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Abstract: The paper is focused on issues related to the control of electrical drives with oscillations of
state variables. The main problem deals with the construction of the mechanical part, which contains
elastic elements used as a coupling between the motor machine and the load. In such cases, strict
tracking of the reference trajectory is difficult, so damping of the disturbances is necessary. For this
purpose, the full state vector of the object is applied as the feedback signal for the speed controller.
This method is efficient and relatively easy to implement (including the hardware part). However, the
control accuracy is dependent on the quality of the parameters identification and the invariance of
the object. Thus, two adaptive structures are proposed for the two-mass system. Moreover, selected
coefficients were optimized using metaheuristic algorithms (symbiotic organism search and flower
pollination algorithm). After presentation of the preliminaries and mathematical background, tests
were conducted, and the numerical simulations are shown. Finally, the experimental verification
for the 0.5 kW DC machines was performed. The results confirm the theoretical concept and the
initial assumptions: the state controller leads to the precise control of the drive with a long shaft;
recalculation of the parameters can improve the work of the drive under changes of time constants;
modern design tools are appropriate for this application.

Keywords: state controller; gains adaptation; symbiotic organism search; flower pollination algo-
rithm; optimization; electrical drive

1. Introduction

In industrial applications of electrical drives, the main points of concern are the
reliability of the control structure, the dynamics of the system’s response and the ability to
control the state of the plant. A satisfying level of these properties is difficult to obtain when
the mechanical structure of the system is compound [1–3]. When a motor is connected to a
load machine through a long, thin gear, the machines may start rotating at varying speeds,
often in an oscillatory manner. Highly resonant systems with an elastic shaft and a heavy
load machine (such as rolling mills [4], wind turbines [5], and robotic arms [6,7]), often
referred to as two-mass systems, can be widely found in many industrial solutions. When
the shaft is subjected to torsion, the angular velocity of the motor differs from the angular
velocity of the load machine, causing oscillations. As a result, many undesirable effects
occur in the control structure: the quality of the industrial process may worsen, the final
product may be defective or damaged [8], the torsion may cause damage to the mechanical
structure of the drive (shaft rupture), and even the stability could be lost [9]. The most basic
method of suppressing oscillations is the use of mechanical dampeners. However, for this
approach, the mechanical structure of the drive must be modified.

Besides interfering with the mechanical part of the drive, passive and active control
methods can be distinguished. The passive methods used to suppress these oscillations fo-
cus on the reduction in the reference signal dynamics through the use of signal filtering [10].
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It is, however, very detrimental to the dynamic capabilities of the control structure and
complicates the command signal generation. The active methods rely on using advanced
control structures to mitigate the influence of the elastic connection on the control quality.
The most basic method used to control the speed of such drives is the cascade control with
two PI controllers—one of them responsible for controlling the current, while the other
controls the speed of the motor. This solution does not use any additional information about
the load machine; therefore, damping of the oscillations is not efficient [11]. In the literature,
many modifications of the PI control with additional feedback loops from the torsional
torque and the angular velocity of the load are presented [12,13]. Very promising results
are obtained when a state controller is used [14]. However, all the state space variables (the
angular velocity of the motor and the load, and the torsional torque) must be known to
apply this method [15]. The mentioned technique is very sensitive to external disturbances
(such as measurement noise, friction and additional dynamic load changes), nonlinearities,
and inaccurate identification of the plant’s parameters [16]. To obtain the information
about the state of the plant, appropriate sensors or estimation algorithms should be used.
Obviously, the second option is preferable due to the reduction in the overall cost and the
increased reliability of the drive. Although mathematical models of the variables can be
used, their dependence on parameter uncertainties poses a significant problem [17]. In
order to obtain a robust tool for the state variables calculation, state observers [18], the
Luenberger observers [19], and the Kalman filters [20] are usually implemented.

The results achieved using the state controller can present efficient damping of the
state variables oscillations. Moreover, the hardware implementation of the state controller’s
topology is simple and feasible. The most problematic issue lies within the structure’s
robustness against the changes of the object’s resonant frequency. To improve the control
structure’s reaction to the identification imprecision and robustness against external dis-
turbances, structures with adaptive properties seem to be an interesting solution [21,22].
According to an analysis of the structure of the controllers, applications proposed in scien-
tific papers can be generally divided into solutions based on neural networks (NN) [23],
fuzzy logic (FL) models [24,25], or classical reconfigurable controllers [26].

Synthesis of control structures with NNs is very challenging because of multiple
parameters that must be first adjusted. The main concern is the used learning algorithm.
Two approaches can be taken into consideration: offline or online learning. For offline
learning, the training data must be first collected and pre-processed before the adaptation
of the weights used in the network can be conducted [27]. However, adaptive properties are
obtained only if online training is applied, meaning the weights must be changed during
the operation of the system [28]. Another parameter to be considered is the network’s
topology. The simplest solutions present ADALINE NNs [29], and combinations of many
linear neurons organized into layers—multiple layer perceptron (MLP) NNs [30]. More
sophisticated structures include recurrent connections within the network [31,32]. Another
point of concern is the selection of the proper activation function for the neurons. The most
often chosen activation functions are sigmoid and radial (Gaussian) activation functions [33].
The last parameter needed to design a neural controller is the selection of the learning
algorithm and the value of the learning coefficient. With so many different parameters to
adjust, control solutions with neural structures may be very difficult to apply. Moreover,
using NNs significantly increases the computational power needed for the structure’s
real-world application.

Similarly to neural controllers, fuzzy system controllers also need to have multiple
parameters adjusted to work correctly [34,35]. The main design problem concerns the
proper selection of the rule base. To set the rules correctly, the system designer must have
comprehensive knowledge about the controlled process and the fuzzy systems themselves.
Additionally, the shape of the membership functions, the method of obtaining conclusions
from the system (e.g., Mamdani [36] or Takagi-Sugeno-Kang [37] methods) and the defuzzi-
fication method (e.g., the center of gravity method or the mean of maximum method) must
be chosen.
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The details of the structure and the design process related to neural and fuzzy con-
trollers analyzed above lead to the conclusion that the simple classical solutions and
concepts known from the theory of artificial intelligence should be combined. In this
paper, a state controller with adaptive parameter vector is presented, and two types of the
controller are considered. The first uses only the recalculation of the parameters related to
the speed of the drive. The second one presents the full adaptation of the gains. The overall
construction of the controller is based on the model reference adaptive control (MRAC)
structure.

The idea behind MRAC systems is based on the use of the difference between the
output from a reference model and the actual output of the system [38]. The difference
signal is used to change the values of the controller’s gains with a selected adaptation
algorithm. The controller is changed to minimize the difference between the model and
the system outputs. The advantage of MRAC systems is that the system designer has a
direct way of determining the desired behavior of the system through the reference model
selection. Moreover, the calculation of the updates for the adaptation process is rarely
described by complex equations; therefore, this method is not as computationally heavy as
other adaptive structures [39].

To facilitate the design process of the adaptive state controller, the parameters can be
optimized using nature-inspired algorithms. Such methods are based on the minimization
of a cost function value. What speaks in their favor is the computational simplicity (the
derivative of the cost function does not need to be calculated) and the easy development
of the practical implementation. They are also applicable to multiple criteria analysis
problems. Various species and natural phenomena have been observed and imitated to
create such algorithms: the artificial bee colony (ABC) algorithm [40,41], the cuckoo search
(CS) algorithm [42–44], the grey wolf optimizer (GWO) [45,46], or the particle swarm
optimization (PSO) [47,48] are some of the commonly used examples of such algorithms.
In our research, the focus is shifted toward two other examples—the symbiotic organism
search (SOS) [49,50], the goal of which is to search for other specimens that might be capable
of entering symbiotic relations with each other, and the flower pollination algorithm (FPA),
which is inspired by the process of pollen distribution by flowers in a meadow [51,52].

The paper is organized as follows. Section 2 focuses on the introduction of the math-
ematical description of the analyzed plant, the derivation of the equations for the state
controller, and the explanation of the adaptation using the Widrow-Hoff rule. The next
two sections show the preliminary information about the used optimization algorithms.
Next, the simulation results with commentary are presented. In the following section, the
experimental verification of the obtained simulation results is presented. Finally, the last
section summarizes the research results and concludes the paper with final remarks and
observations.

2. A State Controller Applied for Speed Control of Electrical Drives with Elastic Shaft

A simplified picture of the drive’s mechanical part is presented in Figure 1. The control
structure analyzed in this article is based on a state controller and a two-mass drive (as
presented in Figure 2).

Figure 1. The general view of a two-mass system.
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2.1. Overall Description of the Control System

The presented model of the mechanical part of the drive can be described using the
following system of differential equations [31,53,54]:

dω1

dt
=

me −ms

T1
(1)

dω2

dt
=

ms −mL
T2

(2)

dms

dt
=

ω1 −ω2

Tc
(3)

where ω1 and ω2 represent the rotational speed of the motor and the load (respectively),
me is the electromagnetic torque, ms is the torsional torque and mL is the load torque. T1,
T2 and Tc are the mechanical time constants of the motor, the load and the shaft connecting
the two masses. In this paper, the frictional forces are not taken into account.

To represent the control structure more clearly, the torque control loop is simplified to
a first-order transfer function Ge with a time constant of Tme

Ge =
1

Tmes + 1
(4)

The whole proposed control scheme is based on a cascade structure. It consists of
the inner control loop with a PI controller responsible for establishing the electromagnetic
torque, and the outer loop with the proposed adaptive state feedback controller, which
controls the angular velocity of the drive. It must be noted that for the purpose of this
study, the drive is assumed to be fully observational (all of the state space variables are
measurable). Even though the torque control loop is represented as a simple transfer
function, in the practical implementation the output of the torque controller is limited.
The simplification of the electromagnetic loop Ge is also related to a small time constant
of the current loop. It should be mentioned that with the current advances in power
electronics, the delay caused by the power converter’s switches does not exceed 5 ms,
which is negligible when compared to the mechanical time constant responsible for shaping
the output speed. This approximation simplifies the calculation provided in the next
sections.

Figure 2. The proposed control scheme.
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2.2. A State Controller with Fixed Parameters Implemented for the Two-Mass System

The proposed adaptive speed controller is based on a classic state controller. The
initial gain values for the adaptation process are selected as for the classic version. In the
following analysis, Ge is assumed to be equal 1.

In addition to the system of Equations (1)–(3), the electromagnetic torque can be
described as

me =
∫ (

Ki(ωre f −ω2)−
d
dt

(K1ω1 + K2ms + K3ω2)
)

dt (5)

which, using the Laplace operator s, can be rewritten as

me =
Ki
s
(ωre f −ω2)− (K1ω1 + K2ms + K3ω2) (6)

Parameters Ki, K1, K2 and K3 are the gains of the controller (scalar values, meaning
they are dimensionless). Combining Equations (1)–(3) and (6), the closed-loop transfer
function can be represented as

ω2

ωre f
=

Ki

s4T1T2Tc + s3K1T2Tc + s2(T1 + T2 + K2T2) + s(K1 + K3) + Ki
(7)

The characteristic polynomial of the control structure has the following form:

H(s) = s4 + s3 K1

T1
+ s2

(
1

T1Tc
+

1
T2Tc

+
K2

T1Tc

)
+ s

K1 + K3

T1T2Tc
+

Ki
T1T2Tc

(8)

To obtain the values for the controller’s gains, the coefficients of the polynomial H(s)
must be compared with the values of the coefficients in the reference polynomial R(s). The
polynomial R(s) is chosen arbitrarily; however, both polynomials must be the same order.
For this study, the polynomial R(s) is assumed as

R(s) = (s2 + 2ζrω0s + ω2
o)

2 (9)

where ζr is the desired damping coefficient, and ω0 is the desired resonating angular
frequency. As a result of the comparison, the following equations are derived:

4ζrω0 =
K1

T1
(10)

2ω2
0 + 4ζ2

r ω2
0 =

1
T1Tc

+
1

T2Tc
+

K2

T1Tc
(11)

4ζrω3
0 =

K1 + K3

T1T2Tc
(12)

ω4
0 =

Ki
T1T2Tc

(13)

and finally, the expressions describing the feedback gains of the state controller are obtained:

K1 = 4ζrω0T1 (14)

K2 = T1Tc

(
2ω2

0 + 4ζ2
r ω2

0 −
1

T1Tc
− 1

T2Tc

)
(15)

K3 = T1T2Tc4ζrω3
0 − K1 (16)

Ki = ω4
0T1T2Tc (17)

The expressions presented above were applied for the tuning of the controller with
fixed parameters. The values were also used as the initial points for the adaptive versions
of the speed controller.
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2.3. Scenario 1—Partial Adaptation of the Parameters Used in the State Controller

The adaptation of weights in a simple neural model can be achieved through the use
of the delta rule [55]. Here, similar calculations inspired by the fundamentals from the
theory of artificial intelligence are proposed. In the state controller, the feedback coefficients
are used to recalculate the signal values. Then the signals are combined into one element (a
sum of values, similar to a neuron with a linear activation function). In order to reduce the
state error, an additional integral element is often implemented (main path with error). In
consequence, a form of integral control with state feedback is obtained.

In these considerations, for the updates of the speed controller gains, a simplification
is assumed—direct multiplication (without integration) is considered. Additionally, the
basic form of the full state feedback controller is analyzed. According to the conditions
mentioned above, additional issues related to the limitation of signals are omitted. Then, the
output of the state controller (the reference electromagnetic torque value), can be rewritten
as follows:

mez = −Kie− K1ω1 − K2ms − K3ω2 (18)

where:
e = ωre f −ω2 (19)

The main goal of coefficient optimization is to reduce the error defined as

em = ωre f m −ω1 (20)

where ωre f m is obtained by passing the reference signal ωre f through a model of the desired
dynamics. In this paper, the model takes the following form:

Gm(s) =
ω2

0
s2 + 2ζrω0s + ω2

o
(21)

The parameters of the state controller are updated using the following formulas:

Ki(k + 1) = Ki(k) + ∆Ki(k) (22)

K1(k + 1) = K1(k) + ∆K1(k) (23)

K3(k + 1) = K3(k) + ∆K3(k) (24)

where k is the number of the current iteration.
The novelty of the presented research lies within the adaptation of the variable K2. The

proposed adaptation algorithm for K2 will be described in the subsequent section. Before
that, the updates of the Ki, K1, and K3 are analyzed. First, Equations (22)–(24) are redefined:

Ki(k + 1) = Ki(k)− αgi(k) (25)

K1(k + 1) = K1(k)− αg1(k) (26)

K3(k + 1) = K3(k)− αg3(k) (27)

where α is the adaptation coefficient, and gi, g1 and g3 are the partial derivatives of the
error function with respect to their corresponding variables:

gi(k) =
∂E(k)

∂Ki
(28)

g1(k) =
∂E(k)
∂K1

(29)

g3(k) =
∂E(k)
∂K3

(30)
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The mentioned error function E can be taken from the neural network theory. It can
be defined as

E =
1
2

(
d(k)− y(k)

)2
=

1
2
(em(k))2 (31)

where d is the desired value from the model, and y is the output value. For this application,
the output of the neural model y can be defined using (18). According to the issues
considered above, the adjustments of the gains in the analyzed controller are described
with the following equations [56]:

∆Ki(k + 1) = −αem(k)e(k) (32)

∆K1(k + 1) = −αem(k)ω1(k) (33)

∆K3(k + 1) = −αem(k)ω2(k) (34)

The definition of the correct value is hard to describe using mathematical formulas.
Thus, in this work, the selected metaheuristic algorithms were applied for this purpose.

The stability of the presented structure can be analyzed in two main ways. The
experimental and the theoretical approaches can be adopted. To check the stability of the
given system, the trial and error method for different values of the initial weights and
the learning coefficients can be applied. On the other hand, there are theoretical methods
for ensuring the stability of a given system. One of the most commonly used methods is
the Lyapunov’s stability theorem. It is applied in a wide range of plants with adaptive
controllers. However, this work is focused on the implementation and tests of a modified
adaptive state controller.

2.4. Scenario 2—A Novel Approach to the Adaptive State Space Controller—Indirect Adaptation
of K2

The first version of the adaptive state controller uses recalculation of the parameters
based on the speed error. The gain of the path with the ms signal is constant. This
assumption is related to problems with the accessibility of the reference signal for the
torsional torque. Otherwise, the method (from the previous section) of adaptation should
be extended also for the K2 parameter. However, the speed and the torque have different
dynamics and shapes; they eliminate the adaptation of this coefficient similar to the others.
Thus, an additional modification is proposed. Using Equations (14)–(17) the formula for K2
can be rewritten as

K2 = 2T1Tcω2
0(1 + 2ζ2

r )−
T1

T2
− 1 (35)

The following can also be observed

T1 =
K1

4ζrω0
(36)

T2 =
Ki

T1Tcω4
0
=

4Kiζr

K1Tcω3
0

(37)

By inserting (36) and (37) into (35)

K2 =
K1Tcω0

2ζr
−

K2
1Tcω2

0
16ζ2

r Ki
+ K1Tcζrω0 − 1 (38)

After recalculations, the new formula for K2 is achieved:

K2 =
K1Tcω0(8Kiζr − K1ω0)

16ζ2
r Ki

+ K1Tcζrω0 − 1 (39)

With this description, the parameter K2 now becomes indirectly subjected to adap-
tation. It is dependent on other gains of the controller (Ki and K1), which are already
changing their value, causing K2 to also change its value alongside them. What is worth
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noting is that now, that value is independent from the time constant of the load machine T2,
which is the most changing part for this expression.

3. Nature Inspired Optimization Algorithm—The Symbiotic Organism Search

The symbiotic organism search is a nature-inspired algorithm that simulates the
behavior of organisms spotted in their natural habitats [57]. None of the organisms live
alone. The relationships between them can be described as symbiosis, which stands
for “living together”, where two or more species bring benefits to one or more parties
involved. Depending on the result of the symbiosis, different relationships can be formed:
commensalism, mutualism, and parasitism. Mutualism is the most common form of
symbiosis between different species where two organisms benefit from the relationship.
Commensalism describes the two organisms living together, where only one benefits but
the other one is not harmed. The third relationship, parasitism, benefits only the parasite,
while the other organism, called the host, is harmed. The SOS describes only the three
aforementioned relationships from all six possible relationships.

The SOS uses the population of organisms to solve the numerical optimization task
over the course of many iterations. The generated population is used to model the three
symbiotic behaviors. A member of the population or ecosystem is randomly generated
with constraints to the limits of the optimization task:

xi = UB + rand(0, 1) · (UB− LB) (40)

where x is the newly generated solution, i is the number of the specimen, and LB and UB
are the lower and the upper bounds of the optimization problem, respectively. Then, the
fitness function for the whole ecosystem is evaluated, and the best candidate should be
found—the one with the lowest value of the fitness function for the minimization problems.
In this paper, the following fitness function is used:

Fcost =
N

∑
k=1

|ω1(k)−ω2(k)|
N

(41)

where N is the number of samples of the simulation.
After finding the best organism, the mutualism phase takes place. As in all forms of

symbiosis, two organisms are needed, so apart from the currently selected individual xi,
another one (xj) is randomly selected from the population. Both organisms are coupled
for a mutualistic relationship, the goal of which is to increase the survival rate of both. To
calculate the new solutions, mutual vector (MV), as well as beneficial factors (BF) should
be calculated first [58].

MV =
xi + xj

2
(42)

MV represents the relationship between both organisms, while BF models the level of
benefit from i or j organism. BF is randomly selected as 1 or 2. New values of xi and xj are
then created using the following formula [50]:

xnew
i = xi + rand(0, 1) · (xbest −MV · BF1) (43)

xnew
j = xi + rand(0, 1) · (xbest −MV · BF2) (44)

where xbest is the fittest individual.
xbest is incorporated into Equations (43) and (44) as the population tries to evolve

according to Darwin’s law—“survival of the fittest”. Later, the fitness function of the
evolved organism is evaluated. If the new values are better, xnew takes the place of x; in the
other case, x is saved in the ecosystem. The effect of the mutualism phase and the effect of
MV is presented in Figure 3 below.
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Figure 3. Visualization of the mutualism phase.

The commensalism phase comes later, where only one organism benefits from the
relationship. It can be modeled in the same way without the usage of the MV and BF. The
new value of the organism is generated based on the best individual and the randomly
selected organism (45) [59].

xnew
i = xi + rand(−1, 1) · (xbest − xj) (45)

The effect of the commensalism phase is depicted in Figure 4.

Figure 4. Visualization of the commensalism phase.

The last part of the algorithm consists of the parasitism phase. The parasitism phase
utilizes the so-called parasite vector (PV) [60]. It is created by duplicating and modifying
random dimensions from a selected organism xi. Then, another organism xj is randomly
selected that can be treated as a host to a parasite xi. The goal of the parasite is to replace
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the host in the ecosystem. The fitness function of both organisms is evaluated, and the
fittest one stays in the population. If the PV has a better value of the fitness function,
it replaces the host position in the ecosystem. Otherwise, if the host is immune to the
parasite, it is saved in the population and the PV is erased. There are many different ways
to implement the parasitism phase. In some cases, creating the PV just means creating a
new organism [50,61]. In other implementations, some dimensions are changed, and this
is dependent on the version of the algorithm [57,59]. This application changes only one
dimension of the selected organism. The visualization of the last phase is shown in Figure 5.
The basic parameters of the SOS are presented in Table 1 below. The whole algorithm can
be summarized in the block diagram depicted in Figure 6.

Figure 5. Visualization of the parasitism phase.

Table 1. Parameters of the symbiotic organism search algorithm.

Parameter Value

Population size 20
Main loop iteration count 20

[LB, UB] [−0.5, 0]
Max. time for a main loop 120 min

Changes in the fitness function are presented in Figure 7 below. The minimum value
achieved by the algorithm was equal to Fcost = 1.253× 10−3, it was also marked with the
light blue transient. As presented, even the value achieved in the first iteration was close
to the final result, which shows that this task was relatively simple for a metaheuristic
algorithm to calculate.
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Figure 6. The block diagram of the symbiotic organism search algorithm.

Figure 7. Changes in the fitness function during the optimization process.

4. Nature Inspired Optimization Algorithm—The Flower Pollination Algorithm

Currently, a significant increase in applications of metaheuristic optimization algo-
rithms may be observed, especially for solving non-linear, complex functions. As it was
presented in the introduction of the paper, a few parameters of the controller have to be
determined in order to ensure the expected dynamics of the plant. The presented method
of pole placement may only be used if all parameters of the controlled plant are properly
identified [12]. That method is not appropriate for closed-loop control when any elements
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of artificial intelligence are employed. The stability issues may be observed in such cases
when the controller is tuned with the standard method. This is caused by the fact that
during the synthesis, such elements are not taken into account in the mathematical model
of the control structure [62]. However, the issue may be eliminated by the approach of the
direct tuning of closed-loop systems. The initial controller coefficients may be tuned during
the operation of the plant. However, the more efficient and safer solution is to perform the
tuning during simulations. There are different algorithms that may be employed for such a
task [63]. In this paper, the nature-inspired algorithms were examined. For comparison
purposes, the tuning was also conducted with the flower pollination algorithm.

The flower pollination algorithm is a metaheuristic algorithm that mimics the natural
process of pollen transfer. The algorithm was presented by Xin-She Yang in 2012 [64]. The
algorithm is a universal tool for optimization in different areas of science, economics and
also social behavior studies [65–68]. It belongs to swarm-based metaheuristic algorithms.
This means that in every iteration, the initial population is improved because only the
strongest specimens are able to survive. The strength of every specimen equals the value
of the fitness function. Because the tuning process is a minimization task, the smaller the
obtained value of the cost function, the better the solution. In the considered application,
the same cost function that was employed with the SOS algorithm was proposed. The
difference between the angular velocity of the electrical motor and the load machine is
calculated for every sample. Then the mean of the absolute values is calculated.

The flower pollination algorithm is based on the observations of pollen transfer. Two
processes of this phenomenon may be differentiated in nature. The first one is called cross-
pollination, and it requires the specimens of two different plants to take part. Because of the
fact that the pollen has to be moved over longer distances in cross-pollination, pollinators
(insects) are required to move pollen between distant flowers (Figure 8a). The movement of
the insects is considered a global, random process. This leads to the suggested mathematical
model of such movement, called Lévy flight (46). The random movement is obtained by
the Γ(λ) parameter [69].

L =
λΓ(λ) sin (πλ

2 )

πs1+λ
(46)

where Γ(λ) is the standard gamma function for the index λ, s is a random step size from
the Lévy distribution.

The second mechanism of pollen transfer is independent from external creatures and
may be driven only by wind. It employs flowers of the same plant, and is called self-
pollination (Figure 8b). This process allows the plant to survive; however, the features of
the new specimen are very similar to its predecessors. Because of that, it is considered local
and depends only on specimens from the current population.

Figure 8. Pollen transfer mechanisms: (a) cross-pollination, (b) self-pollination.

Global and local optimization is required to obtain satisfactory results. Global opti-
mization ensures that the calculations do not stop at the local extremum and the global
minimum is obtained, while local optimization is required to obtain even better approx-
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imation of the fittest solution. These two mechanisms are switched randomly in every
iteration. The drawn value r is compared to the probability switch parameter P. Depending
on the value of r, the current iteration may be calculated either as global optimization
(Equation (47)) or local optimization (Equation (48)). After the new solution is calculated,
the cost function value is checked. If the improvement is noted, the ı-th specimen in the
population xold

i is replaced with a new solution xnew
i . After all the iterations are computed,

the global best result is returned. The flow of data during the optimization with the FPA is
shown in Figure 9.

xnew
i = xold

i + γL(λ)(g∗ − xold
i ), (47)

xnew
i = xold

i + ε(xold
j − xold

k ), (48)

where xnew
i is the new solution, xold

i is the value of the i-th specimen in the current popula-
tion, γ is the step size for the global pollination, L(λ) is the calculated Lévy flight step, g∗

is the current best solution, ε is a random step size for the local pollination from Gaussian
distribution, and xold

j , xold
k are values of two specimens chosen from the current population.

For research purposes, in order to receive comparable data, the population size was
set to 20 specimens, and only 20 iterations were considered. The optimized variable was
the α coefficient, which is responsible for the adaptation speed. The bounds of the search
range were defined basing on the knowledge about α presented in [70]. All parameters are
gathered in Table 2.

Table 2. Parameters of the flower pollination algorithm.

Parameter Value

Population size 20
Main loop iteration count 20

Probability switch P 0.8
[Lb, Ub] [−0.5, 0]

Figure 9. Block diagram of the flower pollination algorithm.
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Even a small number of computed main loop iterations leads to improvement. The
values of the fitness function in consecutive iterations are shown in Figure 10. In the given
example, the obtained minimum value of the fitness function is equal to Fcost= 4.27× 10−3.
As it was already noted in the SOS description, the very first iteration quickly improves the
solution close to the global best.

Figure 10. Best value of cost function during optimization process.

Because the process is based on the development of the populations - the improvement
of every specimen in following iterations can be observed (Figure 11). This inheritance-
based approach improves the optimization efficiency.

Figure 11. Optimization process—changes of population composition measured with cost func-
tion value.

Both presented algorithms use a pseudo-random number generator, which is a com-
mon practice in the meta-heuristic approach. The goal of the optimization process is to
find a point close to the global minimum of the fitness function. Finding a point that is
a global minimum is not always guaranteed when nature-inspired algorithms are used.
The optimization process gives only the starting point to the gradient-based algorithm
presented in the previous section. Then, the goal of the learning process of the controller is
to obtain the global minimum point.
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5. Simulation Tests

Simulation tests were carried out using the MATLAB/Simulink environment. The con-
trol structure was implemented in Simulink, and the data were fed through the MATLAB
workspace. During the simulation time of tsim = 20 s, the drive performs reversions with
the amplitude of ωre f = 0.25 p.u. The load torque is applied in tml = 13.2 s of simulation
with a nominal value. All the state space variables were saved during the simulations.

The main point of this paper is to show that the adaptive state space controller can be
implemented in many ways. One of them is to set the initial values of the adaptive gains
as calculated in Equations (14)–(17), and optimize the value of the adaptation parameter
α. Transients for the nominal case for the SOS and the FPA optimization are shown in
Figure 12. There is no overshoot or oscillations present in the speed transients. The drive
precisely follows the reference speed. A high level of control accuracy is observed. The
reaction of the state variables after the load switching is dynamic. Even though both figures
look similar, the optimization parameter α slightly differs between the algorithms. The SOS
optimization yields αSOS = 0.0341, and the FPA yields αFPA = 0.0312. Correct adaptation
can be noticed in the changes of the gains (Figure 13). Values of the adaptive parameters
are changed after every reversion of the drive. It can also be seen that the load torque also
has an impact on the values of the weights.

Figure 12. Changes in the state variables of the drive after the optimization process for the nominal
parameters of the drive: (a) the SOS optimization, (b) the FPA optimization. ω1 and ω2—motor and
load speeds. me and ms—electromagnetic and shaft torques.

To show the improvement over the classic state space controller, a comparison of the
optimized adaptive structure (by the SOS) and the state space controller is also presented.
The difference between drive performance with the SSC and the adaptive optimized
controller (with only the value of the adaptive coefficient optimized) is shown in Figure 14a,
and the zooms in Figure 14b–d. A minimal overshoot is visible after the load torque is
applied. The speeds of both structures are similar during the course of the simulation, but
the fitness function Fcost is slightly smaller in the adaptive scenario, which proves that the
presented structure has higher dynamics.
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Figure 13. The state space controller gains changes in the drive with optimized learning parameter α

optimized by the SOS.

Figure 14. Comparison between the optimized control structure and the state space controller with
constant gains: (a) the entire transient of the load motor speed, (b–d) zooms of transients for different
parts of the simulation. ωSSC

2 —load speed with the state space controller. ωSOS
2 —load speed of the

optimized state space controller.

The novelty of the presented structures lies in the indirect adaptation of the gains of
the controller; it shows significant improvement for the dynamics of the drive. Comparison
of classic adaptive state controller and the novel structure is shown in Figure 15. As it can
be seen in the figures, a significant increase in adaptation of speed is observed when all
coefficients are adaptable. Not only is the response quicker, but also the overshoot is clearly
smaller (Figure 15b).
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Figure 15. Comparison of changes in the state space variables in the drive without adaptation of K2

and the novel indirect adaptation of K2: (a) the entire transient, (b) the zoom of the speed transient.
ω2—the speed of the load.

Robustness against changes of the load time constant was also tested (Figure 16).

Figure 16. Influence of the changes in the load motor time constant in the system with optimized
learning parameter α by the SOS.

As the load time constant increases, the overshoot is higher in the startup process
of the drive. Even though the time constant rises, overshoot is diminished due to the
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changes in the gains of the controller. The maximum overshoot for the drive with the
load time constant increased five times is about 36%. Lowering the load machine time
constant increases the reaction to the load torque; other than that, the drive works in the
same manner.

Similar tests were conducted for the FPA algorithm (optimization of all parameters
of the controller). Figure 17 shows transients of the speeds and torques obtained for
the changed load time constant. Only the worst case—T2 = 5T2n—is presented, as the
previously shown results (Figure 12) confirm that both algorithms yield similar solutions.

Figure 17. Changes in the state space variables in the drive with fully optimized structure, α optimized
by the FPA. ω1 and ω2—the speed of the motor and the load. me, ms—the electromagnetic and the
shaft torque.

The adaptation process is undoubtedly visible—the initial 20% overshoot is well
damped after four reversions. The change (adaptation) of the state controller gains is
presented in Figure 18. It is clear that the initial values of gains are not optimal for the
plant (when the load time constant is increased). In comparison to the gains presented
in Figure 13, the range of change is greater. During the first reversions, rapid change of
the coefficients is observed after about 10 s. K1 and K3 settle at a stable level. It is worth
indicating that the indirect adaptation of K2 is also visible. At the beginning, the value
increases and then starts to decrease after every reversion.

The load torque (disturbance) in the previous tests was applied as a sudden appearance
of the nominal value to test the robustness of the system. Such an example is rare in real
applications. Thus, other tests were performed. The gradual changes (slope) of the load
were also analyzed. After the initial phase (adaptation of the weights), the control system
works stably. The load does not influence the precise tracking of the reference trajectory.
However, the current values become higher in each reverse of the drive (Figure 19).
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Figure 18. The adaptive state space controller gains changes in the drive with optimized learning
parameter α optimized by the FPA.

Figure 19. Changes in the state space variables in the drive with increased load time constant
T2 = 5T2n. ω1 and ω2—the speed of the motor and the load. me, ms—the electromagnetic and the
torsional torque, with a continuous load applied after 5 seconds of the simulation.

Another way of implementing the adaptive state space controller is to optimize the
initial values of the controller (Ki, K1, K2, K3) as well as the learning coefficient. In this
approach, all the values were optimized by an metaheuristic algorithm, which means that
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such parameters as ζr and ω0 cannot be determined. Thus, it means that the dynamics of
the structure are entirely selected by the algorithm and the fitness function.

The fully optimized structure by the SOS algorithm is presented in Figure 20. There is
a minimal overshoot as the speed recovers from the application of the load torque. The
dynamics of the whole structure are similar to the one calculated using Equations (14)–(17),
which proves that the SOS (or any other metaheuristic algorithm) can find the solution
near the optimal point (depending on the fitness function and the difficulty of the problem).
The torque is generated in a fast manner, and it is not saturated by the limits of the
speed controller.

Figure 20. Changes in the state space variables in the drive with fully optimized structure, α optimized
by the SOS. ω1 and ω2—the speed of the motor and the load. me, ms—the electromagnetic and the
torsional torque.

The influence of the load time constant T2 was also checked and is presented in
Figure 21. The overshoot of the load speed, in the startup operation of the drive, increases
alongside the increase in T2, though it is always damped as the adaptation progresses.
Although the time constant of the load machine is high, the drive can follow the reference
speed precisely or with a minimal overshoot.
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Figure 21. Influence of the changes in the load motor time constant in the fully optimized system.

6. The Experimental Verification

In order to confirm the satisfactory dynamics obtained with simulations, the results
were also verified with laboratory equipment. In this part of the paper, the hardware
implementation and the initial results are described. The laboratory stand consists of two
electrical motors (with the nominal power of 0.5 kW) connected with a flexible shaft. While
the first motor is the controlled plant, the second one acts as the load. Time constants of the
system may be changed by adding flywheels and replacing the shaft. The control structure
is implemented on dSPACE 1103 card. The current feedback is realized with LEM sensors,
and the speed feedbacks are achieved with encoders attached to each of the motors. The
laboratory stand is shown in Figure 22. The first tests were conducted for the nominal
parameters of the drive and the standard state space controller in order to check if the plant
was correctly identified for simulations. The results proved that the response of the plant is
similar to the modeled one.

Figure 22. The laboratory equipment used for the experimental verification (blue—power electronics;
red—the drive; black—PC, software).
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In the next step, the suggested novel adaptive controller with indirect adaptation of K2
was tested. Figure 23 shows the speed of the motor and the load with adaptive controller
(scenario 2 in Section 2.4). These tests were initially performed for the nominal parameters
of the drive and the state space controller with optimized value of α. Stable work of the
system and precise tracking of the reference signal as well as the high dynamics of the
generated torque are observed.

Next tests were conducted for the scenario where the identification of the plant was
performed inaccurately or the load of the drive was changed. This was obtained by the
change of T2 variable through the attachment of additional flywheels to the second motor
shaft. The results with a higher time constant of the load machine-3T2n are presented in the
figure below. Different values of the adaptation parameter α were applied in increasing
order (α1 < α2 < α3). Experimental results prove the results obtained in the simulation
part. As the adaptation coefficient increases, the overshoot is reduced for the startup part of
the experiment. Overshoot is damped during the process of adaptation in every reversion.
It is also observed when an additional flywheel is added to the shaft (for the sum of 5T2n).

Figure 23. Transients of the state variables for nominal time constants, in the control structure with
the adaptive state controller: (a) the motor and the load speed, (b) the electromagnetic and the
torsional torque.

The second part of the test shows work of the control structure after changes of the
mechanical time constant of the load (T2). Results with higher time constant of the load
machine (3T2n) are presented in Figures 24 and 25 for 5T2n. Different values of the adapta-
tion parameter α are applied—in increasing order (α1 < α2 < α3). The experimental results
prove the results obtained in the simulation part. The main trend is similar: as the adapta-
tion coefficient increases, the overshoots are more quickly reduced. The adaptation process
leads to damping of the oscillations and correct operation after parametric disturbances.
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Figure 24. The influence of the α parameter on the state variables of the control structure with the
adaptive speed controller: (a) the entire transient of the load speed, (b,c) zoom used for selected parts
of the results. Tests performed for T2 = 3T2n.

Even the significant increase of T2 can be handled by the proposed adaptive controller.
The transients presented below show that the unwanted oscillations are not present, even
for the situation where T2 = 5T2n.

Figure 25. The influence of the α parameter on the state variables of the control structure with the
adaptive speed controller: (a) the entire transient of the load speed, (b,c) zoom used for the selected
parts of the results—tests performed for T2 = 5T2n.

7. Concluding Remarks

The paper deals with different approaches to a state controller applied for a two-mass
system. The initial structure has a typical form, which uses signals from the mechanical
part of the drive. Then, additional adaptation for the parameters of the controller is
implemented. Two solutions of the adaptive speed control are considered (novel indirect
method of adaptation of one of the coefficient was also considered). Selected optimization
techniques are used to optimize the value of the learning rate of the controller as well as the
initial values. The use of the metaheuristic algorithms provides an easy and efficient tool
for the design stage. The indirect method of adaptation (for the K2 parameter) improves
the dynamics of the drive and its work under changes of the plant parameters. Another
law of adaptation implemented for this coefficient is needed due to this parameter’s
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dependency on the fast changing torsional torque (the remaining gains are based on the
angular velocities). The simulation results show high efficiency in damping the oscillations
caused by the torsional torque in the electrical drive with an elastic joint. This confirms the
possibility of the correct application of the presented structure. The initial experimental
results were obtained using the dSPACE card to confirm the correct operation of the
proposed control structure. Comparison of the efficiency achieved with the presented
adaptive structure and basic controllers such as a PI controller or a state space controller
indicates a significant improvement. Not only are the oscillations damped, but also the
overshoots are minimized, resulting in a reduction in the cost function value of about 40%.
Further research will be focused on the implementation of the algorithms on a low-cost
device and the stability analysis.
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