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Abstract: The ability to synthesize arrays of related compounds quickly and with good purity has
become critical for a rapid exploration of their properties for biological or material applications. While
a number of methods have been developed to enable this combinatorial synthesis, the existing options
were not readily appliable to the synthesis of aurones using the simple Knoevenagel condensation
approach. In order to avoid the time, expense, and lowered yields associated with flash column
chromatography, we developed a scavenging approach for their synthesis. This method uses an
excess of aldehyde to ensure complete conversion to aurones, followed by selective removal of the
remaining aldehyde using a simple, inexpensive scavenger – isoniazid – and subsequent extraction
with dilute acid, to produce the desired compounds with good purity under operationally simple
conditions. This approach is expected to be applicable to many other reactions involving aldehydes
as one of the reactants.
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1. Introduction

First isolated from the petals of yellow flowering plants over 60 years ago, aurones
have remained a largely neglected sub-family of the flavonoid family of natural prod-
ucts [1]. Only in more recent years has greater interest been focused on aurones, noting
a wide range of biological activity, including anti-cancer, anti-fungal, anti-parasitic, and
anti-inflammatory activity [2,3]. Efforts from our group in particular have expanded this
study to aurone analogs with simple unsubstituted benzofuranones, and have demon-
strated significant activity in the fungal and inflammatory areas as well as their optical
properties [4–8].

Part of the reason for the limited and slow exploration of aurones doubtless has to
do with aurones being present in very small quantities in natural sources and, indeed,
not being the most thermodynamically stable of the flavonoid frameworks. In fact, the
aurone base scaffold is quite unusual, consisting of a 15-carbon skeleton containing a
benzofuranone linked via an exocyclic alkene to an aromatic ring [9]. This unusual ring
system has attracted the attention of synthetic chemists, with various methods having been
developed to access this framework. The most common ways to synthesize aurones fall
into three main categories (Scheme 1). An early option was the cyclization of chalcones,
usually in the presence of copper, mercury, or thallium salts [10,11]. While chalcones can
be easily accessed, most of these reactions use mercury salts and generate stoichiometric
toxic mercury waste, and can be very substrate-dependent in terms of their efficiency. A
more recent alternative involves the cyclization of ynoylphenols in the presence of silver
catalysts or cesium carbonate [12,13]. A related option is the carbonylative cyclization
of ortho-iodophenols with carbon monoxide and alkynes in the presence of a palladium
catalyst [14,15]. The advantages of these two methods are that they are catalytic and avoid
mercury, and that the starting substrates are still readily available. A further frequently
employed option is Knoevenagel condensation of a benzofuranone with an aldehyde.
This option is the most frequently used, and numerous variations have been developed,
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including those with basic conditions [16], acidic conditions [17], and largely neutral
conditions [18–21]. It is simple and frequently high-yielding, and many benzofuranones are
commercially available, while others can be readily prepared using standard Friedel–Crafts
approaches from phenols.
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Scheme 1. Main routes to aurones.

In examining these approaches, one clear aspect is that they are all entirely solution
phase methods, with each compound synthesized requiring purification (most frequently
via column chromatography) prior to assessing their biological activity. In our experience,
purification on silica tends to produce poorer material recovery than would be expected
based upon the crude weights and purity (as assessed by 1H NMR). Given the promising
preliminary biological activities, it was of great interest to develop a method that would
avoid time-consuming chromatographic separations yet still produce products with good
purity, thereby enabling the rapid synthesis of sizable arrays by varying the aurone skeleton
in both the benzofuranone and aldehyde-derived portions.

Avoiding chromatographic separation is not a new challenge for synthesis, and much
effort has been directed to this end [22]. In some areas, particularly peptide, peptoid, and
carbohydrate synthesis, supported synthesis has been a highly satisfactory solution [23].
Other options have given rise to the development of “click” chemistry, in which the reaction
itself is sufficiently efficient to avoid the need for purification [24]. Additionally, there
has been great attention given to the use of methods that can involve simple extraction
for purification, particularly via the use of special tags, such as fluorous tags [25]. These
tags serve to allow the desired products to be extracted into fluorous solvents, while the
undesired by-products are left in the non-fluorous phase. Unfortunately, in the case of the
condensation reaction to form aurones, there is no convenient and ubiquitous chemical
handle by which to link either the benzofuranone or the aldehyde to a solid support.
In addition to supported synthesis, another common option is to employ a supported
scavenger to remove the unreacted reagents [26]. This appeared to be a much better option
for aurone synthesis, as aldehyde scavenging is known and it would certainly be expected
that aldehydes would react more rapidly with a scavenger than the enone-type functionality
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present in the produced aurones. In addition, we had previously noted that the use of an
excess of aldehyde under typical condensation reaction conditions, at the end, generates a
mixture of only the desired aurone, unreacted aldehyde, and water, as the condensation
reaction is quite efficient. Thus, if the excess aldehyde could be used and then readily
removed, the desired aurone should be left with sufficient purity for direct use in biological
assays without further purification. It is worth noting that a related approach has been
reported by Brindle using bisulfate ion for the removal of aldehydes [27]. In this study, a
large excess of sodium bisulfite in water was used to separate aldehydes from other less
reactive compounds via simple extraction. The separation is generally efficient, but is quite
sensitive to the water-miscible solvent employed and works best when a fairly non-polar
solvent (25% ethyl acetate in hexanes in most cases) is used for the organic phase. Still, it is
quick and exhibits good functional group compatibility.

2. Materials and Methods

General procedure for the condensation of benzofuranones followed by purification
with polystyrene supported scavengers:

Benzofuranone (0.2 mmol) and aldehyde (0.4 mmol) were combined in a dry vial,
then 0.7 g of neutral alumina was added, followed by 3 mL of dichloromethane. The
reaction mixture was stirred for 12 h at 25 ◦C. After 12 h, a polymer-supported scavenger
(2 equivalents of the scavenger with respect to the benzofuranone) was added to the
reaction mixture and stirred for an additional 12 h. The reaction mixture was then filtered
and washed with a 1:1:1 mixture of methanol, ethyl acetate, and acetone. The filtrate was
then concentrated to dryness in vacuo to produce the desired aurone.

General procedure for the condensation of benzofuranones, followed by purification
using isoniazid:

Benzofuranone (0.2 mmol) and aldehyde (0.4 mmol) were combined in a dry vial, then
0.7 g of neutral alumina was added, followed by 3 mL of dichloromethane. The reaction
mixture was stirred for 12 h at 25 ◦C. After 12 h, isoniazid (0.4 mmol) was added to the
reaction mixture and stirred for an additional 12 h. The reaction mixture was then filtered
and washed with a 1:1:1 mixture of methanol, ethyl acetate, and acetone. The filtrate was
then concentrated to dryness in vacuo and resuspended in ethyl acetate, followed by a 3x
liquid–liquid extraction with 1 N HCl. The organic layer was then concentrated to dryness
in vacuo to produce the desired aurone. All but one of these aurone products have been
reported before in the literature and all exhibited satisfactory spectral data [18,20,21,28–30].

General method used for the analysis of the reaction kinetics of isoniazid with carbonyls:
To a 2 mL autosampler vial was added 1 mL of a 0.05 M carbonyl solution containing a

known concentration of the standard as indicated in the Supplementary Materials. A small
stirring bar was then added, and the vial was sealed. The sample was then analyzed across
10 injections (11 for aldehydes) with a certain number of seconds between injections, as
indicated in the Supplementary Materials. All runs were isothermal. Ten molar equivalents
of isoniazid and 10 molar equivalents of neutral alumina were added to the reaction mixture
approximately 120 s after the first injection. The reaction mixture was stirred at 600 rpm
in between injections. The specific GC conditions for each substrate can be found in the
Supplementary Materials.

3. Results and Discussion

Armed with this information, representative known and commercially available sup-
ported scavengers were explored. The reported scavengers have typically been nucleophilic
amine- or hydrazine-based functional groups attached to a polystyrene support [31]. Three
of these were surveyed for their use in a representative aurone-forming reaction, featur-
ing sulfonylhydrazide, sulfonamide, and amine functionality for aldehyde scavenging
(Table 1). In this reaction, benzofuranone was allowed to react with 2 equivalents of
4-cyanobenzaldehyde in neutral alumina and dichloromethane. After 24 h, the reaction
mixture was filtered to remove the neutral alumina, and 2 equivalents of scavenger was
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added, and the mixture was allowed to react for a further 24 h. The reaction was then
filtered and dried to yield the product. Two of these three produced the desired aurone
with high purity and reasonable yield after addition of the resin, stirring overnight, and
then removal of the resin via filtration. Interestingly, the other resin (p-toluene sulfonyl hy-
drazide, polymer bound) failed to produce any of the desired aurone, but instead produced
a material believed to be the corresponding imine 1. The mechanism and source of this side
reaction were not clear and are under further study, but it was cleanly reproducible, even
with different batches of the hydrazide.

Table 1. Scavenging studies using different scavengers.
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1 p-Toluenesulfonyl
hydroazide–polymer bound 200 mg 0 d N/A $18

2 Sulfonylamide–polymer
bound 275 mg 72 >95 $43

3 Ethylenediamine-polymer
bound 100 mg 72 >95 $12

4 isoniazid 55 mg 70 >95 $0.22
(a) In each case, 0.4 mmol of the scavenger was used, with all polymer-supported reagents being attached to
cross-linked polystyrene and used as obtained from Aldrich. (b) Purity determined by 1H NMR. (c) Prices from
the Aldrich website. (d) The reaction afforded 20% of imine 1.

While successful, these polymer-supported resins were not inexpensive and required
significant excesses in order to obtain the consistent purity of the final products. What we
desired was an equally effective scavenger that would be more cost-effective and perhaps
require less of the scavenger. Recognizing that much of the weight in a polymer-supported
scavenger is in the polymer portion, and also that imperfect swelling is often responsible for
the need to use large molar excesses of the scavenger, it appeared that an easily separable,
soluble, small-molecule scavenger would offer certain advantages. Interestingly, Olivera
recently reported the use of isonicotinic acid hydrazide (isoniazid) loaded on an Amberlyst
resin as a scavenger for aldehydes and ketones [32]. While very little was explored in this
study beyond the ability of this resin-loaded scavenger to remove a few simple aldehydes
and ketones from the solution, it appeared to be a highly promising option. At the same
time, loading this scavenger on a resin (support) appeared to be unnecessary, as the
loading relied on acid/base chemistry rather than covalent bonding. As a result, it was
presumed that the isoniazid itself could be used as a soluble scavenger and then removed
after condensation with the excess aldehyde by simple acid/base chemistry using a dilute
aqueous hydrochloric acid wash to remove the isoniazid/aldehyde adduct. Thus, following
the condensation reaction, isoniazid was added and the mixture was stirred overnight.
Extraction with dilute hydrochloric acid was sufficient to remove the isoniazid and the
scavenged aldehyde and leave the precipitated aurone with high purity and a similar yield
to that obtained with the polymer-supported scavengers. (Table 1, Entry 4) It is important
to note that this high yield, as well as control reactions between isoniazid and the aurone
product, demonstrated excellent selectivity for the reaction with aldehydes and not the
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aurone product, even with the prolonged reaction times employed for the scavenging stage
of this sequence.

Based upon this initial success, several aldehydes were subjected to the same reac-
tion and scavenging conditions in order to determine the influence of the electronic and
steric factors of the aldehyde on the scavenging step. As can be seen from Table 2, in
all but one case, the aurones were obtained with >95% purity as assessed by 1H NMR.
Isolated yields were more variable, but were all acceptable for the small scale (0.2 mmol) at
which these reactions were performed and provided ample material for multiple biological
screening campaigns.

Table 2. Variations in aldehyde using isoniazid as the scavenger.
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1 4-Cyanophenyl 70 >95
2 4-Trifluoromethylphenyl 44 >95
3 4-Dimethylaminophenyl 25 >95
4 4-Methylphenyl 57 >95
5 4-Methoxyphenyl 61 >95
6 4-Methyl carboxyphenyl 49 77
7 2-Bromophenyl 64 >95
8 3-Bromophenyl 39 >95
9 4-Bromophenyl 53 >95
10 2-Thiophenyl 36 >95
11 2-Furyl 37 >95

(a) Determined by 1H NMR.

Although the benzofuranone was not expected to have any particular influence
on the scavenging, a smaller series of modifications of that portion was also explored
(Table 3). Since we were most interested in aurone compounds that did not feature the
usual oxygenation found in natural aurones, and since we were interested in aurones which
might undergo further diversification chemistry, we elected to study some halogenated
benzofuranones. While most of these reactions were also quite successful, this study served
to highlight one important consideration in the application of scavenging synthesis to
aurones. The initial yields were rather disappointing and variable until it was noted that
many of the products had very poor solubility in methylene chloride. Eventually, all the
final filtrations were performed with an equal-volume mixture of methanol, ethyl acetate,
and acetone. This solution was concentrated, resuspended in ethyl acetate, extracted with
1 N HCl, dried, and then concentrated. This modified procedure resulted in improved
and reproducible recovery for all substrates and served to illustrate that recovery by this
approach is dependent upon good solubility in the reaction solvent so that the product
does not remain trapped on the neutral alumina.

While successful for aurones, this method has great potential for a wide range of
carbonyl-based reactions, assuming that reasonable selectivity for scavenging can be real-
ized. To explore the rate of the reaction and the potential selectivity, a series of carbonyl
compounds were treated with isoniazid and neutral alumina in methylene chloride, and
the rate of the reaction was followed by GC/MS (Table 4). Several interesting observations
were made in the course of this effort. First, attempts to scavenge aldehydes in methylene
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chloride in the presence of isoniazid without neutral alumina resulted in very slow reaction
rates. Using more polar solvents (DMF, DMSO, and even methanol) resulted in much more
rapid reactions, as is typical for reactions forming hydrazones, oximes, and the related
carbonyl derivatives [33]. Including the neutral alumina, though, was sufficient to promote
the scavenging reaction. As a result, all scavenging reactions were performed in methylene
chloride in the presence of neutral alumina and 10 molar equivalents of isoniazid. As can
be seen in Table 4, aldehydes generally reacted fairly rapidly, including one example each
of an aliphatic and alkenyl aldehyde. Aliphatic ketones reacted at a comparable rate, but
aromatic ketones (acetophenone and benzophenone) were much slower. Interestingly, a
β-ketoester reacted quite rapidly but, not surprisingly, simple esters did not react to any
appreciable extent. As a result, there appears to be considerable potential for the use of
isoniazid as an aldehyde and even as an aliphatic ketone scavenger. It is also worth noting
that these reaction rates indicate that the length of time for the scavenging step can be
greatly reduced from 12 h and still result in complete removal of the excess aldehyde.

Table 3. Variations in benzofuranone using isoniazid as the scavenger.
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Table 4. Carbonyl’s reactivity with isoniazid.

Carbonyl Compound Mean Rate Constant (103 s−1) Relative Rate

Benzaldehyde −0.410 ± 0.047 1.00
4-Nitrobenzaldehyde −2.350 ± 0.500 5.73
4-Cyanobenzaldehyde −1.399 ± 0.271 3.41
4-Bromobenzaldehyde −0.584 ± 0.088 1.42
4-Methylbenzaldehyde −0.141 ± 0.024 0.34
4-Methoxybenzaldehyde −0.468 ± 0.054 1.14
3-Methoxybenzladehyde −0.731 ± 0.053 1.78
2-Methoxybenzaldehyde −2.583 ± 0.629 6.30
Trans-cinnamaldehyde −0.844 ± 0.084 2.06
Dihydrocinnamaldehyde −1.509 ± 0.620 3.68
Thiophene-2-carboxyaldehyde −0.320 ± 0.072 0.78
Furan-2-carboxaldehyde −1.433 ± 0.364 3.50
2-Octanone −0.0436 ± 0.00548 0.11
Cyclohexanone −0.846 ± 0.0180 2.06
Acetophenone 0.00045 ± 0.0028 0.00
Benzophenone −0.0047 ± 0.0024 0.01
Ethyl acetoacetate −0.150 ± 0.0102 0.37
Butyl acetate −0.0013 ± 0.0025 0.00
Methyl benzoate −0.00024 ± 0.0014 0.00
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4. Conclusions

In conclusion, this scavenging synthesis has greatly increased our ability to synthesize
new aurone analogs in a timely manner. Now, the preparation of new collections of larger
numbers of compounds can be realistically accomplished in a matter of a few hours’ effort
over 2 days, rather than the much greater effort that was required using conventional
purification. It is fully expected that this same scavenging approach can be applied to
many other reactions of the highly versatile aldehyde functional group, thereby enabling
convenient and rapid access to the arrays generated by these reactions as well. The
application of this method to further aurone analog arrays and the biological testing of
these compounds is underway, as is the extension of this scavenging approach to other
reactions involving aldehydes.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/org4010004/s1. Detailed procedures, full spectral analysis,
data, and calculations for the reaction rates as well as the GC and sampling conditions.
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