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Abstract: The [2+2+2] cycloaddition (homo-Diels–Alder reaction) of N-substituted 1,2,4-triazoline-
3,5-diones (TADs) with bicycloalkadienes produces strained heterocyclic compounds. A reaction
with the unsubstituted dienes occurs readily to produce only the expected homo-Diels–Alder adducts.
However, previous work in the literature showed that the attachment of a single electron-withdrawing
group to the diene system results in the formation of not only the expected homo-Diels–Alder adducts,
but also interesting “insertion” products. To probe the limits of reactivity of these diene systems,
we investigated the reaction of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with bicycloalkadienes
substituted with two electron-withdrawing groups, i.e., two carbomethoxy or two cyano groups. We
hoped to learn whether the reaction still proceeded, and if so, whether the homo-Diels–Alder adducts
and/or other types of products were formed. We found that a reaction between MeTAD and the
dienes takes place upon substitution with two carbomethoxy groups, albeit at a considerably slower
rate than other reactions. The only products observed were the homo-Diels–Alder adducts. However,
attachment of two CN groups completely inhibited reactivity.

Keywords: triazolinediones; MeTAD; bicyclo[2.2.1]heptadiene; bicyclo[2.2.2]octadiene; norbornadiene;
homo-Diels–Alder; [2+2+2] cycloaddition

1. Introduction

The [2+2+2] cycloaddition of N-substituted 1,2,4-triazoline-3,5-diones (TADs, 1) with
bicyclodienes, also known as the homo-Diels–Alder (homo-DA) reaction allows for rapid
access to structurally-interesting heterocyclic molecules (see Scheme 1) [1–10]. These
adducts can be hydrolyzed to their corresponding hydrazine derivatives and then oxidized
to provide strained azo compounds [11–13]. The reactivities of these azo compounds have
provided important mechanistic insights into the reactivity of diradicals [11–13]. Both the
N-methyl and N-phenyl TAD derivatives (MeTAD [1a] and PhTAD [1b], respectively) are
known to add to bicyclo[2.2.1]hepta-2,5-diene (norbornadiene, 2) to produce the homo-
Diels–Alder adducts 3 [1–3,10]. Similarly, 1b is known to react with bicyclo[2.2.2]octa-2,5-
diene, 4, to give 5b [2].

Adam et al. conducted studies several years ago that probed the effect of substituents
on the course of the reaction of PhTAD with 2-substituted norbornadienes, 6 (Scheme 2) [8,9].
His group reported that the corresponding homo-DA adducts, 7, were still formed even
when there were electron-withdrawing groups (i.e., –Cl, –CO2CH3, and –CN) attached.
However, in each case, in addition to the expected homo-DA adduct, an interesting “in-
sertion” product, 8, was also formed (note that the chloro derivative 6a also yielded other
products, which are not shown). We found it interesting that this reaction was tolerant of
the presence of strong electron-withdrawing groups, and even more interesting that these
groups diverted at least some of the reactivity towards formation of the novel insertion
product, 8.
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Scheme 1. The known reactions of triazolinediones (1a,b) with bicyclodienes (2,4) to give homo-
Diels-Alder adducts 3 and 5. 
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erant of the presence of strong electron-withdrawing groups, and even more interesting 
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Scheme 2. Partial results of the reaction of PhTAD (1b) with monosubstituted norbornenes (6a,b,c) 
to give homo-Diels–Alder adducts (7) and insertion products (8) as reported by Adam [8,9]. The 
chloro derivative (6a) also yielded other products, which are not shown. 

Given the recently renewed interest in the homo-DA reaction [14,15], we decided to 
investigate the reaction of MeTAD with the series of 2,3-disubstituted bicyclo-2,5-dienes 
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Scheme 1. The known reactions of triazolinediones (1a,b) with bicyclodienes (2,4) to give homo-
Diels-Alder adducts 3 and 5.
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Scheme 2. Partial results of the reaction of PhTAD (1b) with monosubstituted norbornenes (6a,b,c) to
give homo-Diels–Alder adducts (7) and insertion products (8) as reported by Adam [8,9]. The chloro
derivative (6a) also yielded other products, which are not shown.

Given the recently renewed interest in the homo-DA reaction [14,15], we decided to
investigate the reaction of MeTAD with the series of 2,3-disubstituted bicyclo-2,5-dienes
9a,b and 10a,b shown in Scheme 3. We wondered whether disubstitution on the bicyclo-2,5-
diene frameworks with these electron-withdrawing groups would still allow for homo-DA
reactivity and/or whether the reactivity would be diverted towards an insertion or other
type of product. Herein, we report our findings on these reactions.
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to possibly provide the resulting homo-DA adducts 11a,b and 12a,b.

2. Materials and Methods
2.1. General Methods

Column chromatography was conducted on silica gel (234–400 mesh). Thin-layer
chromatography was performed on pre-coated silica gel plates (250 mm) and visualized
using ultraviolet light. 1H and 13C NMR spectra were obtained on a 400 MHz NMR
spectrometer. Chemical shifts are reported in units of parts per million downfield from
TMS. Structural assignments were made using additional information obtained from COSY
experiments. High-resolution mass spectra (HRMS) were acquired via electron spray
ionization on an LTQ-FTMS hybrid mass spectrometer. N-Methyl-1,3,5-triazoline-3,5-dione
(MeTAD) was synthesized via oxidation of N-methylurazole with DABCO-Br2, as described
in the literature [16,17]. Compounds 9a,b and 10a,b were synthesized according to the
methods described in the literature [18,19].

2.2. Experimental Procedures
2.2.1. Reaction of MeTAD with 9a

(A) Reaction at room temperature. To begin, 100 mg (2 equiv) of MeTAD as a solid
was added to a solution of 95 mg (0.46 mmol) of diene 9a in 3 mL of anhydrous 1,2-
dichloroethane, and the two components were stirred together. The resulting deep red
solution was sealed with parafilm, wrapped in foil to prevent exposure to light, and stirred
for 3 weeks during which time the red color of the MeTAD was discharged. The resulting
pale orange solution was concentrated in vacuo and subjected to column chromatography
(100% EtOAc) to produce 22 mg (15% yield) of homo-DA adduct 11a as a white solid:
m.p. 132–133 ◦C; IR cm−1 2962, 2927, 1774, 1712, 1441, 128, 1111, 784; 1H NMR (400 MHz,
CDCl3) δ 4.57 (t, J = 2.0 Hz, 1H), 3.93 (s, 3H), 3.67 (s, 3H), 3.05 (s, 3H), 2.96–2.92 (m, 1H),
2.41 (d, J = 5.2 Hz, 1H), 2.37 (dd, J = 1.4, 5.2 Hz, 1H), 2.24 (d, J = 12.5 Hz, 1H), 1.91 (d,
J = 12.5 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) 168.5, 166.0, 156.7, 154.9, 75.6, 64.3, 53.5,
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52.4, 51.8, 31.9, 27.6, 27.4, 25.9, 24.6; HRMS (ESI) m/z [M+H]+ Calcd for C14H16N3O6
322.10336; Found 322.10289. (B) Reaction at 80 ◦C. To begin, 50 mg (1 equiv) of MeTAD
as a solid was added to a solution of 95 mg (0.46 mmol) of diene 9a in 2 mL of anhydrous
1,2-dichloroethane, and the two components were stirred together. A water condenser with
a drying tube was attached to the top of the round-bottomed flask and the solution was
heated to reflux until the red color of the MeTAD was discharged (6 h). The resulting orange
solution was concentrated in vacuo and subjected to column chromatography (100% EtOAc)
to produce 21 mg (14% yield) of homo-DA adduct 11a as a white solid: characterization
as above.

2.2.2. Attempted Reaction of MeTAD with 9b

To begin, 35 mg (1 equiv) of MeTAD as a solid was added to a solution of 45 mg
(0.32 mmol) of diene 9b in 2 mL of anhydrous 1,2-dichloroethane was added, and the
two components were stirred together. A water condenser with a drying tube was attached
to the top of the round-bottomed flask and the solution was heated to reflux for 24 h. The
red color of the MeTAD persisted. The reaction mixture was cooled to room temperature
and concentrated in vacuo. Analysis by 1H NMR spectroscopy provided no evidence of
a reaction.

2.2.3. Reaction of MeTAD with 10a

To begin, 50 mg (1 equiv) of MeTAD as a solid was added to a solution of 111 mg
(0.5 mmol) of diene 10a in 2 mL of anhydrous 1,2-dichloroethane was added, and the two
components were stirred together. A water condenser with a drying tube was attached
to the top of the round-bottomed flask and the solution was heated to reflux until the red
color of the MeTAD was discharged (24 h). The reaction mixture was concentrated in vacuo
and subjected to column chromatography (100% EtOAc) to produce 82 mg (55% yield) of
homo-DA adduct 12a as a white crystalline solid: m.p. 194–195 ◦C; IR cm−1 2954, 1761,
1715, 1458, 1441, 1230, 1119, 782. 1H NMR (400 MHz, CDCl3) δ 4.48 (br s, 1H), 3.97 (s,
3H), 3.67 (s, 3H), 3.00 (s, 3H), 2.67 (br s, 1H), 2.35 (d, J = 7.9 Hz, 1H), 2.13–2.02 (m, 1H),
1.9–1.75 (m, 4H); 13C{1H} NMR (100 MHz, CDCl3) 169.8, 166.5, 156.0, 154.5, 73.4, 59.5, 53.2,
52.4, 47.1, 32.3, 25.9, 25.7, 23.7, 16.5, 13.0; HRMS (ESI) m/z [M+H]+ Calcd for C15H18N3O6
336.11901; Found 336.11850.

2.2.4. Attempted Reaction of MeTAD with 10b

To begin, 18 mg (1 equiv) of MeTAD as a solid was added to a solution of 25 mg
(0.16 mmol) of diene 10b in 1 mL of anhydrous 1,2-dichloroethane was added, and the
two components were stirred together. A water condenser with a drying tube was attached
to the top of the round-bottomed flask and the solution was heated to reflux for 24 h. The
red color of the MeTAD persisted. The reaction mixture was cooled to room temperature
and concentrated in vacuo. Analysis by 1H NMR spectroscopy provided no evidence of
a reaction.

2.3. X-ray Crystallographic Analysis

Colorless single crystals suitable for X-ray diffraction were obtained from
a methanol solution.

The diffraction data were collected on a Rigaku XtaLAB Synergy-S Dualflex HyPix
diffractometer with monochromated Cu-Kα radiation. The structure was solved by di-
rect methods (OLEX2.solve [20,21]) and refined by full-matrix least-squares on F2 values
(SHELXL [22]). All the heavy atoms were refined anisotropically. The hydrogen atoms
were localized from the difference electron density maps, after which they were refined
isotropically (Uiso with a factor of 1.2 for CH and CH2 groups and a factor of 1.5 for CH3
groups) with riding coordinates or as rotation CH3 groups. Mercury [23] was used for the
structure presentation in Figure 1.
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Figure 1. Ortep diagram for compound 12a as provided by X-ray crystallographic analysis. Non-
hydrogen atom thermal elipsoids are at the 50% probability limit. Hydrogen atoms are represented as
spheres of arbitrarily small radii. Some selected bond distances (in Å) and bond angles are provided
from the X-ray structure.

The X-ray structure of the homo-Diels–Alder adduct 12a is as follows: C15H17N3O6,
M = 335.32 g/mol, monoclinic system, space group P21/a, a = 7.6971(1) Å, b = 20.5045(2) Å,
c = 9.7683(1) Å,β= 108.129(2)◦, Z = 4, V = 1465.15(3) Å3, Dc = 1.52 g cm−3,µ(Cu Kα) = 1.011 mm−1,
T = 100 K, and crystal dimensions of 0.152 × 0.389 × 0.423 mm. The final model con-
verged to final values of R = 0.0362 and Rw = 0.0932 using 2954 independent reflections
(θmax = 77.03◦).

The crystallographic data for the structure reported in this paper has been deposited
with the Cambridge Crystallographic Data Centre as a supplementary publication. Copies
of the data (CCDC registration number 2215026) can be obtained from the CCDC free of
charge by sending an application to the following e-mail address: deposit@ccdc.cam.ac.uk.

3. Results

The disubstituted bicyclo-2,5-dienes 9a,b and 10a,b were synthesized according to
the procedures described in the literature [18,19]. The reaction of equimolar amounts of
MeTAD with 9a in 1,2-dichloroethane as a solvent was allowed to proceed for three weeks
at room temperature until the deep red color of the MeTAD was discharged. Analysis
of the crude reaction mixture by TLC and 1H NMR spectroscopy suggested a complete
consumption of the starting materials and the formation of a single major product. Careful
column chromatography resulted in a 15% yield of the homo-DA adduct 11a. The structural
assignment was consistent with the results from the 1H, 13C, and COSY NMR spectral
analyses (spectra are provided in the Supplementary Materials). Although refluxing the
reaction mixture in 1,2-dichloroethane (~80 ◦C) drove the reaction to completion within
six hours, the yield was not improved (14% yield). For both reactions, in addition to 11a,
only intractable, undefined materials that often accompany triazolinedione reactions were
formed, as Adam has also reported [8,9].

Dicyano-substituted diene 9b failed to show any signs of reaction with MeTAD, even
upon refluxing the reaction mixture in 1,2-dichloroethane for 24 h.

Heating a solution of MeTAD and 10a in 1,2-dichloroethane for 24 h resulted in a single
isolable product that was identified as a homo-DA adduct 12a (55% yield). The 1H NMR
spectrum was similar to that collected for 11a, and the structural assignment was supported
by the expected proton connectivities revealed in the COSY spectrum (see Supplementary
Materials). Fortunately, this homo-DA adduct was particularly crystalline in nature which
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enabled us to confirm the structures of these strained heterocycles. This was a notable
accomplishment given that we were unable to find an instance in the literature in which the
fundamental structures of these diaza homo-DA adducts had been definitively determined
via X-ray crystallography. Slow cooling of a saturated boiling solution of 12a in methanol
produced colorless plates suitable for X-ray analysis. The observed structure is provided in
Figure 1 from two different vantage points. Therefore, both the presence of the strained
cyclopropyl ring and the connectivity of the urazole ring system to the carbon framework
were confirmed. Some selected bond lengths and bond angles are provided (see Figure 1).

The newly formed C-C bond of the cyclopropyl ring system appears to experience the
most strain as its bond length (1.543 Å) is longer than that of the other two bonds (1.496 and
1.527 Å). The two C-N bonds joining the nitrogen atoms of the urazole ring to the carbon
backbone are similar in length (1.484 and 1.489 Å). Note that the urazole nitrogen atoms
adopt pyramidalization such that the urazole ring is tucked underneath the bicyclic system
in an endo fashion rather than being extended outward (i.e., exo) in what would appear to
be a less sterically congested arrangement (see Figure 2). It is likely that crystal packing
forces may favor the endo conformation because of its greater compactness.
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Unfortunately, and as was previously observed for diene 9b, refluxing a solution of
MeTAD and dicyano-substituted diene 10b in 1,2-dichloroethane failed to produce any
indication of cycloadduct formation.

4. Discussion

Attaching two substituents onto the bicycloalkadiene frameworks might be expected to
inhibit reactivity with the MeTAD dienophile for two reasons. First, both the carbomethoxy
and cyano groups are sterically larger than the hydrogen atoms present on the unsubsti-
tuted diene analogues 2 and 4. The MeTAD will therefore experience steric hindrance
as it approaches the diene to form the homo-DA product. The effect of the larger, and
conformationally mobile carbomethoxy group would be expected to result in a greater
steric rate retardation compared to the linear cyano group. However, since homo-DA
adduct formation was still observed for the dienes substituted with the carbomethoxy
groups, but not upon substitution with the cyano groups, apparently steric hindrance is not
the primary factor dictating reactivity. In addition to steric effects, the substituents will also
exert electronic effects. Substitution on the C=C bond by electron-withdrawing groups will
deplete electron density in the diene system, thereby rendering the diene less attractive as
a cycloaddition partner with the strongly electrophilic MeTAD. Hammett parameters (σp)
provide a measure of the electron-withdrawing character of various substituents [24]. The
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σp-value for the cyano group (0.66) is significantly greater than that for the carbomethoxy
group (0.45). While Adam demonstrated that the homo-DA reaction can still proceed with
a single cyano group attached to the diene system [8,9], apparently two cyano groups leads
to depletion of the electron density of the diene system to the extent that reaction with
MeTAD is prohibited. Surprisingly however, sufficient reactivity is maintained even in the
presence of the two fairly strong electron-withdrawing carbomethoxy groups. Remarkably,
in both cases, the only isolable product was the homo-DA adduct and no diversion of
reactivity to form any characterizable insertion or other products was observed.
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Figure S3: COSY spectrum (400 MHz, CDCl3) of homo-Diels–Alder adduct 11a; Figure S4: 1H NMR
(400 MHz, CDCl3) of homo-Diels–Alder adduct 12a; Figure S5: 13C{1H} NMR (100 MHz, CDCl3) of
homo-Diels–Alder adduct 12a; Figure S6: COSY spectrum (400 MHz, CDCl3) of homo-Diels–Alder
adduct 12a.
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