysis of the VIs in each month revealed that, in general, the RERVI, VI700,
and NMDI features were the three most significant ones for the RF algorithm. Months
from the beginning of the interval of observation (from September to November) presented
special relevance to the classification algorithm.

Monthly boxplots of NDVIre (Figure 8), a VI representative of the others, showed the
variability of the samples from each LULC class. Croplands and Pasturelands were the
LULC classes with the higher variability, concentrating the higher presence of outliers.

Figure 8. Boxplot of NDVIre analysis from September 2018 to August 2019. Central marks in green
represent the median. Edges in blue symbolize the 25th and 75th percentiles. Upper and lower lines
in black delimit the most extreme value contained in the limits determined by the sum or difference
between the 75th and 25th percentiles and the difference between the 75th and 25th (or vice versa)
percentiles multiplied by 1.5. Outliers (circles in black) are values outside the limits demarcated
by lines.
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Table 2. Significance of each monthly feature (VI) for the RF classification algorithm measured via
the Gini index.

NDVIre NMDI RERVI RTVIcore VI700

Sep 0.004 0.010 0.045 0.007 0.047
Oct 0.005 0.025 0.036 0.015 0.042
Nov 0.007 0.008 0.081 0.012 0.076
Dec 0.005 0.011 0.019 0.005 0.022
Jan 0.008 0.015 0.011 0.006 0.018
Feb 0.013 0.019 0.009 0.008 0.017
Mar 0.008 0.020 0.014 0.007 0.013
Apr 0.006 0.019 0.019 0.010 0.017
May 0.007 0.008 0.008 0.007 0.008
Jun 0.006 0.007 0.011 0.005 0.008
Jul 0.005 0.018 0.020 0.007 0.012

4. Discussion

Mapping efforts in the Cerrado biome occur on a smaller scale than in the Amazon
biome [32]. Meanwhile, the rhythm of LULC changes in Cerrado is more abrupt [59].
The agricultural development in the MATOPIBA region is an example of this [60]. The
growth in energy production and land use conversion activities also increased greenhouse
gas (GHG) emissions in this region [61]. Given the scarceness of already-converted lands
suited for agriculture, most of the agricultural expansion in MATOPIBA was over native
vegetation [62]. To avoid trade embargoes, Brazil needs to develop policies for increasing
agricultural expansion over already-converted lands to produce deforestation-free supplies
[60,63]. The reversion of this scenario involves, in the initial stage, accurate LULC mapping
to identify and monitor the regions where illegal activity has increased more significantly.
Due to the expanse of the Cerrado biome, encompassing more than two million km², remote
sensing is the only viable way to monitor it. Given this, the development of initiatives
to automate the use of remote sensing-based ARD for the mapping process is important
because it can enhance the generation of accurate near-real-time LULC information.

4.1. Croplands and Pasturelands Time Series Analysis

For the five VIs analyzed, the Croplands LULC class presented incremental growth
in vegetative vigor during the months with rainfall accumulation (from September 2018
to January 2019, where the peak maximum vigor occurred). In the 2018–2019 crop season,
the harvesting procedure started exactly in January 2019. The main crops in the region
were soybean, cotton, and maize. Differences in cropping management and phenological
cycles created less symmetrical VI dynamics when we analyzed all these crops as a wider
class named Croplands (Figures 3 and 4). On the other hand, Pasturelands presented
abrupt growth in vegetative vigor as a response to rainfall that occurred from September
to December. The main difference in comparison with Croplands was the absence of a
maximum vigor peak, which implies a more constant behavior. Both classes presented
greater amplitude in values than the other analyzed LULC classes (Figures 3 and 4), which
was present in the variations in Croplands (Figure 8). A key to discriminating these
classes in the study area occurred after the beginning of the harvest (from February to
April). During this period, Croplands still decreased, given the senescence and harvesting.
Meanwhile, Pasturelands presented less variation due to the higher presence of vegetation
than that in Croplands in this month, when the crop fields had fallow to refill soil fertility
through non-commercial crops. These two classes had spectral similarities that complicated
differentiating LULC classes in the Brazilian Cerrado [64]. The Croplands LULC class
is composed of several crop types, such as soybean, maize, and coffee. This grouping
generates two problems. First, the summer crops have a variant spectro-temporal behavior
because of their cycles, phenology, and response to rainfall. Second, perennial crops, such as
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coffee, vary less, given their phenological cycle and the irrigation (locally, coffee cultivation
occurs mainly in irrigated pivots), making it hard to identify patterns in the VI time series.

4.2. Natural Grasslands and Shrublands Time Series Analysis

The Natural Grasslands and Shrublands time series had a similar pattern. This
was expected, because both are LULC compositions that have a certain degree of
anthropization [32]. However, any differences allow their separation. Shrublands pre-
sented a rapid response to rainfall, achieving high VI values in November 2018. Composed
of campo rupestre, campo limpo, and campo sujo, the Natural Grasslands LULC class presented
a gradual response to rainfall. Both LULC classes presented a vegetative vigor peak in
January 2019 and a drop in February 2019, a month with a short drought. The Natural
Grasslands LULC class decreased more at this moment, being more responsive to the ab-
sence of rainfall. This occurred due to their more shallow rooting [65]. Additionally, given
its composition marked by grasses and forbs, this class is influenced by soil background
effects [66,67].

Another factor that should be considered to analyze the time series of these two LULC
classes is the response to fire. Most of the Cerrado gradient of vegetation is characterized
by an inflammable grassy layer that can ignite in the dry season (from May to Septem-
ber) [68]. In addition, anthropic activities became the major source of fires to suppress
natural vegetation and change the LULC composition [69]. In the Extremo Oeste Baiano
mesoregion, fire management is not applied in Croplands. In turn, Shrublands and Natural
Grasslands have characteristics that contribute to a fire spreading. The lack of an effective
fire management policy in the Cerrado could lead to wildfires in the remaining native
vegetation areas during the late dry seasons caused by the accumulation of dry fuel loads,
especially in areas neighboring crop plantations [70]. This helps to explain the abrupt
decrease in VI values between May and September.

4.3. LULC Mapping

Our approach accurately mapped the Shrublands (UA = 90% and PA = 82%) and
Pasturelands LULC classes (UA = 78% and PA = 86%). Errors were caused by the Cer-
rado heterogeneity due to its biodiversity and phytophysiognomies. Many of them de-
rive from spectral similarities between Croplands, Pasturelands, and Natural Grasslands,
which have similar spectral responses and subtle seasonal variations over the dry and
wet seasons [29,64,71] as well as seasonality-derived issues [32]. The use of a data cube
and VIs supported the detection of a temporal pattern to separate the assessed classes.
However, the different sensitivity levels to the water content under a monthly interval
perspective bring confusion. The errors between Croplands (UA = 97% and PA = 90%)
and Pasturelands (UA = 78% and PA = 86%), for example, were already expected in the
function of already-mentioned issues related to seasonal variations [64]. An important
source of confusion between the four assessed classes is the uneven number of samples in
the reference dataset. The crop mapping performance, for example, depends on previous
information about cropping systems [41,72,73]. Assuming that some crops will have similar
phenological cycles, a representative and balanced sampling strategy is vital for a good
mapping performance [29,74].

Previous tests suggested that the combination between the red, red edge, NIR, and
SWIR spectral bands of S2/MSI effectively detects vegetation types such that the five
selected VIs were formulated with combinations among them. The RERVI and VI700 are
indicators of the sensitivity of the leaf area index, biomass, and nitrogen status. The NMDI
was chosen to improve the detection of sparse and superficial vegetation, as occurred in the
work of Zhang et al. [75]. However, this index also presented inconsistent relationships with
soil and vegetation moisture changes in areas with moderate vegetation coverage [43,75].
The RTVIcore presented the potential for improving the separability between Croplands,
Natural Grasslands, and Pasturelands [17]. Our results showed that the spectral band of
red edge 1 presented superior significance to red edge 2 and 3 because the VIs formulated



Automation 2023, 4 105

with this spectral band presented more importance. An explanation for this is the higher
ratio between the reflectance in NIR and red edge 1 (spectral band 5 of S2/MSI), which is
more significant than the ratio between NIR and other red edge channels as well as between
NIR and SWIR. We expected that these other differences could be more useful to evidence
the differences within the phenologies, such as to detect different crops and gradients of
natural vegetation.

The use of a data cube and VIs also supported the detection of a temporal pattern to
separate the classes. Despite the results, some challenges hinder the best explanation for
the similarities. The first is related to the number of samples. Given this, we are working to
improve the analysis by incorporating more representative samples of each broad class,
detailing the cultivated crops (i.e., soybean, maize, millet, cotton, and coffee) and the
natural vegetation gradient that compounds the Shrublands and Natural Grasslands LULC
classes (i.e., woodlands and grasslands). We expect that this improvement could reduce the
standard deviation of the phenological patterns, a factor that generates confusion between
the classes. The Cerrado has unique inter-annual and seasonal variability, presenting
unique challenges for LULC mapping [76]. Thus, the next step is to deepen the analysis to
detect the phytophysiognomies that compound the broad classes. Following that, we aim to
achieve the next level of hierarchical classification, transforming the data into information
to extract accurate and precise LULC maps of the entire Cerrado biome.

5. Conclusions

This study presents a semi-automated approach that combines human knowledge and
skills for the collection of LULC samples and machine learning for using multidimensional
data cubes and VIs in order to detect the patterns of the LULC classes Croplands, Pasture-
lands, Natural Grasslands, and Shrublands in the Cerrado biome, an intensive agricultural
frontier in Brazil. Considering the heterogeneous and dynamic nature of the study area,
characterized by a vast gradient of vegetation types, the OA of 88% and the UA and PA
values support that our strategy enables exploring the potential of ARD in the optical
spectral region to enhance the dissimilarity between similar vegetation classes, being ap-
propriate for LULC classification at this level of detail (broad level and macro-classes). It
was possible to detect subtle differences in vegetation types and optimize the delineation of
large individual features. The limitations found occurred because of the uneven sampling
and the use of a monthly temporal aggregation to extract LULC information. The collection
of new samples and the processing of different temporal aggregations (composite products)
can overcome this issue.

Moreover, as the need for timely and accurate landscape information requires optimization
in learning systems and applications, the results obtained indicate that the low-cost semi-
automated classification scheme developed is an alternative to automating the crucial steps of
LULC mapping, continuing advances in the science and engineering of automation.
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