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Abstract: This survey deals with the problem of the group motion of spacecraft, which is rapidly
developing and relevant for many applications, in terms of developing the onboard control algorithms
to ensure the fulfillment of a given mission. The paper provides a comprehensive overview of
spacecraft formation flight control. The bibliography is divided into three main sections: the multiple-
input–multiple-output approach, in which the formation is treated as a single entity with multiple
inputs and multiple outputs; the leader–follower formation, in which individual spacecraft controllers
are linked hierarchically; and a virtual structure formation, in which spacecraft are treated as rigid
bodies embedded in a common virtual rigid body. This survey expands a 2004 survey and updates it
with recent results.
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1. Introduction

Satellite formations find many applications in the various fields, including Earth
surveillance, geodesy, astronomy, space exploration, etc. Following [1], the satellite forma-
tion flight (SFF) can be defined as the movement of a group of more than one spacecraft
whose dynamic states are coupled by a common control law (see also [2]). At the same time,
at least one satellite (formation agent) must track the desired state relative to another agent,
and the tracking law must minimally depend on the state of this other agent. For example,
even if specific relative positions are actively maintained, the Global Positioning System
(GPS) satellites form a formation because only the position and speed of an individual
satellite need to be used to correct their orbital motion.

Let us present some examples. The distributed space missions with application to Earth
observation with special emphasis on radar payloads are presented in [3]. Schilling et al. [4]
described the distributed satellite system Telematics Int. Mission (TIM), which is a forma-
tion of nine cooperating small satellites for photogrammetric Earth observation. TIM’s
application scenario focuses on the characterization of ash clouds from volcano eruptions,
providing useful information to plan detour maneuvers for airplanes to avoid damage
to engines. The CloudCT mission [5] uses a formation of 10 nano-satellites to detect
the 3D properties of clouds. CloudCT integrates interdisciplinary synergies from nano-
satellite system engineering, cloud modeling, and tomographic imaging to enable a sensor
network approach to innovative Earth observation. As Freimann et al. [6] mentioned,
nano-satellites offer an affordable way to realize distributed systems for various scientific
and commercial applications in the area of Earth observation and global communica-
tion services. Freimann et al. [6] presented a contact plan design approach that solves the
Medium Access Control (MAC) problem by predicting additive multi-node interference
and scheduling interference-free links based on these predictions.
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The UWE-program aimed for in-orbit demonstrations of key technologies to enable
formations of cooperating distributed spacecraft at the pico-satellite level is presented in [7].
In this program framework, the CubeSat UWE-3 is used for the experiments of evaluation
of real-time attitude determination and control. The spacecraft formation consists of a
group of satellites performing a single mission, which is usually difficult to accomplish
with a single device [8–10]. For example, Bik et al. [9] described a joint project between ESA
and NASA called the Laser Interferometer Space Antenna (LISA), which will become the
first space observatory for gravitational waves. Its main purpose is to detect and observe
gravitational waves from massive black holes and binary galaxies in the frequency range
10−4–10−1 Hz. LISA consists of three identical spacecraft located at a distance of 5× 106

km from each other in the form of an equilateral triangle. LISA tracks the stretching of
space-time caused by gravitational waves by measuring the change in distance between
two formation agents using laser interferometry. Three agents will provide independent
information about the polarization of the gravitational wave. One shoulder is determined
by the distance between the test masses at the ends of each branch of the triangle, which
are covered by satellites so that they are not affected by non-gravitational forces. The
satellites counteract non-gravitational forces using micro-Newtonian thrusters to follow
the trial mass path through what is called drag-free control [11]. Schilling [12] considered
technologies for implementing sensor networks in orbit for joint measurements by small
satellites weighing several kilograms. It is shown that through sensor data fusion and
post-processing, innovative distributed methods of Earth observation can be obtained.
In [12], exemplary nano-satellite missions in the field of formations are also outlined. The
first demonstration of collision avoidance and orbit control for UWE-4 pico-satellites is
presented in Kramer and Schilling [13]. A possible collision with a piece of space debris
was avoided by UWE-4 by use of its orbit control capabilities for an evasive maneuver
in early July 2020. This maneuver increased the miss distance from 822 m to more than
6000 m. The results, presented in [13] demonstrate perspectives for small spacecraft to comply
with regulations on de-orbiting and capabilities for collision avoidance maneuvers. Ref.
Mathavaraj and Padhi [14] used the optimal and adaptive control techniques to develop
the satellite formation flying-high precision guidance.

The mentioned examples are related to the SFF missions and the formation flying
guidance (FFG), which is considered as the generation of the reference trajectories used as
an input for a formation agent’s relative state tracking control law. The examples mentioned
are related to the SFF missions and the formation flying guidance (FFG), which is considered
as the generation of any reference trajectories used as an input for a formation agents’
relative state tracking control law [1]. A detailed and informative review of the results on the
control of spacecraft formations can also be found in the monograph [15], which presents
fundamental problems and approaches related to group flights of spacecraft, provides
information on the dynamics of satellite motion, considers methods of static optimization,
feedback control, and filtration, the nonlinear models of the relative spacecraft motion,
including the rendezvous of satellites, orbital perturbations and methods for their effect
mitigating, as well as the methods for groups of spacecraft control algorithms development.

To implement the given navigation laws by individual agents of the group, control
algorithms are developed—both local control algorithms for each satellite separately, and
algorithms based on the receipt by individual agents of data on the state (e.g., positions
and velocities) of other satellites.

This paper provides a comprehensive overview of spacecraft formation flight control
(SFFC), covering design methods and stability results analysis for these coupled state
control laws. Since the SFFC architecture defines a general approach to the development
of a particular SFFC algorithm, it is reasonable to organize publications according to the
formation architecture. Therefore, following the lines of the 2004 review on the subject [1],
in the present paper, the SFFC literature is divided into three main types: Multiple-Input–
Multiple-Output (MIMO), in which the formation is treated as a single entity with multiple
inputs and multiple outputs; the leader–follower (LF) formation, in which individual
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spacecraft controllers are linked hierarchically; and a virtual framework as the virtual
structure (VS) formation, in which spacecraft are treated as rigid bodies embedded in a
common virtual rigid body, and the master/slave configuration. This survey is aimed
to expand [1] and present modern results of recent years. When picking up papers for
reviewing, the authors have largely been guided by the influence of the papers on other
publications in the field. For example, works [16–18] by the time of the review submission
received 237, 193, 156 citations, respectively, in the database Scopus. In addition, the
selection of material in this work was undoubtedly influenced by the scientific interests of
the authors, who apologize in advance to colleagues whose contributions were outside the
main focus of this review.

The rest of the paper is organized as follows. Section 2 deals with the MIMO formation
architecture. The circle formation is described in Section 3, whilst Section 4 is devoted to
leader–follower architecture. Concluding remarks of Section 5 finalize the paper. In general,
the references inside each Section are given in chronological order.

2. Multiple-Input–Multiple-Output Formation Architecture

Vassar and Sherwoodt [18] developed a feedback controller to maintain a movement
of a swarm of satellites using the calculated optimal trajectory. Chemical thrusters are used
for the slave satellite as the actuators. The situation is considered when two satellites fly at
a distance of 700 m from the geophysical orbit. The results of [18] show that movement in
the swarm can be maintained at a distance of 21 m of satellites from each other.

Ulybyshev [19] studied keeping the satellite formation in near-circular orbits. The
tangential maneuvers of a group of satellites are determined by continuous relative motion
equations. During the entire movement, the satellites move relative to each other, and these
movements are presented in the form of a graph. In [19], (2N − 1) linearized equations,
where N is the total number of satellites are used. A linear-quadratic controller has
been developed to control satellite formation. An analytical solution of linear-quadratic
equations for the formation of two satellites is found. The simulation results for low Earth
orbits (LEO) are presented where atmospheric drag is taken into account.

Inalhan et al. [20] focused on the planning of missions that provide the necessary
conditions for the initialization of a periodic formation of a satellite constellation that
provides a good distributed image of the Earth, for example, using synthetic aperture radar.
These passive apertures were previously designed using the closed form solution provided
by the Hill equations (see [21,22]), also known as the Clohessy–Wiltshire equations [23],
which are linearized with respect to the near-circular reference orbit. A study was carried
out to develop apertures that are insensitive to differential noise J2 (the second zonal
harmonic J2 characterizes the polar compression). Based on nonlinear dynamic models
(see [16]), Inalhan et al. [20] used the results by [24–26] on the derivation and solution
of homogeneous equations of relative motion for several spacecraft. They present an
initialization procedure for a large constellation of satellites with an eccentric reference
orbit. The main result is derived from homogeneous solutions of the linearized relative
equations of satellite motion. These solutions are used to find necessary conditions on
the initial states for generations of T-periodic solutions so that the satellites return to
their initial relative states at the end of each orbit. This periodicity condition and the
resulting initialization procedure, originally defined (in compact form) at the perigee of the
reference orbit, are generalized to include initialization at any point relative to the reference
orbit. In particular, in [20], an algorithm is presented that minimizes the fuel consumption
associated with the initialization of the satellite state to values that are consistent with
periodic relative motion. Periodicity conditions and homogeneous solutions can also be
used to estimate relative motion errors and approximate costs of fuel associated with
neglect of the reference orbit eccentricity. The simulation results are presented, showing
that ignoring the eccentricity leads to an error close to the error from disturbances, caused
by differential accelerations of gravity.
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The movement of a satellite formation relative to an eccentric reference orbit is dis-
cussed in [27], where optimal fuel/time ratio algorithms for low-level maintenance of
station movement in the presence of interference are given. The algorithm by Tillerson
and How [27] is optimized by applying the linear programming method with respect to
a time-varying dynamics model linearized with respect to an eccentric reference orbit.
Numerous results of nonlinear system simulation are given, demonstrating the efficiency
of this general approach to control. In [27], it is shown that even in the presence of differ-
ential interference J2, the proposed approach to control the movement of the formation
is very efficient, which requires fuel consumption (expressed in terms of the change in
velocity during the orbit) ∆V ∈ [5, 15] mm/s/orbit, depending on the scenario. Simulations
showed that Lawden’s equations [24] are needed to determine the desired state for periodic
relative motion, but the Hill equations are sufficient for posing the linear programming
control problem. This result is important because the use of the time-independent Hill
equations [22] significantly reduces the computational costs required to solve a linear
programming problem.

Two nonlinear feedback control laws for recovering the desired J2-invariant relative
orbit are presented in [16]. According to [28], there are two necessary conditions for two
adjacent orbits to be invariant to the perturbation of the gravitational harmonic J2 in
the sense that both orbits will demonstrate the same secular angular drift velocities. In
particular, these conditions ensure that the velocities of the ascending node Ω̇ and the mean
values of the latitude θ̇M = Ṁ + ω̇, where M is the mean anomaly and ω is the argument
of perigee, which are equal to each other. Since it is convenient to describe the relative
orbit of the follower (“daughter”) satellite relative to the lead (“parent”) satellite in terms
of the mean differences of the orbital elements and since the conditions for the relative
invariance of J2 relative to the orbit are expressed in terms of the mean orbit elements, the
first control law returns errors in terms of mean orbit elements. Using the designations of
the orbital elements with the index 1 for the lead satellite, the differences in the momenta
of the J2-invariant relative orbit elements of the slave satellite are written in [16]:

δη = −η1

4
tan i1δ1 (1)

δa = 2Da1δη, (2)

D =
J2

4a2
1η5

1
(4 + 3η1)(1 + 5 cos2 i1), (3)

where a is the semi-major axis of the orbit, i is the inclination, the eccentricity index η is
defined as η =

√
1− e2, e is the eccentricity. After choosing a certain middle element of the

difference δa, δe or δi, the remaining two differences of the momentum elements are given
by two constraints in the Equations (1) and (2). Since only the pulse elements a, e and i
affect the secular drift caused by J2, the mean angles M, ω and Ω can be chosen arbitrarily.
To find the corresponding vectors of inertial position and velocity, the elements of the mean
orbit are first translated into the corresponding oscillating elements of the orbit using the
theory of the artificial Brouwer satellite [29]. Since the relative orbit is described in terms of
the relative differences in the mean orbit elements when establishing J2-invariant relative
orbits, Schaub et al. [16] constructed the feedback law in terms of the mean orbit elements
instead of the more traditional feedback approach on position and velocity vector errors.
Not all orbital position errors are the same. The ascending node error should be controlled
at a different position in orbit than the pitch error. Gaussian variational equations of motion
(see [30]) provide a convenient set of equations relating the influence of the control vector
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of accelerations u = [ ur uθ uh ]T with time derivatives of the osculating element of
the orbit:

d a
d t

=
2a2

h

(
e sin f ur +

p
r

uθ

)
, (4)

d e
d t

=
1
h
(

p sin f ur +
(
(p + r) cos f + re

)
uθ

)
, (5)

d i
d t

=
r cos θ

h
uh, (6)

d Ω
d t

=
r sin θ

h sin i
uh, (7)

d ω

d t
=

1
he
(
− p cos f ur + (p + r) sin f uθ

)
− r sin θ cos i

h sin i
uh, (8)

d M
d t

= n +
η

he
(
(p cos f − 2re)ur − (p + r) sin f ue

)
, (9)

where ur is directed radially away from the Earth, uh is directed along the orbital angular
momentum vector, uθ is orthogonal to the previous directions. Parameter f is the true
anomaly, r stands for the orbital radius, p = a

(
1− e2) denotes the focal parameter (semilatus

rectum), latitude θ = ω + f . The average angular velocity n is determined by the expression

n =

√
µ

a3 . (10)

These equations in variations were obtained for the Keplerian motion. In matrix form, they
take the form ėosc =

[
0 0 0 0 0 n

]T
+
[
B(eosc)

]
u, where e =

[
a e i Ω M

]T

is the vector of the osculating orbit elements, and
[
B(eosc)

]
is the control influence matrix of

size 6× 3 corresponding to the right-hand sides of Equations (4)–(9). The vector of the mean
orbit e =

[
a e i Ω M

]T is introduced and the analytical transformation e = ξ(eosc)
from osculating elements of the orbit eosc to the mean orbit vector e. Schaub et al. [16]
used the first order truncation of Brouwer analytical solution [29]. Taking into account the
influence of the disturbance J2, the Gaussian variational equations for the averaged motion
are written in the form

ė =
[
A(e)

]
+

[
∂ξ

∂eosc

]T[
B(eosc)

]
u, (11)

where (6× 1)-matrix
[
A(e)

]
of the controlled plant corresponds to the right-hand sides

of (4)–(9). Considering the Brouwer transformation between the oscillating and mean

elements of the orbit, one can see that matrix
[

∂ξ

∂eosc

]
is approximately 6 × 6-identity

matrix with off-diagonal elements of the order of J2 or less. Therefore, in [16], the equation
for the average velocity of an orbital element is approximated in the form

ė ≈
[
A(e)

]
+
[
B(e)

]
u. (12)

The plant model matrix [A] accurately describes the behavior of the elements of the
mean orbit. Perturbation J2 has no secular impact on elements a, e, i. The control influence
matrix [B], obtained in the Gaussian variational equations, as seen from (4)–(9), makes it
possible to calculate the change in the osculating orbital elements due to control vector u. It
is assumed that changes in these vibrational elements of the orbit, as follows from (12), are
directly reflected in the corresponding changes in the elements of the mean orbit. Working
with the elements of the mean orbit has the advantage that short-term period fluctuations
are not perceived as tracking errors; only long-term errors are compensated.
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Using the quadratic Lyapunov function V(δe) =
1
2

δeTδe, where δe = e2 − ed is the
tracking error of the slave satellite (e2) orbit of the lead satellite (ed) in terms of mean orbit
elements, in [16] the following control law for the slave satellite was obtained

u = −
(
[B]T[B]

)−1
[B]T

((
[A(e2)]− [A(ed)]

)
+ [P]δe

)
, (13)

where the time-variable matrix of parameters [P] is chosen when synthesizing the algorithm.
Ref. Schaub et al. [16] recommended one way of doing this.

The second control law, proposed in [16], uses the position and velocity errors in
Cartesian coordinates r = (x, y, z). Based on the mismatch δr = r2 − r2d between the
current r2 and the desired r2d the position of the slave satellite, based on the Lyapunov
method, the control law is obtained

u = −
(
f(r2)− f(r2d)

)
− [K1]δr− [K2]δṙ, (14)

where function f(r) is the right-hand side of the equation of free motion of a satellite in
orbit, r̈ = f(r).

In [16], comparative results of a numerical study of the proposed control laws are
presented, and further in [31], the main method for constructing orbits with different
Cartesian coordinates is presented. The numerical study illustrates the accuracy with which
the coordinate transformation occurs after linearization. A hybrid law with continuous
feedback is proposed, in which the desired orbit geometry is explicitly given in the form
of a control error, and the actual orbit is given in local Cartesian coordinates. Numerical
simulations illustrate the efficiency and limitations of such feedback control laws. Using
a linearized mapping between relative orbital coordinates results in a slight degradation
in quality. However, this method gives the advantage of working in the main space of
elements in the case when the relative errors in the construction of the orbit are determined.

One of the fundamental differences between satellite movement and conventional ren-
dezvous operations, as noted in [32], is the need to increase the duration of the movement.
Therefore, if the formation is to be maintained, then long-term disturbances, in particu-
lar those caused by the Earth’s compression, must be corrected. Williams and Wang [32]
explored the use of motionless aids to counteract the differential precession of the orbital
plane, which is the primary perturbation affecting the formation caused by the Earth’s com-
pression. The approach used is to use the pressure of solar radiation acting on a relatively
small surface called the solar wing, which is attached to the satellite. The resulting torque
causes the orbit to precess; if the wing is the correct size, this motion will, on average,
suppress the motion caused by flattening, thereby maintaining the formation without
using propellant. Ref. Williams and Wang [32] considered satellites that are nominally
Earth-oriented; most small satellites that are stabilized by the gravitational field gradient
or have sensors designed to observe the Earth fall into this category. It is assumed that a
relatively small reflective surface is attached to the spacecraft at an angle α (usually 45◦)
to the velocity vector. The reflector surface illuminated by the Sun will alternate as the
satellite moves around its orbit, creating an out-of-plane component of the alternating solar
radiation force. Consequently, the torque that is created in orbit by this force will tend to
increase rather than decrease during the entire revolution, leading to a total torque along
the direction to the Sun. If the wing area is appropriately sized, this torque can be used to
zero out the differential nodal regression velocity between the two orbits, thus maintaining
the formation without a propulsion system. Williams and Wang [32] demonstrated that
the long-term orbital effects of the solar wing’s steering input (wing orientation angle) are
highly non-linear and show a strong relationship between orbital inclination and ascending
node longitude, and if the wing is properly sized, node drift due to solar torque, on average,
is compensated by the differential speed of modality, so the formation is preserved without
the use of propellant. Numerical results are presented to illustrate the approach.
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Hussein et al. [33] dealt with establishing relationships with the motion of a satellite
group in a physical two-dimensional space with visualization problems. A class of move-
ments is presented that satisfies the visualization tasks, and simple solutions to the problem
of motion design and formation control for visualization applications are found, allowing
to achieve a compromise between image quality and fuel consumption for the proposed
class of maneuvers.

As part of a study by the European Space Agency (ESA), Gill and Runge [34] discussed
the potential advantages, disadvantages, and challenges of moving satellites in a formation
in close proximity to implement synthetic aperture radar (SAR) for trajectory interferometry.
Gill and Runge [34] noted that the technology of using SAR is well developed. Radar signals
reflected from the Earth’s surface, water, and ice have provided high-resolution images
for areas such as forestry, geology, ocean wave monitoring, and ice mapping (see [35]). In
addition, progress in the processing of SAR data has been made through the use of phase
differences between SAR images of the same scene, a technique referred to as interferometric
SAR (InSAR). Distinguishing SAR images from two laterally-spaced antennas generally
yields terrain elevation measurements. In contrast, along-track interferometry (ATI) is
not based on a specific interferometric baseline, but on the time interval between two
moving SAR devices separated in the direction along the track, and displaying the same
terrain, which provides measurements of the speed of objects on the surface. Space ICT
was successfully demonstrated using the Shuttle Radar Topography Mission (SRTM) in
2000 [36,37]. A serious limitation of single-satellite IWT is due to the physical dimensions
of the spacecraft. It can be overcome on the basis of the distributed sensor concept, when
two SAR antennas are located on different platforms, thus forming variable baseline. This
can be conducted with a small satellite that is passive in terms of radar, but active in
terms of orbital maneuvers that are conducted relative to the larger active SAR satellite.
Alternatively, two similar SAR satellites that are capable of moving in a controlled formation
can be used.

In IVT interferometry, two antennas are used, separated in the direction of motion
along the spacecraft trajectory by a certain amount ∆L. Considering the common orientation
of the antenna, both antennas thus display the same scene with a time lag of ∆t = ∆L/vsc,
where vsc denotes the spacecraft speed. When one antenna works for both transmit
and receive, and the other only for receive, then the two subsequent sets of SAR phase
measurements differ by the value

∆ϕ = 4π
vr

vsc

∆L
λ

, (15)

where vr is the projection of the target speed onto the direction of the line of sight, λ is the
radar radiation wavelength. Thus, the measurement accuracy can be increased either by
increasing the base ∆L, or by decreasing the wavelength λ. It should be noted that large
values of the base cause the effect of phase wrapping and associated ambiguities, if the
velocity range of interest is mapped to a phase interval of more than 2π.

Based on the constraints imposed by the decorrelation of the SAR phase in oceano-
graphic applications for extended baselines, in [34] the upper limit of the relative baseline
along the path of the spacecraft formation is 50 ms−1 GHz / f v sc, which is about 300 m in
the L-band and 40 m in the X-band. (Recall that L-band: 1.0–2.0 GHz, X-band: 8.0–12.0
GHz.) To provide a margin of accuracy with respect to the decorrelation threshold, the
appropriate separation of spacecraft in the formation along the trajectory would be 225± 75
m in the L-band and 30± 10 m in the X-band. There are two main options for controlling
a formation: ground-in-a-loop control and autonomous formation control. Obviously,
in the second case, information is required on board the spacecraft about their relative
position and speed. To the relative position of the two spacecraft prediction, it is necessary
to integrate the equations of their motion taking into account all relevant perturbations,
including the effects of a complex form of the Earth’s gravitational field, the influence of
the Sun, and the Moon, atmospheric drag and solar radiation pressure [38]. For the motion
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of two spacecraft in the limiting case of near-circular orbits and close formations (with a
distance of less than 1 km), closed forms of the Clohessy–Wiltshire equations of relative
motion [23] can be obtained.

A number of works are investigating the possibility of using the natural electrostatic
forces of spacecraft in High Earth Orbit (HEO), or in deep space [39]. Investigation of
[40], showed that the absolute charge of spacecraft can reach the level of kilovolts in the
Geostationary Earth Orbit, GEO. If spacecraft fly at a distance of several tens of meters from
each other, this causes disturbances ranging from micro- to millinewtons. In an orbit, these
disturbances can lead to hundreds of meters of deflection. The concept of Coulomb thrust
proposes to use active control of the spacecraft charge to ensure its desired values and use
this disturbing force to directly control the relative motion KLA [41,42]. The electrostatic
charge of the spacecraft is partially hidden from another nearby ship due to interaction
with ions and electrons of cosmic plasma. The strength of this shielding is measured by the
Debye shielding length [43]. The cold and dense plasma of the environment in low-orbit
orbits (LEO) has a Debye length of about a centimeter, which makes it impossible for
Coulomb interaction at a distance of tens of meters. In a geostationary orbit, the Debye
length is in the range of 100–1000 m, which makes it possible to use the Coulomb thrust
between satellites. In deep space, at a distance of 1 AU from the Sun, the Debye length
is 30–50 m [40]. Coulomb thrust usually requires only a watt level of electricity, while
consuming essentially no fuel. The specific impulse Isp of the Coulomb thrust is in the
range 109–1012 width [40,44]. Spacecraft charge control has been demonstrated on the
SCATHA [45], ATS [46], Cluster [47,48] missions. Coulomb structures have electrostatic
forces that fully compensate for differential gravitational acceleration. As a result, a cluster
of spacecraft is formed, the positions of individual vehicles which seem to be frozen relative
to the rotating main locally-vertically-locally-horizontal system [39,40,49–51]. However,
all static equilibrium solutions of relative position in orbit or deep space are unstable, and
active recharging feedback is required to stabilize them.

Due to the distributed nature of spacecraft formations, methods of decentralized
filtration [52] are of great interest. In [53–55], the estimation is performed using the parallel
operation of full-order observers with local dimensions. For example, [54] considers the
dynamics of N agents given by the linear difference state equations

x[k + 1] = Ax[k] + Bu[k], yi[k] = Cx[k] + ni[k], i = 1, . . . , N, (16)

where x[k] ∈ Rn is the system state vector, u[k] ∈ RmN is vector control, yi[k] are the
measured outputs of agents, ni[k]—measurement errors, i = 1, . . . , N. It is assumed that
each vehicle has the same number m of executive devices, and also that each agent with
the number i has a local controller that generates the corresponding control signal ui[k].
Matrices Qi∈ Rm×mN are introduced such that ui[k] = Qiu[k] and projections Πi = QT

i Qi,
which together form the identity matrix ImN = ∑N

i=1 Πi. The (A, C) pair is considered
observable. A stabilizing feedback u[k] = Kx[k] is used such that the matrix of equations of
state of the entire closed-loop system Aclp = A + BK is asymptotically stable (its spectrum
lies inside a circle of unit radius). This leads to N dynamic controllers according to the state
estimates ui[k] = QiKx̂i[k], in which the x̂i[k] estimates are generated by the observers

x̂i[k + 1] = Ax̂i[k] + BKx̂i[k] + L
(
Cx̂i[k]− yi[k]

)
, (17)

where L is the observer’s feedback matrix to be chosen in the synthesis. Each control signal
ui[k] is generated based on a local estimate of the state of the entire system x̂i[k]. This
approach uses an estimate of the actuator input applied by each of the other vehicles and
will generally not be correct for non-local components. The incompleteness of information
about the input data of the object leads to the fact that the dynamics of the estimation error
become bounded. Further, [54] uses the well-known method of communication specifi-
cation based on graph theory [56,57]. It was found that communication between vehicle
observers can be used to eliminate or mitigate the consequences of the interconnected
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dynamics of estimation errors. The communication structure and analysis presented in [54]
provide a means of designing a communication network that can determine the dynamics
of interconnected errors. It is shown that in this structure the minimum number of com-
munication channels required to eliminate these dynamics grows only linearly with the
size of the formation. Another result is that in terms of network robustness and resiliency,
“receivers are much more valuable than transmitters”. A similar problem is considered
in [58], where the exchange of navigation data between two satellites is considered, aimed
at reducing the load of the inter-satellite communication channel, taking into account the
dynamics of the relative motion of the satellites and possible erasures in the navigation
data of the channel. For this, an adaptive binary coding/decoding procedure is used to
transmit navigation data between satellites and a closed-loop control law that regulates the
relative motion of the satellites.

Using the calculus of variations, Lawden [24] deduced the necessary conditions for
the optimal fuel consumption problem of multi-impulse rendezvous, known as the primer
vector theory (see also [59]). In [60], a numerical method using Lawden’s necessary con-
ditions is proposed. Lawden’s theory is applied in [61] to the task of rendezvous of the
Apollo spacecraft. Research in this direction was developed in [62–66]. Prussing et al. [63]
used basis vector theory to find optimal time-fixed multi-impulse coplanar and bounded
class non-coplanar rendezvous solutions. In [63], the spacecraft motion equations in the
gravitational field are used through the orbital radius vector r [67]:

ṙ = v, (18)

v̇ = g(r) + Γu, (19)

J̇ = vΓ, (20)

where Γ is the thrust force modulus expressed in acceleration units (0 6 Γ 6 Γmax), u is the
unit vector in the direction of thrust action, J is the characteristic velocity to be minimized.
Equations (18)–(20) describe the behavior of the state vector xT =

[
rT vT J

]
under the

action of free-fall acceleration g(r) and control variables Γ and u. For a high-thrust engine,
one can make an approximation of impulsive thrust, assuming that the magnitude of
thrust is not limited (Γmax = ∞). In this case, the engine is either turned off (Γ = 0),
or provides an impulse thrust of infinitely short duration. The thrust impulse solution
requires the determination of the times, locations, and directions of thrust impulses that
meet the specified boundary conditions for orbit transfer, interception, or rendezvous.
Determining the solution with the minimum amount of fuel requires solving the optimal
control problem in the time interval t ∈ [t0, tF], which minimizes the final value of J and
satisfies the equations of motion and the orbital boundary conditions of the problem. The
Hamiltonian following from (18)–(20) must be maximized

H = λT
r v + λT

v(g + Γu) + λJΓ (21)

taking into account the equations for the conjugate variables

λ̇T
r = −∂H/∂r = −λT

vG(r), (22)

λ̇T
v = −∂H/∂v = −λT

r , (23)

λ̇J = −∂H/∂J = 0, (24)

where G(r) is the symmetric gravity gradient matrix. Since the characteristic velocity J is not
limited, λJ(t) = −1 is satisfied. The boundary values of the remaining conjugate variables
depend on the terminal constraints r(tF) and v(tF) on state variables. The HamiltonianH
is maximized by choosing the direction of the thrust force that maximizes the scalar product



Automation 2022, 3 520

λT
vu, that is, combining the thrust vector with the direction conjugate to the speed, which is

the basis vector (see [24]), denoted below by p. Then, from (21)–(24) one can deduce that

p̈ = G(r)p, (25)

H = pTg− ṗTv + (p− 1)Γ, (26)

where p denotes the amplitude of the basis vector. From (26) for the Hamiltonian it follows
that the thrust switch function is p− 1. In the case of continuous thrust, the Hamiltonian
is maximized by choosing Γ = 0 when p < 1, and Γ = Γmax when p > 1. In the impulse
case Γ = 0, when p < 1 with impulses arising at those times when p(t) touches p = 1
from below [24] Further, in [63] multi-impulse solutions are obtained for both coplanar and
a limited class of non-coplanar optimal fixed in time rendezvous “circular orbit/circular
orbit”. For sufficiently long transition times, solutions become well-known time-open
solutions, such as the Hohmann transfer for the coplanar case. (In orbital mechanics, the
Hohmann transfer orbit is an elliptical orbit used to transfer between two circular orbits of
different radii around the central body in the same plane. An orbital maneuver uses two
engine impulses to execute it: one to put the spacecraft into a transfer orbit, and the second
to lift it from it.) The results of [63] can be used to find a trade-off between time and fuel
consumption for missions that have time constraints, such as rescue missions or evasive
maneuvers in outer space.

The studies were continued in [64,66], where impulsive and time-fixed solutions
with minimum fuel consumption for the problem of rendezvous and interception in orbit
with internal trajectory constraints were obtained. Transitions between coplanar circular
orbits in a gravitational field along a circular trajectory representing the minimum or
maximum radius of the admissible orbit are considered. Basis vector theory has been
extended by introducing trajectory constraints. In [64,66], Equations (18) and (19) are used,
supplemented by the objective function to be minimized J =

∫ T
0 Γ(t)dt corresponding fuel

consumption. For the n-pulse solution, the thrust force (per unit mass) is described by the
expression Γ = ∑n

k=1 ∆vkδ(t− tk), where 0 6 t1 6 . . . 6 tn 6 T and ∆vkδ(t− tk) represent
impulses at times tk, expressed in terms of the δ denotes the Dirac function. Therefore, the
objective function takes the form J = ∑n

k=1 ∆υk, where ∆υk are the discontinuities of the
amplitudes of the velocity vector. In [64,66], a restriction of the inner minimum or maximum
radius of the inner trajectory is introduced in the form r(t) > rmin or r(t) 6 rmax and is
implemented by forcibly limiting the radius of the periapsis or apocenter. Initial orbit and
restrictions on the place of meeting, or interception, are defined in terms of the constraint
function Ψ

(
r(0), v(0), r(T), v(T)

)
= 0. Otherwise, without introducing restrictions, the

problem statement is the same as in [63]. In [64,66] the optimal number of pulses is
determined, as well as their time and moments of appearance. The existence of bounding
boundary arcs is investigated, as well as the optimality of the class of singular arc solutions.
In [66], a bifurcation phenomenon is discovered that can occur in an optimal solution
for a constrained encounter problem. It consists of the fact that for symmetric boundary
conditions, symmetric optimal solutions are expected and they found for sufficiently short
transit times. However, when the transition time increases to some critical value, some of
the extreme solutions become asymmetric and ambiguous, and the only symmetric extreme
solution splits into two asymmetric ones.

For the problem of controlling a formation of two satellites (according to the master-
slave scheme), [68] (see also the review [69]) considers various methods for applying
continuous control in sliding modes, including second-order sliding mode algorithms [70],
for example, super-twisting algorithm, continuous sliding mode control with a sliding mode
disturbance observer (SMDO) [71], algorithms with integral sliding surface (ISS) [72]. Pulse
Width Modulation (PWM) is used to convert continuous control signals into pulse trains
that can be implemented using satellite jet engines. A numerical example is considered in
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which the position of the slave satellite relative to the master is described on the appropriate
time scale by the following equations

ẍ− 2ẏ− 3x = ux + dx,
ÿ + 2ẏ− 3x = uy + dy,
z̈ + z = uz + dz,

(27)

where x, y, z are the coordinates of the slave satellite relative to the master ux, uy, uz are the
control forces acting on the slave satellite, dx, dy, dz includes various perturbations acting
on a two-satellite system, caused, for example, by the non-centrality of the gravitational
field, solar pressure, lunar-solar tides, the rotational-vibrational motion of the Earth in
space, oscillations of the Earth’s pole, uneven rotation of the Earth, and also the deviation
linearization error position. The desired relative position of the satellites is given by the
variables xc, yc, and zc. Appropriate sliding variables are formed, including an integral
term to compensate for constant perturbations (see [71] (pp. 147–153)):

ex = xc − x, ey = yc − y, ez = zc − z,

σi = ėi + ci,0ei + ci,−1

∫
ei(τ)dτ (28)

with some parameters of the desired motion in the sliding mode ci,0, ci,−1, where i ∈ {x, y, z}.
For numerical analysis, the values ci,0 = 1.8, ci,−1 = 1.0 are taken. The following formation
control algorithms are considered:

(1) Sliding mode controller and sliding mode perturbation observer

ui = 10σi + v̂i eq, ˙̂vi eq = 20
(
− v̂i eq + 2 sign(si)

)
,

si = σi +
∫ (

ui − 2 sign(si)
)

dτ, i ∈ {x, y, z}. (29)

Here, v̂i eq is the “equivalent control”, the result of passing signals vi = (Li + ρi)σ(si),
where ρi > 0, through low-pass filters. (According to the authors of the review, v̂i eq is not
exactly equivalent control, as defined in [71], since, unlike the indicated works, in (29) the
filtering occurs in a closed rather than open control loop.) As noted in [68], the v̂i eq signals,
after a finite transient time, are an accurate estimate of the matched reduced perturbations
ψ0

i (·) (linear combinations of object output and ei tracking error (see [68,72] for details)).
(2) The following second order sliding modes super-twisting algorithm, ensuring

convergence of variables on the sliding surface and their derivatives to zero in a finite time

ui = 3|σi|
1
2 sign(σi) +

∫
sign(σi)dτ, i ∈ {x, y, z}. (30)

(3) The sliding modes continuous algorithm with an integral sliding surface, based on
the Lyapunov method. This algorithm implements continuous control in a sliding mode,
ensuring robust stabilization of σi with respect to matched perturbations. It uses two types
of moving variables: σi and additional integral moving variables ηi [72]. It can be written as

ηi = σi + k̃0isi, ṡi = sign(σi), (31)

ũi = ψ0
i (·) + (ρ̃i/2ai )|ηi|2ai−1 sign(ηi), (32)

where ρ̃i > 0, k̃0i > 0, 0.5 < ai < 1.0, are the constants, chosen by a designer; ũ = E(x)u,
where E(x) denotes the nonsingular transformation matrix to a new basis in which the
original system is reduced to m independent subsystems. When ũ is found, the control u
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is obtained by the inverse transformation u = E−1(x)ũ. For the considered problem, (27),
algorithm (31) and (32) read as

ui =
ρ̃i
2ai
·
∣∣∣∣σi + k̃0i

∫
sign(σi)dτ

∣∣∣∣2ai−1

sign
(

σi + k̃0i

∫
sign(σi)dτ

)
, (33)

where ai = 0.9, k̃0i = 0.5, ρ̃i = 10, i ∈ {x, y, z}. The control signals ui in (29)–(33) are
continuous, as discontinuous high frequency components are filtered or integrated. The
comparative results of applying the proposed control algorithms are presented in [68].

Kim et al. [10] explored the three types of reconfiguration maneuvers described in [73]
such as resizing, reassigning, and reorienting. Resizing is the change in distance between
spacecraft in the formation. In [10], a hybrid optimization strategy with a genetic algorithm
and basis vector theory is used for fuel-optimal reconfiguration of a satellite group. In
hybrid optimization, the genetic algorithm performs a global search to create two-impulse
trajectories at each transition time, and vector analysis of basis vectors serves for local
optimization with two-impulse trajectories as initial approximations. The final optimal
trajectory has multiple pulses and also lower fuel consumption than two-pulse trajectories.
The mission planner must investigate the trade-off between fuel saved by multiple impulses
and the increased mission complexity due to additional impulses. In many missions, the
trajectory obtained by the genetic algorithm will have an advantage for the transition due
to its simplicity and almost optimal fuel consumption.

In a series of papers, Udwadia and Kalaba [74,75], Udwadia [76], Udwadia and Kalaba
[77], Udwadia [78,79,80,81], Udwadia and Kalaba [82] the approach is proposed based
on the Gauss principle to obtaining models of dynamical systems with constraints. In
particular, Udwadia and Kalaba [74] noted: “The principles of analytical mechanics laid
down by D’Alembert, Lagrange (1787), and Gauss (1829) are all-encompassing, and there-
fore it naturally follows that there can be no new fundamental principles of the theory
of motion and equilibrium of discrete [finite-dimensional] dynamical systems. Despite
this, additional perspectives can be helpful in understanding the laws of Nature from new
perspectives, in particular, if they can help in solving problems of particular importance
and in providing a deeper understanding of how Nature works. Although the general
problem of limited motion was formulated at least as early as the time of Lagrange, the
definition of explicit equations of motion for discrete dynamical systems with constraints,
even within the limited view of Lagrange mechanics, was a serious obstacle. The Lagrange
multiplier method is based on problem-oriented approaches to determining the multipliers;
they are often very difficult to find and, therefore, to obtain explicit equations of motion
(both analytically and numerically) for systems that have a large number of degrees of
freedom and many non-integrable constraints”. In [74], a finite-dimensional dynamical
system whose configuration is described by n generalized coordinates q = [q1, q2, . . . , qn]T

is considered. Its motion can be described, using the Newtonian or Lagrangian formalism,
by equations

M(q, t)q̈ = Q(q, q̇, t), (34)

where the n× n matrix M is symmetric and positive definite. Generalized accelerations a
of the system without restrictions, therefore, are given by the expression

q̈M−1Q ≡ a(q, q̇, t). (35)

Now, let the system be subject to m consistent constraints (not necessarily linearly
independent)

A(q, q̇, t)q̈ = b(q, q̇, t), (36)
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where A is m×matrix, commonly called the “constraint matrix”, b is the m -dimensional
vector. Differentiation of the usual constraint equations used in Lagrangian mechanics,
which often have a Pfaffian form, leads to equations of the form (36). These constraint
equations therefore include, among others, conventional holonomic, nonholonomic, sclero-
nomic, rheonomic types of restrictions and their combinations. Thus, Equation (35) describe
an unbounded system, and the Equation (36) describe the connections superimposed on
this system, which covers all Lagrangian mechanics. Constraints (36) are more general than
those in the usual framework of the Lagrangian mechanics. The presence of constraints (36)
sets additional “generalized constraint forces” on the system so that the explicit equations
of motion for the constrained system take the form

Mq̈ = Q(q, q̇, t) + Qc(q, q̇, t), (37)

where the additional term Qc on the right-hand side arises due to the constraint imposed
according to (36).

The main result for a constrained system is formulated in [74] in three equivalent
forms.

1. Explicit equations of motion that describe the evolution of a system with constraints:

Mq̈ = Q(q, q̇, t) + K(b− AM−1Q), (38)

or

Mq̈ = Q + K(b− Aa), (39)

where the matrix K(q, q̇, t) = M
1
2 (AM−

1
2 )†, and the upper the subscript «†» denotes

generalized Moore–Penrose inverse of AM−
1
2 . (The Moore–Penrose pseudoinverse for any

n × m-matrix H is called matrix H† = lim
δ→0

(HT H+δ2I)−1HT. If H is an n × n-matrix

and det H 6= 0, then H† = H−1. If the columns of H are linearly independent, then
H† = (HT H)−1HT. Also it is valid that: (HT)† = (H†)T, H† = (HT H)† HT = HT(HT H)†,
HH† H=H, H† HH† =H†.)

2. An additional term on the right-hand side of the Equation (37), representing the
generalized force of constraints, is explicitly given by the formula

Qc(q, q̇, t) = K(b− AM−1Q). (40)

3. Equation (38) after multiplication by M−1 can be rewritten as

q̈− a = M−1K(b− Aa), (41)

or

∆a = K1e, (42)

where vector ∆a = q̈− a represents the deviation (at time t) of the bounded generalized
acceleration q̈ from the corresponding unbounded acceleration a; the error vector e = b− Aa
represents the degree to which accelerations at time t corresponding to unbounded motion
do not satisfy the constraint equations (36); matrix K1 = M−1K = M−

1
2 (AM−

1
2 )†. (Matrix

K1 is called the weighted pseudoinverse Moore—Penrose matrix, [74].)
The last form of [74] results in the following fundamental principle of Lagrangian

mechanics: “The motion of a discrete dynamical system subject to constraints evolves at every
moment of time. time in such a way that the deviation of its accelerations from those that it
would have at this moment in the absence of restrictions is directly proportional to the degree to
which accelerations corresponding to its unbounded motion at time t do not satisfy restrictions; the
proportionality matrix is the weighted generalized inverse Moore–Penrose matrix for the weighted
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constraint matrix A, and the dissatisfaction measure constraints are provided by the vector e.”
The Udwadia–Kalaba equation, in contrast to the Lagrange equation, is equally easily
applicable to both holonomic and nonholonomic constraints.

In space systems with a large number of satellites, orbit coordination between satellites
is required throughout the life of a mission. The main focus has usually been on the
limited relative motion between satellites in a constellation, Zhang and Gurfil [83] also
considered the additional degree of freedom to manipulate an arbitrary number of orbital
elements, which is represented as coordinating the overall orbital transfer and constellation
in space. The basic concept uses consensus theory to characterize the properties of a control
object, as in a multi-agent system. For this purpose, Zhang and Gurfil [83] assumed that
communication in the network satellite system is represented in the form of an undirected
graph, and then the dynamics of the control system are realized in an affine-controlled
form, as described in the variational Gauss equations. For the general problem of orbital
transmission, a controller based on the edge error has been developed and proven to
be asymptotically stable. Several strategies for managing the grouping are discussed,
namely by changing variables or a two-phase control process based on a dynamic structure.
Numerical simulations are performed to validate the analysis and demonstrate the results.

Monakhova and Ivanov [84] addressed the problem of building a swarm of nanosatel-
lites immediately after they are separated from the launch vehicle. The decentralized
control is proposed using the aerodynamic drag force to eliminate the relative drift between
satellites in a swarm. The effect of dividing a swarm into several independent groups is
studied, which is considered a violation of the integrity of the swarm and is undesirable.
An aerodynamic force application is also studied in [85], where for the formation of two
satellites the control algorithms based on the modal approach (pole placement technique),
on passification and variable structure control, linear and transient-speed optimal for partial
stabilization algorithms are developed and examined. The stability of control systems to the
plant model parameters is studied and the possibility of the occurrence of stable oscillations
as a consequence of the control action (aerodynamic resistance) limitation is shown.

The problem of deploying a swarm of nanosatellites immediately after their separation
from the launcher was studied in [86]. Since some error in ejection velocity during the
launch is inevitable, nanosatellites have different orbital periods, and as a result, gradually
disperse in orbit. The decentralized differential control using the force of resistance is
applied to the swarm formation problem. It is assumed that each satellite has information
about the position of others in a particular communication area. The proposed control algo-
rithm eliminates the relative drift between adjacent satellites. Ref. Ivanov et al. [86] studied
the separation effect that occurs when a swarm is divided into several independent groups.
This effect depends on the size of the communication area, the number of communication
satellites, and the initial conditions. The boundary values of these parameters are studied
for the example of twenty 3U cubesatellites. The effect of J2 harmonics and uncertainty on
the atmosphere’s density is also examined in [86].

Knowledge of position and velocity is a practical requirement for all spacecraft in low
Earth orbit. Some satellite systems require autonomous orbit determination on board. The
methods for estimating the absolute positions of two satellites using relative distance and
azimuth are developed by Zhou and Li [87]. The spherical coordinates measurements are
converted to Cartesian ones with the converted offset and covariance calculated. The trans-
formed measurements use the Unbiased Transformed Kalman Measurement (UTKM) [88,89]
algorithm to estimate the position and velocity of the satellites. A square root filter is
introduced to avoid losing the positive definiteness of the state covariance matrix. The
simulation results show that the algorithm proposed in [87] converges faster and has a
higher estimation accuracy.

Shouman et al. [90] introduced a new control action for the formation of satellites
moving in LEO, depending on the difference between the force of aerodynamic drag and
the force generated by the propeller. A parameterized algorithm for regulating the output
signal for the formation of flight missions has been developed, based on the equations of
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relative dynamics by Schweighart–Sedwick [91,92]. It is implemented in order to accurately
track different trajectories of the reference relative motion and to exclude the influence of
disturbances from the second harmonic of the Earth’s gravitational potential.

Invention [93] relates to satellite group motion control, in which the average angular
velocity of all artificial earth satellites (AES) in the group is maintained equal to the average
angular velocity of the passive satellite per turn. The latter is located in the central orbit
of the group. Active satellites maintain their orbital position relative to passive satellites
through periodic reactive correction. The technical result of the invention is to provide a
given configuration of the AES system, observed from certain places on the Earth’s surface.

3. Circle Formation Architecture

An approach to communicating satellites in a ring is also discussed by Tragesser [94].
To maintain the shape of the formation and the integrity of the bonds, the system rotates
along an axis perpendicular to the plane of the ring. In [94], the influence of the Earth on
this system is considered, therefore the canonical Likins–Pringle Relation (LPR) [95,96]
is used to construct the orbit for maintaining the rotation of the group around the axis in
the strict direction to the Earth. The equations of motion are constructed for an annular
formation with an arbitrary number of satellites. Simulation is performed for the formation
of three satellites and the assessment of the system stability is provided.

The first virtual structures with feedback and charge stabilization were proposed
within the framework of the Coulomb cable concept with two devices [97–99]. While
the physical tether must always be taut, the Coulomb tether can exert forces of attraction
and repulsion between two ships. However, the concept of the Coulomb cable is viable
only for relatively short distances up to 100 m, while the size of a typical space with a
leash length of kilometers is considered within the framework of other concepts. These
Coulomb mission concepts consider static scenarios in which ships are in nominally fixed
locations. The first passively stable virtual Coulomb structure is a rotating system of two
devices [51]. Without the screening effect of plasma charges, the force of attraction between
two oppositely charged bodies is mathematically equivalent to the gravitational force of
two bodies. The resulting trajectories of the two vehicles are also conical solutions, which
are orbitally stable. Taking into account the finite Debye lengths and charge confinement,
the relative trajectories are no longer closed conical solutions. In [51], it is shown that
if ordinary circular relative motion has a diameter less than the Debye length, then the
resulting non-linear motion remains stable.

In [100], the generality of the problems of three bodies rotation under the action
of gravitational and electrostatic forces is investigated for finding invariant forms. A
schematic illustration of the structure discussed in [100] is shown in Figure 1. Hussein and
Schaub [39] examined the general relative equilibria of such a system, and also discusses
the stability of an open-loop system. It is assumed that the charged spacecraft moves in
circular heliocentric orbits, far from the gravitational potential fields of planets or other
celestial, bodies, therefore Hussein and Schaub [39] did not take into account the relative
gravitational forces and focuses on the motion of freely moving bodies under the influence
of electrostatic forces. In [39], general conditions are obtained, the solutions of which are
relative equilibria for a rotating group of three spacecraft with Coulomb cables. Using the
methods of linear control theory, stabilizing feedback is obtained in the form of PD and PID
controllers for a nonlinear system, which guarantees its convergence to the neighborhood
of the desired relative equilibrium. It is noted that for asymptotic stabilization of the
desired relative equilibrium, independent of the value of the angular momentum h, it will
be necessary to change the nominal equilibrium value of the charge in order to reflect the
actual value of the angular momentum of the system. It is also indicated that the use of
general methods of nonlinear stabilization can provide larger regions of stability than the
methods based on linearization considered in [39].
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Figure 1. Illustration of a group of three Coulomb spacecraft orbiting in deep space around the center
of mass of their cluster.

The decentralized state estimation algorithms and their application to the spacecraft
group are discussed in [101], where three main architectures are considered:

Centralized—only one point is involved, which performs primary calculations for a
group of devices based on data collected at remote sites.

Decentralized—each apparatus in the group is involved, making an equal contribution
to the assessment process. Each unit performs its own calculations based on the data
obtained either as measurements or on the basis of the data transmitted from the entire
group. In a decentralized architecture, there is no central entity to unify results.

Hierarchical—includes hybrids of the above two architectures. The large spacecraft
group can be divided into smaller ones, each with its own architecture and grading system.

The simulation results given in [101] show that the decentralized reduced-order filter
leads to simultaneous close to optimal estimates, as well as to the balance of communication
and computational resources between the spacecraft. In addition, Ferguson and How [101]
presented a hierarchical architecture for embedding decentralized assessment systems
when scaling a problem for a large number of spacecraft in a group, as well as a necessary
condition for a communication topology that guarantees the stability of the operation of
simultaneously parallel computers and controllers.

The purpose of the research presented in [102] is an analysis of the dynamics of
orientation and control of a connected satellite formation moving where the connected
nodes are modeled as extended rigid bodies. Ref. [102] uses a three-in-a-row structure,
and the general formula for the equations of motion of the system is obtained using the
Lagrange method. The motions of the associated satellite system are analyzed in a three-
dimensional coordinate system in outer space. The System Dependent Riccati Equation
Regulator (SDRE) is used to eliminate orientation errors. The stability region for an SDRE-
driven coupled satellite system is estimated numerically to show the global asymptotic
robustness of the steering method. Centralized and decentralized approaches are applied
to a dynamic system to compare targeting performance. It was found that the SDRE works
well with both centralized and decentralized approaches to control the orientation of linked
satellites in the formation of motion. The design of a formation flying orbit control system
for LEO satellites based on the SDRE control approach may be also found in [103].

In [104], the problem of controlling the motion of an electromagnetic formation using
the finite time method is investigated. The principle of electromagnetic formation flight
(EMFF) uses magnetic fields electrically generated by all satellites, which then allows you
to control the relative degrees of freedom. In EMFF, each satellite is equipped with three
orthogonal magnetic coils and three orthogonal flywheels [105].
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Zeng and Hu [104] presented an electromagnetic force model and analyzes the effect
of the Earth’s magnetic field on EMFF satellites. Then, the equations of relative motion
and the method for describing the general formation are established. The robust sliding
mode controller is designed to track the trajectory in the presence of model uncertainties
and external noise. The proposed controller, which combines the advantages of linear and
terminal sliding mode control, can guarantee the convergence of tracking errors in a finite
time, and not in an asymptotic sense. By constructing a specific Lyapunov function, the
closed-loop system is proved to be globally stable and convergent. Numerical simulations
of the maintenance and formation reconfiguration are then presented to show the efficiency
of the designed controller.

Optimal reconfigurations of the Coulomb formation of two spacecraft are found
in [106] using nonlinear optimal control methods. The aim of reconfigurations is to ma-
neuver two spacecraft between two charged equilibrium configurations. Four optimality
criteria are considered: minimum time, minimum separation acceleration, minimum use of
fuel for an electric motor, and minimum power consumption. Reconfiguration between
equilibria is first considered by changing the desired dilution distance. In the radial config-
uration of the relative equilibrium, only the Coulomb force is required to control the motion
in the plane and to control the satellites from their initial to final radial positions. In this
reconfiguration maneuver, the torque of the gravity gradient is used to stabilize motion in
the plane. For equilibrium positions along the path and normal orbits, the reconfiguration
maneuver requires hybrid control. Here, the Coulomb force is changed to control the sepa-
ration distance, and the inertial micromotors are activated to control the lateral directions.
Second, a reconfiguration involving hybrid steering is used to maneuver ships from any
initial equilibrium position to a final one. The goal is to determine optimal maneuvers that
maximize the use of the Coulomb propulsion unit while minimizing the use of the electric
propulsion unit. The formulation of the two-point boundary value optimization problem is
numerically solved using pseudospectral methods. The Pontryagin minimum principle
checks the optimality of solutions without feedback.

In [107], a quaternion-based approach is considered for solving the time-limited
problem of synchronizing and stabilizing satellites while moving in a formation. Sufficient
conditions are given for the finite temporal convergence and stability of the distributed
consensus problem. The nonlinear control law based on the finite time control method
is designed in such a way that the exact position of the spacecraft will be consistent and
will converge to the leader’s position, while the angular velocity will converge to zero in a
finite time. A term in the form of an integral of a power function has been added to the
Lyapunov function. In order to reduce the load on the network, a modified control law is
proposed, where an estimate of the sliding mode with time constraints is introduced. This
aims to ensure that only one satellite communicates with the leader. The modeling results
are presented, showing the efficiency of the proposed method and its potential advantages.

Nair et al. [108] dealt with the development of a formation control strategy for a
circular satellite constellation formation. In [108], the artificial potential field method is
used to plan the trajectory, and the sliding mode control method is used to create a robust
controller. The fuzzy inference engine is used to reduce the chattering phenomena inherent
in conventional sliding mode systems. An algorithm for adaptive tuning of tuning a fuzzy
parameter is derived on the basis of the Lyapunov stability theory. The proposed method
based on a fuzzy system with a sliding mode is intended to compensate for the model
uncertainties in practical applications. The simulation results for a group of five satellites
forming a circular formation confirm the stability and robustness of the proposed scheme.

The purpose of [109] is to investigate the control of an electromagnetic tethered satellite
system using Model Predictive Control (MPC). An electromagnetic tethered satellite system
is powered by electromagnetic coils to generate control forces. The dynamic system model is
described with high and low levels of accuracy, which are used to design the control system.
Several horizons of the predictive model are used to bring the formation to the desired
state. The presented control law not only satisfies the input and output constraints but also
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has the corresponding characteristics of optimality. The main advantage of using multiple
horizons is multiple control based on predictive models, having a lower computational load
compared to classical MPC. The results of numerical simulation and their comparison with
sliding mode control are presented to demonstrate the effectiveness of the proposed control
method and its advantages over both classical MPC control methods and sliding mode. The
results obtained show a dramatic reduction in computational time and energy consumption
compared to the classical MPC control methods and the sliding model, respectively.

4. Leader–Follower Formation Architecture

Fulfillment of the laws of linear control for the satellites formation in the presence
of gravitational disturbances is considered by Sparks [110]. The use of a linear quadratic
controller that minimizes the error between the actual and the required relative motion of
the satellite is evaluated for the ability to maintain a specific geometry of the formation in
the presence of such a gravitational disturbance as the uneven gravity of the Earth. The
required formation geometry is based on solving linear equations of relative motion without
disturbances. In particular, a group of satellites is selected whose projected motion onto
the tangential plane of the Earth is a circle with a radius of one kilometer. It is shown that
linear control laws support the formation within the error in the presence of gravitational
disturbances. In addition, the simulation provides an estimate that takes into account the
required fuel consumption to maneuver such a formation, thereby providing studies based
on reducing costs while moving along the desired trajectories and according to the selected
control strategies.

In [111], the formation control problem is considered in the following general setting.
A complex system consisting of many subsystems (mobile agents) is described by the
following equations

ẋi = fi(xi, ui, ri), yi = hi(xi), i = 1, . . . , k (43)

where k is the number of subsystems; xi∈ Rni is the state vector of the i-th subsystem; ri
express interrelations between subsystems and are defined as functions of (xj, uj) for i 6= j;
ui ∈ Rmi denotes the control input action of the i-th subsystem, yi = hi(xi) ∈ Rp is the
subsystem’s output. For example, for a formation of land vehicles, hi corresponds to the
coordinates of each vehicle. It is considered that p is the same for all subsystems. Formation
is defined in the coordinate system moving along with the desired trajectory yd(s) ∈ Rp,
where s is a certain parameter, and the orthonormal vector F (s) =

[
e1(s), . . . , ep(s)

]
∈ Rp,

specifying a moving RMS, start which lies at the point yd(s). The formation F is thus
specified by k by the points P1, . . . , Pk ∈ F (s), F = {P1, . . . , Pk}, where Pi = ∑

p
j=1 αijej, and

in the general case it changes over time.
The key parameter is defined as the action reference s, on the basis of which the desired

trajectory yd(s) is formed. To calculate the reference action, the reference projections are
used, which transform the sensor data into a reference action s, on the basis of which the
time is then calculated, which is used to coordinate lower-level feedbacks. The synthesis of
the control law consists of several steps. On the first of them, given yd(s) and {P1, . . . , Pk},
the desired trajectory yd i(s) = yd(s) + ∑

p
j=1 αijej(s) for each agent (subsystem) in the

formation is found. The speed of the formation along the trajectory yd(s) is specified by
means of a strictly increasing function s = v(t). The formation control law u = u(x) must
ensure the fulfillment of the control goal as lim

t→∞

(
yi(t)− yd i

(
v(t)

))
= 0. With this control,

there is an initial state x0 = [x01, . . . , x0k]
T such that the corresponding trajectory xdi(s)

coincides with the given one, that is, hi
(
xdi(s)

)
= ydi(t). In the second step, the control

law ui = ui(x, t) is synthesized separately for each subsystem using existing tracking
methods ( signal tracking) or movement along a given trajectory ( path following). Different
methods of controller synthesis can be used for different subsystems. To coordinate the
subsystems, the third step uses the projection mapping. A reference projection is defined as
a transformation s = γ(x) such that γ

(
xd(s)

)
= s, that is, if the state xd(s) is on the desired
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trajectory, then γ must give the corresponding value of s also on the desired trajectory
xd(s). For example, for any state x0, vector xd(s0) can be an orthogonal projection of x0
onto xd(s0). Orthographic design is not the only way to define γ, and changing it can
fundamentally change the way of subsystems mutual coordination. The last stage of the
controller design is the synthesis of a non-time-based feedback law that is used to control a
multi-vehicle system. The control law is obtained by simple substitution and has the form

ui(x) = ui
(
x, T(x)

)
, T(x) = v−1(γ(x)

)
. (44)

A number of examples for selecting reference projections to ensure coordination of
the formation are presented in [111]. In particular, the satellite clusters, forming a high-
resolution synthetic aperture imaging formation are described. A flat formation consists
of a group of satellites occupying the same orbital plane OXY in the inertial terrestrial
coordinate system OXYZ and separated by the mean anomaly. The desired trajectory of
movement of each satellite is considered to be a circular orbit of radius r0 as

xd = r0 cos(ωt), yd = r0 sin(ωt). (45)

As is known, ω =

(
µ

r3
0

)1/2

, µ = 3.986× 1014 m3 / s2.

Following [112], the synthesis of the control law in [111] is performed by the feedback
linearization method. For a near-circular orbit, the reference action s is defined as s = θ,
where θ is the angle between the satellite radius vector and X-axis on the OXY plane.
For the desired trajectory, θ = ωt. The relative position of satellites in the formation is
determined through γi. For example, one can accept

γ1 = θ1, γ2 = θ1 − θ0, γ3 = θ3, γ4 = θ3 − θ0, (46)

where θ0 is the desired angle between two satellites in the formation. According to (46),
satellites #1, #3 are the leaders of the formation. Kang et al. [111] presented the theorems
on the stability of the formation and the simulation results of the formation reconfiguration
during movement.

Milam et al. [113] discussed the positioning and reorientation control of a formation
of fully steerable low-thrust microsatellites. A general control methodology based on
optimization is proposed for solving the problems of constructing a limited trajectory for
positioning and reorientation. Taking advantage of the all-wheel drive microsatellites, on-
board calculations can be performed on them. The software package Nonlinear Trajectory
Generation (NTG) was used for typical space missions.

A systematic approach for studying the formations of multi-agent systems is presented
in [114]. In particular, undirected formations for centralized formations and directed for-
mations for decentralized formations, are considered. Paper [114] focuses on the feasibility
problem: given the kinematics of multiple agents together with inter-agent constraints,
one should find out if there are agent trajectories satisfying constraints. If the answer
is yes, the task is to find a “smaller” control system that supports the movement of the
formation along its trajectory, which, from the side of higher control levels, allows one to
consider the formation as a whole. In [114], n heterogeneous agents with states xi ∈ Mi,
i = 1, . . . , n are considered. The agent’s kinematics are described by drift-free controlled
distributions [115,116] on manifolds Mi as

∆i : Mi ×Ui → Mi,

∆i = ∑
j

Xjuj, (47)

where Ui is the control space, the vector fields Xi form the distribution basis. Controlled
distributions are general enough to describe an underactuatio. The formation of a group of
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agents is determined by its graph, which completely describes the kinematics of individual
agents and global inter-agency constraints. The graph of the formation F = (V, E, C),
consists of: a finite set V of vortices, the cardinality of which is number of agents, where
each vertex vi : Mi×Ui → TMi is a distribution ∆i describing kinematics of each individual
agent according to (47); binary relation E ⊂ V ×V, representing communication between
agents; families of constraints C indexed by the set E, C = {ce}e∈E. Two different types of
formation graphs are considered: undirected formations, where (V, E) is an undirected
graph, and directed formations, where (V, E) is a directed graph. In [114], conditions are
obtained for determining formation feasibility for two types of formations, and also a
management abstraction for a group is found, which allows one to describe a formation
as a single object. When directional formation is not feasible it is possible to extract a
feasible formation by eliminating the degrees of freedom that cannot be worked out by the
follower agents.

In [117], nonlinear equations of orbital dynamics of relative motion are introduced
for the problem of motion in a formation with separation into constant distances. This
general equation of orbital dynamics allows for elliptical, non-coplanar maneuvers at
large distances between spacecraft, as well as typical near-circular, coplanar maneuvers at
short distances. In addition, changes in the equations of position and velocity have been
introduced for a path in the plane of a formation with a large, constant separation angle
between satellites. A nonlinear control method with the Riccati equation depending on the
state is used to solve the problem of controlling the movement of the formation. This new
control method for a non-linear system provides a clear design trade-off between control
action and state error, similar to the classical linear quadratic control method. Numerical
modeling shows the effectiveness of the new control method with the Riccati equation
depending on the state with the developed equations of relative motion.

Palmer [118] presented a general analytical formulation of the problem for optimal
trajectories of satellites flying in a formation, based on the circular version of Hill’s problem.
Optimization is performed to minimize the displacement energy received from the motor.
The optimization problem is the choice of the trajectory along which the satellite should
move during the maneuver, while the required time and boundary conditions are fixed.
Low thrust engines are suitable for maneuvering in formation. It is assumed that the
engine is running throughout the entire maneuver, and the optimal program calculates the
magnitude and direction of the thrust as a function of time. The possibility of using your
own dynamics to obtain additional fuel economy by changing the boundary conditions
is considered.

A method for constructing a satellite trajectory capable of creating a formation of a
given configuration from identical spacecraft is given in [119]. The method uses a behavior-
based approach to implement autonomous and distributed control of relative configuration
using limited sensor information. For each satellite, the desired speed is defined as the
sum of the various components of the general high-level behavior patterns. Further, the
model of behavior is determined by an inverse dynamic calculation called the formation of
equilibrium. Introduced several feedbacks for speed control. The results of the study show
that in the developed method it is advisable to use control in a sliding mode.

Kumar et al. [120] discussed achieving a given formation using thrust only in the
direction along the trajectory. A system consisting of the leading satellite and the following
satellites is considered, and linear control law is developed to obtain a formation of a given
type. The orbital motion of the leader satellite is determined by the radial distance rc from
the center of the Earth and the true anomaly θ. The movement of the slave satellite is
described with respect to the movement of the leader satellite using the relative r.m.s. S-xyz,
anchored in the center of the leader satellite. The x-axis is directed along the local vertical,
the z-axis is taken along the normal to the orbital plane, and the y-axis represents the third
axis of this selected right RMS. The geometry of the orbital motion of the lead and slave
satellites according to [120] is shown in the Figure 2. The orbital equations of motion for the
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lead satellite and the equations of motion of the slave satellite relative to the lead satellite
are of the form [21,23]

r̈c − rc θ̇2 +
µ

r2
c
= 0, (48)

rc−̈θ + 2θ̇ṙc = 0, (49)

ẍ− xθ̇2 − 2ẏθ̇ − yθ̈ = − µ

r3 (rc + x) +
µ

r2
c
+ fdx, (50)

ÿ− yθ̇2 + 2ẋθ̇ + xθ̈ = − µ

r3 y + fy + fdy, (51)

z̈ = − µ

r3 z + fdz, (52)

where r =
(
(rc + x)2 + y2 + z2)1/2; fy is the acceleration of the control force in the longi-

tudinal direction; fdj, j ∈ {x, y, z} are the accelerations of the disturbing force along the
directions x, y and z, respectively. To synthesize the control law, the following linearized
model of the (50)–(52) system is used, obtained under the assumption that the leading
satellite is moving in a circular orbit

ẍ− 2θ̇ẏ− 3θ̇2x = 0, (53)

ÿ + 2ẋθ̇ = fy, (54)

z̈ + θ̇2z = 0, (55)

where θ̇ = const is taken.

Figure 2. Geometry of the orbital motion of the lead and trailing satellites according to [120].

In [120] the following linear proportional-differential (PD) control law is proposed

fy = kp1(x− xd) + kd1(ẋ− ẋd) + kp2(y− yd) + kd2(ẏ− ẏd), (56)

where xd, yd are the desired (specified) values of the coordinates x, y, kp1, kd1, kp2, kd2 are
the regulator coefficients.

The performance of the proposed regulator was investigated by the Routh–Hurwitz
criterion and tested using the simulation of nonlinear equations of motion of the system
taking into account several factors, including changes in the initial conditions, the size of
the formation, the presence of disturbing forces and eccentricity of the orbit of the lead
satellite. It was found that a regulator using only thrust along the trajectory can provide a
bounded relative position error, without damping, with a maximum control acceleration (in
m/s2) of 0.0718 θ̇2 times the error along the trajectory and, therefore, has a limited ability to
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neutralize disturbances. However, by modeling, it was found that the proposed controller
successfully provided limited relative position errors below ±10 m.

Sengupta et al. [121] presented expressions describing the average relative motion of
two satellites in adjacent orbits around a planet flattened at the poles. The theory assumes
small relative distances between satellites, which is equally true for all elliptical orbits, as
well as for the special case of a circular orbit due to the use of nonsingular orbital elements.
An analytical filter has been introduced, which compensates for short-period changes in
the relative state without using built-in digital filters, which are usually used to filter noise
in the design of control systems. The application of this filter to maintain the formation on
a given relative trajectory is considered.

In [122], orbital elements are defined as a set of parameters that characterize the
relative motion of a satellite formation based on the principle of geostationary spacecraft
control. From these parameters, the orbital motion and maneuvering equations are derived.
In addition, in [122], acceleration control laws are proposed, including out-of-plane and
in-plane control. To demonstrate them as orbital maneuvers, the following are considered:
the creation of a formation of two satellites, its reconfiguration, maneuvering at long
distances, and the preservation of the formation. The results of modeling the dynamics of
the movement of the formation under the influence of the gravitational field and eccentricity
when applying the proposed law of control with feedback are presented, which show the
effectiveness of the proposed method and the possibility of correct control of the slave
satellite from the lead satellite.

In [123], simple and general analytical solutions are considered for the optimal re-
configuration of a satellite constellation controlled by various linear dynamic equations.
The calculus of variations is used for the analytical search for optimal trajectories and
control. The proposed method makes it possible to predict in advance the exact form of
optimal solutions without the need to solve the problem. It is shown that the optimal
thrust vector as a function of the fundamental matrix of the given equations of state. The
analytical solutions presented in this paper can be applied to most problems of satellite
reconfiguration governed by linear dynamic equations. Numerical modeling confirms the
brevity and accuracy of the solutions obtained.

During the LISA missions [9], it may be necessary to reconfigure the formation to
maintain or improve its functionality [10]. This reconfiguration can be described by relative
dynamics, as presented, for example, in [23,124]. Using relative dynamics in projection
onto a circular orbit, the authors of [17] found analytical solutions for optimal two-pulse
trajectories of reconfiguration of a formation of two spacecraft in orbit. The desired for-
mation is characterized by nonsingular different orbital elements. To achieve the desired
orbital-element differences, [17] proposes an analytical two-pulse solution found using the
Gaussian variational equations. The solutions obtained can be easily implemented using
onboard computing devices. In order to maximize mission life during reconfiguration,
many papers consider the problem of optimization in terms of fuel consumption. The
works by Kurzhansky and his colleagues significantly developed a solution to the problem
of control synthesis for impulsive systems, based on generalizations of the Hamilton–
Jacobi–Bellman variational inequalities, which made it possible, within the framework of a
single formalization, to study control problems for hybrid systems containing jump-like
rearrangements of states [125,126].

Optimization methods based on the calculus of variations, including the theory of basis
vectors, encounter difficulties in finding the global optimal solution, since these methods
can only search in a convex neighborhood around the initial approximation. Therefore, the
global optimality of the solution is not guaranteed, especially with substantially non-convex
objective functions. To mitigate these difficulties, several methods have been proposed,
one of which is the “hybrid optimization”—a combination of the calculus of variations and
global extremum search [127,128]. Paper [10] is apparently the first attempt to use hybrid
optimization with a genetic algorithm to find reconfiguration trajectories, although the
genetic algorithm has often been used for other trajectory optimization problems. In [10],
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the relative motion in the LVLH reference frame is described using the HCW equations of
motion.

The satellite constellation consists of a head satellite and surrounding slave satellites.
The orbit of the lead satellite is considered a reference orbit, and the relative orbits of the
follower are considered to be PCO. PCO predicted distances between the master and slave
satellites [129] are constant. The HCW equation describes the relative motion between the
master and slave satellites in the local reference frame LVLH with the origin on the master
satellite. In this system, the OX axis is defined in the radial direction of the main orbit,
and the OY axis is defined as the longitudinal direction of the main orbit. The OZ axis is
defined to complete the right coordinate system. The relative position vector r and the
relative velocity vector v of the slave satellite are defined in the LVLH reference system.
State vector x of relative dynamics is defined as x =

[
rT vT

]T, where r =
[

x y z
]T,

v =
[
ẋ ẏ ż

]T. Then, [10] displays the linearized equation of relative motion for
two bodies. The distances between the master and slave satellites are ignored during
linearization since they are significantly less than the distance between the main satellite
and the center of gravity (Earth, when moving in the LEO). Thus, the linear equations of
state are obtained

ẋ(t) =
[

O3 I3
A B

]
x(t), A = n2

3 0 0
0 0 0
0 0 −1

, B = n

 0 2 0
−2 0 0
0 0 0

, (57)

where O3, I3 are the zero and unit matrices of order 3, n =
√

GM/a3 is the average speed
of the lead spacecraft, G is the gravitational constant, M is the mass of the central body
(for the Earth, GM = 398, 603 · 109m3 · c−2), a is the semi-major axis of the orbit of the
lead satellite. The homogeneous Equations (57) are then analytically integrated using the

Cauchy formula x(t) = Φx(0), where Φ = exp
([

O3 I3
A B

]
t
)

is the fundamental matrix

of the system (57) , t > 0 stnads for the current time, x(0) denotes the initial state vector.
(There are some inaccuracies in this expression for matrix Φ in [10].)

Kim et al. [10] explored the three types of reconfiguration maneuvers described in [73]
namely resizing, reassigning, and reorienting. Resizing is the change in distance between
spacecraft in the formation. In [10], a hybrid optimization strategy with a genetic algorithm
and basis vector theory is used for fuel-optimal reconfiguration of a satellite group. In
hybrid optimization, the genetic algorithm performs a global search to create two-impulse
trajectories at each transition time, and vector analysis of basis vectors serves for local
optimization with two-impulse trajectories as initial approximations. The final optimal
trajectory has multiple pulses and also lower fuel consumption than two-pulse trajectories.
The mission planner must investigate the trade-off between fuel saved by multiple impulses
and the increased mission complexity due to additional impulses. In many missions, the
trajectory obtained by the genetic algorithm will have an advantage for the transition due
to its simplicity and almost optimal fuel consumption.

The Udwadia–Calaba method is used in [130], where under the assumption of un-
limited and time-varying throttle starts throughout the entire maneuver, precisely and
explicitly without any restrictions on the distance between satellites, the formation reten-
tion problem is solved. Cho and Yu [130] discussed a system of two satellites orbiting a
central body (around the Earth). One of them is called the “master”, and the other is the
“deputy” satellite, which must maintain a given location relative to the head. The equation
of motion of two bodies for an inertial frame of reference is used, which is supplemented
by the requirement to hold the station as constraints for obtaining an equation of motion
that fully takes into account all nonlinearities. From this, the governing force is derived
as an explicit function of state and time required to maintain the formation. The results
obtained are also applicable to the case when the distance between the satellites is so great
that the linearized relative equations of motion are not applicable. The dynamics described
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in the inertial frame of reference is then transformed for convenience into a local moving
frame of reference through the transformation matrix. As a practical limitation, in [130]
a relative configuration that is circular when projected onto the local horizontal plane is
chosen. It is commonly referred to as the PCO [129,131]. Unrestricted motion is relative
motion without a control force acting on the satellite system. The master and slave satellites
move only under the influence of gravity, and therefore “unlimited” and uncontrolled
motions have the same meaning. In the case of movement with restrictions, control forces
must be applied to the system. Therefore, “limited” and “controlled” movements also have
the same meaning. When a satellite with a point mass orbits the Earth, its acceleration a is
written in the Earth’s inertial coordinate system as follows [132]:

a = − GM

(X2 + Y2 + Z2)
3/2

X
Y
Z

 (58)

where G is the universal gravitational constant, M is the mass of the central body (the
mass of the Earth). The Equation (58) is written in the inertial terrestrial coordinate system
originating from the center of the Earth, the X axis points to the vernal equinox, the Z axis
passes through the North Pole, and the Y axis completes the right n.v. (see Figure 3).

Figure 3. Coordinate systems in [130]. (Earth s.c. (X–Y–Z) and s.c. Hill (x–y–z). The distance between
the leading and trailing satellites on the yz-plane of the local rotating coordinate system x–y–z must
be equal to the specified ρ).

Assuming that the master satellite is in a circular orbit with a fixed inclination without
any disturbance, the goal is to maintain a constant distance between it and the follower,
for example, when projecting onto the local horizontal plane. In addition, to prevent
discrepancy in X coordinate, a constraint is also applied between the X and Z coordinates.
Hill’s LVLH coordinate system [21,23] is used to describe these limitations. The origin of
this system is located on the leading satellite, X-axis lies in the radial direction, Y-axis is
in the path direction, and Z-axis lies along the orbital angular momentum vector, thus
completing the right-handed coordinate system see Figure 3. In LVLH coordinate system,
the constraint equations can be written as

y2 + z2 = ρ2, (59)

2x− z = 0, (60)
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where ρ is the constant distance between satellites. Since the Equations (59) and (60)
describe holonomic constraints, they are twice differentiated in time, which gives

yÿ + zz̈ = −ẏ2 − ż2, (61)

2ẍ− z̈ = 0. (62)

Further, in [130], transformations of the rotation of variables from the Earth’s r.s. to
the Hill coordinate system are performedx + r0

y
z

 = R

X
Y
Z

 (63)

with the rotation matrix R, depending on the longitude of the ascending node of the lead
satellite Ω, the angle between the equatorial plane and the orbital plane of the lead satellite

i, latitude of the lead satellite ω = ω0 + n(t− t0), n =

√
GM
r3

0
, and the radius r0 of the

circular orbit of the lead satellite.
This circular is based on linearized equation solutions, and therefore non-linear behav-

ior of relative motion will violate this configuration. To avoid this, additional control force
is used. The approach of [130] provides a general methodology that can be easily applied to
any type of relative configuration. To solve the problem in [130], further transformations of
constraints are performed (61) and (62) to the form (36) and then use (42). For this purpose,
equations (59) and (60) are first reduced to the form

[
y z

][ÿ
z̈

]
= −

[
ẏ ż

][ẏ
ż

]
, (64)

[
2 −1

][ẍ
z̈

]
= 0. (65)

Finally, the system equations are reduced to the form [81]:

ẍ + a + A†(b−Aa), (66)

Mẍ = F + MA†(b−Aa), (67)

whence the expression for the control force Fc is derived:

Fc = MA†(b−Aa). (68)

The presentation is illustrated by numerical examples. It is worth mentioning that
in [130] there are no explicit restrictions on either the control action or the fuel consumption.

Simple and accurate formation control schemes are presented by Cho and Udwadia [133],
where a method of analytic dynamics by Udwadia [76], Udwadia and Kalaba [77], Udwadia
[78,79] is employed. In [133], the explicit control inputs for accurately maintaining a given
formation configuration, using continuous thrust systems, are found. A much simpler
and more explicit expression is obtained to accurately satisfy the formation conservation
constraints for Keplerian reference orbits. Cho and Udwadia [133] also includes explicit
control results when the follower is put into orbit with incorrect initial conditions, as is
usually the case in practice. Extensive computational simulations demonstrate that the
approach of [133] is easy to implement and numerically precise.

The problems of attitude synchronization and tracking in the spacecraft formation in the
presence of model uncertainties and external interference are considered by Wu et al. [134].
A decentralized control law for the adaptive slip mode using the topology of undirected
communication between spacecraft is proposed, which is analyzed on the basis of the
theory of algebraic graphs. A sliding manifold is obtained for several spacecraft, on which
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each spacecraft approaches the desired time-varying orientation and angular velocity, while
maintaining orientation synchronization with other spacecraft in the formation. Next, a
control law is developed to ensure convergence to a sliding manifold. The stability of
the resulting closed-loop system is proved by applying the Barbalat lemma. The simula-
tion results demonstrate the effectiveness of the proposed synchronization and tracking
methodology for orientation problems.

The problem of designing a distributed controller for a continuous time system con-
sisting of a number of identical dynamically coupled subsystems is discussed in [135]. The
main mathematical conclusion is based on the Kronecker product and a special similarity
transformation built from a matrix of interconnection patterns that breaks the system into
modal subsystems. This, along with the result of formulating the extended linear matrix
inequality (LMI) for continuous-time systems, allows one to obtain explicit expressions for
calculating the parameters of distributed controllers for both state feedback and dynamic
output feedback. The main contribution of [135] is the solution of the distributed control
problem for systems with continuous time under the conditions of H∞/α-stability and H2/α-
stability characteristics by solving the set of LMIs with non-common Lyapunov variables. The
efficiency of this method is demonstrated by the example of a satellite formation.

Autonomous navigation of micro-UAVs is usually based on the integration of inexpen-
sive Global Navigation Satellite System (GNSS) receivers and inertial and magnetic sensors
based on microelectromechanical systems (MEMS) for motion stabilization and control.
The resulting navigation performance in terms of position and orientation accuracy may
be insufficient for other mission tasks, such as those related to precise sensor pointing. In
this context, [136] introduces a collaborative UAV navigation algorithm that allows the
main vehicle equipped with inertial and magnetic sensors, a global positioning system
(GPS) receiver, and a vision system to improve its navigation performance (in real time
or in real-time). The focus is on the outdoor environment, and the key concept is to use
differential GPS (DGPS) among vehicles and vision-based tracking (DGPS/Vision) to create
a virtual auxiliary navigation sensor, which information is then integrated into a sensor
fusion algorithm based on an extended Kalman filter (EKF). The developed concept and
processing architecture are described with an emphasis on the DGPS/Vision orientation
determination algorithm. Efficiency assessment is carried out on the basis of numerical
modeling and flight tests. In the latter of these, the navigation estimates obtained from
the DGPS/Vision approach are compared with the estimates provided by the onboard
autopilot system of the tuned quad. The analysis shows the potential of the developed
approach, mainly due to the ability to use magnetic and inertial-independent accurate
orientation information.

The distributed robust control method is developed relies, on a spaceborne distributed
telescope, is presented in [137], where a combination of robust H∞ control and distributed
control using the consensus approach is proposed, focused on the application to satellite
formation motion.

The method of simultaneous control of the relative motion and orientation of the solar
radiation pressure was proposed in [138]. The aim of the control is to stabilize a given closed
relative orbit. The basic idea is to use special materials for solar sails that can change their
optical properties. A solar sail consists of several rectangular cells. Each of them can change
its optical properties. The required steering force is generated by varying the average
reflectivity of the solar sail, and the steering torque is achieved using the appropriate black
and white mesh pattern.

Mashtakov et al. [139] discussed the use of sunlight pressure to control a satellite
formation. The control is based on the rotation of the sail normal, which provides for a
change in the optical properties of its surface.

Monakhova et al. [140] dealt with the problem of satellite formation immediately after
launch. When detached from the launcher, there is a certain error in the magnitude of the
speed jump, which leads to slightly different periods of rotation of the satellites. As a result,
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relative paths become open. Differential control using a resistance force is considered. The
satellite orientation is controlled by a magnetic actuator.

The problem of creating a robust formation controller for a group of satellites whose dy-
namics are associated with nonlinearities and uncertainties is considered by Liu et al. [141].
For a constellation of satellites, a formation adjuster is proposed that includes a position
adjuster for the formation of the desired precise formation and a position adjuster for
aligning the positions of the satellites. It is shown that errors in trajectory tracking and
orientation of the entire closed-loop control system can converge to a given neighborhood
of the origin in a finite time. Simulation results are presented to demonstrate the benefits of
the proposed formation control scheme.

In [142], trajectory analysis, mission design, and the control law for several microsatel-
lites for joint traversal of the spacecraft are considered. The problem of the cooperative
movement of a group of satellites along an elliptical trajectory, i.e. cooperative circumnavi-
gation, (CCN) is first defined to bring the group of microsatellites to a predetermined plane
ellipse relative to the host spacecraft while maintaining the geometric configuration of the
formation. Then, a CCN control law is proposed, in which artificial potential functions
and the Laplace affine matrix are applied to fulfill the requirements of the CCN mission.
Simulation results are presented to show the feasibility of this approach.

In [143], a joint navigation approach for unmanned aerial vehicles (UAVs) is presented,
which makes it possible to reliably and accurately determine the orientation of the main
aircraft flying in formation with other UAVs (alternates, slaves). The proposed method is
based on a closely related extended Kalman filter using the spatial diversity of measure-
ments from global navigation satellite systems (GNSS) and vision systems integrated with
data from inertial and magnetic sensors. The main focus is on the external environment,
and the innovative idea is to extend the attitude estimation approaches based on multiple
GNSS antennas to a multipurpose system where differential GNSS and UAV visual tracking
of UAVs are used to create a virtual auxiliary navigation sensor. The processing concept
and architecture are described with an emphasis on an ECP measurement update phase
that is applicable to any number of collaborating proxies and to different GNSS processing
architectures. The effectiveness of the proposed method is evaluated by experimental tests
using two multi-rotors and two fixed ground antennas, one of which is used as a ground
reference point for the analysis of pointing accuracy. The results show the feasibility of the
developed approach in terms of accuracy and providing drift-free estimates in real-time or
in post-processing scenarios.

A group of four satellites forming a tetrahedron is discussed in [144]. The task is to
maintain relative orbits so that the tetrahedron retains its shape and size over time according
to the introduced criterion. The problem of constructing relative reference orbits of satellites
is solved, which, within the framework of the linear HCW model, ensure the preservation
of the tetrahedron parameters in the absence of control. In the framework of the Schweigart–
Sedwick linear model [91,92], which takes into account the influence of the second harmonic
of the geopotential, as well as in the framework of a nonlinear motion model with the second
harmonic, algorithms are proposed for constructing uniaxial motion control of satellites
oriented along the Earth’s magnetic field, which ensure the maintenance of relative orbits.

In [145], the task of controlling a group of four satellites in a low near-circular Earth
orbit is considered. The satellites form a tetrahedron of a certain shape and size. The initial
data were selected in such a way that the change in the shape and size of this tetrahedron
during the movement of satellites in orbit was minimal. The choice of the initial data was
carried out analytically and then numerically refined. Michael Ross et al. [146] presented
an approach to solving a class of problems arising in the development of satellite swarms.
The key issue addressed in this article is “simultaneous” fusion and orbit control to achieve
swarm configuration. Although any design criterion can be used, a fuel consumption
approach is used, since the fuel cost (loss) function is extremely high for a spacecraft
(SC). It is shown how certain elements of the theory of optimal periodic control provide a
very natural formulation of this problem. Using versatile dynamic optimization software
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it is shown how one can easily design satellite formations without using any analytical
results. If a natural zero fuel solution does not exist, a byproduct of the proposed approach
automatically determines the minimum amount of fuel and the associated controls required
to maintain the formation.

5. Conclusions

This paper provides an overview of the results on the control of a formation flight
of spacecraft, expanding and supplementing the review [1], related to 2004, with modern
publications. Three types of formation architectures are considered: MIMO, in which
the formation is treated as a single entity with multiple inputs and multiple outputs;
LF, in which individual spacecraft controllers have linked hierarchically, and a virtual
structure in which each spacecraft in formation is considered as a rigid body, embedded in
a common virtual structure. The MIMO architecture differs from other ones in its optimality
and stability. However, the use of all system states leads to the need to introduce high
requirements on the information exchange, so such algorithms are usually unstable to
local failures. The leader–follower architecture uses information about leaders only, which
simplifies formation navigation. The problem of reliability is solved by increasing the
number of leaders. However, this approach is inferior in optimality, and for ensuring high
system stability, information requirements can reach those of the MIMO case. The cyclic
architecture is a middle ground between LF and MIMO architectures. The information
requirements are as high as those of MIMO case, and connections between some devices
are allowed. However, round-robin algorithms can be completely decentralized. There is
no coordinating agent and no instability due to single failures. In the process of research in
this area, a number of directions have appeared in which, in particular, an increase in the
stability and reliability of systems, reducing requirements for information restrictions, and
increasing the spacecraft autonomy in formations. In the paper, examples of modern group
spacecraft missions are also outlined.
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EMFF Electromagnetic Formation Flight
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MPC Model Predictive Control
MRP Modified Rodrigues Parameter
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NRL Naval Research Laboratory
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PCO Projected Circular Orbit
PD Proportional-Differential
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SFFC Spacecraft Formation Flight Control
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