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Abstract: (1) Polyfunctional molecules are versatile building blocks for efficient syntheses of novel
phenothiazine-based materials with promising electronic properties. A prerequisite is a facile, high
yielding access to these building blocks that bear solubilizing moieties and functional groups for
orthogonal transformation. (2) Here, an efficient, improved two-step protocol for accessing a solubi-
lizing 2-decyl-tetradecyl functionalized phenothiazine, i.e., an N-alkylated 7-bromophenothiazine-
3-carbaldehyde, by Vilsmeier–Haack formylation and NBS (N-bromo succinimide) bromination is
reported. (3) The sequence proceeds with higher yields and in shorter reaction times than the stan-
dard access employing bromination with elementary bromine. In addition, the work-up procedure
essentially uses absorptive filtration on a plug of silica with the eluent.

Keywords: building blocks; chromophores; electrophores; fluorophores; 10H-phenothiazine; solar
cell dyes

1. Introduction

Bifunctional phenothiazine derivatives are important building blocks in the synthesis
of functional chromophores, such as in dye sensitized solar cells (DSSC) [1–4]. For instance,
N-alkylated 7-bromophenothiazine-3-carbaldehydes can be readily transformed via various
cross-coupling reactions, such as Suzuki–Miyaura coupling [4–15], Beller cyanation [16],
Sonogashira coupling [17–22], Buchwald–Hartwig, and Ullmann arylaminations [23–28]
into 7-functionalized phenothiazine aldehydes. Furthermore, the aldehyde functionality
can be efficiently reacted in Knoevenagel condensations to produce phenothiazinyl me-
rocyanine dyes [1–4]. Furthermore, 7-bromophenothiazine-3-carbaldehydes are excellent
substrates in diversity-oriented SuKnoCon (Suzuki-coupling, Knoevenagel condensation)
synthesis of donor–donor–acceptor (Do–Do–Acc) system as dyes for DSSCs in the sense
of a consecutive multicomponent reaction (MCR) in a one-pot fashion using arylboronic
acids/arylboronates and methylene active components as reactants [1–3]. Here, we ex-
emplarily communicate the two-step synthesis of 7-bromo-10-(2-decyltetradecyl)-10H-
phenothiazine-3-carbaldehyde, which is a favorable, solubilizing, and nonaggregating
building block for unsymmetrically substituted phenothiazine materials.

2. Materials and Methods
2.1. General Considerations and Instrumentation

10-(2-Decyl-tetradecyl)-10H-phenothiazine (1) was prepared according to the proce-
dure described in [2]. Chloroform (for HPLC ≥ 99.8%; Merck KGaA, Darmstadt, Germany),
DMF (Analytical reagent grade ≥ 99.8%; Fisher Scientific GmbH, Schwerte, Germany),
phosphorus oxychloride (99%; Acros Organics, Geel, Belgium), and N-bromo succinimide
(99%; Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) were purchased and used
without further purifications. Dried dichloromethane was taken from the MBraun solvent
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drying system MB-SPS-800. Reaction progress was monitored by thin layer chromatog-
raphy (TLC) on silica gel 60 with a F254 fluorescence indicator on aluminum sheets from
Macherey-Nagel and UV irradiation at excitation wavelengths of 254 nm and 365 nm. The
crude products were adsorbed on Celite® 545 (0.02–0.10 mm) from Carl Roth GmbH prior
to chromatographic purification. Purification was then carried out by preparative flash col-
umn chromatography at a pressure of approx. 1 bar on silica gel 60 (0.040–0.063 nm) from
Macherey-Nagel as a stationary phase and distilled n-hexane and diethyl ether mixtures as
eluents. The substances were analyzed by mass spectrometry and NMR spectroscopy at
the Center for Molecular and Structural Analytics at Heinrich Heine University Düsseldorf
(CeMSA@HHU). The MALDI-TOF mass spectra were recorded on the UltrafleXtreme
(Bruker Daltronics) and NMR spectra (1H-, 13C{1H}- und DEPT-135 spectra) on a Bruker
Avance III 300 NMR spectrometer. Deuterated acetone (δH 2.05, δC 29.84) was used as
a solvent to record the NMR spectra. IR measurements were performed on Shimadzu
IRAffinity 1 (ATR).

2.2. 10-(2-Decyl-tetradecyl)-10H-phenothiazine-3-carbaldehyde (2)

In a sintered, dry screw-cap Schlenk tube with magnetic stir bar under nitrogen at-
mosphere N,N-dimethylformamide (2.10 mL, 27.1 mmol, 2.40 equiv) was cooled to 0 ◦C
(water-ice bath) for 15 min. Phosphorus oxychloride (1.70 mL, 18.2 mmol, 1.60 equiv) was
added dropwise to the precooled DMF and the mixture was then stirred at 0 ◦C for an
additional 15 min until a colorless, viscous fluid had formed (Vilsmeier reagent). N-Alkyl
phenothiazine 1 (6.05 g, 11.3 mmol, 1.00 equiv) was dissolved in chloroform (11.3 mL),
added to the freshly prepared solution of the Vilsmeier reagent, and stirred at 70 ◦C for
15 h. After cooling to room temperature, the reaction mixture was carefully (cooling with
water-ice bath) diluted with deionized water (22.6 mL, 2.00 mL/mmol) and neutralized
with a saturated sodium carbonate solution. After separating the organic layer in a sep-
arating funnel, the aqueous layer was extracted with dichloromethane (3 × 50 mL). The
combined organic layers were dried (anhydrous magnesium sulfate), filtered, and the
evaporated crude product was adsorbed on Celite® 545. After purification by flash chro-
matography on silica gel (30:1 n-hexane/diethyl ether), phenothiazine carbaldehyde 2
(5.74 g, 10.2 mmol, 90%) was obtained as a bright yellow oil after drying overnight under
vacuo. Rf (n-hexane/diethyl ether 30:1): 0.38. 1H NMR (300 MHz, acetone-d6): δ 0.89 (t,
3J = 6.6 Hz, 6 H), 1.20–1.43 (m, 40 H), 1.95–2.04 (m, 1 H), 3.96 (d, 3J = 7.2 Hz, 2 H), 7.03 (ddd,
3J = 7.7, 7.2 Hz, 4J = 1.2 Hz, 1 H), 7.13 (dd, 3J = 8.3 Hz, 4J = 1.2 Hz, 1 H), 7.20 (d, 3J = 8.5 Hz,
1 H), 7.20 (dd, 3J = 7.7 Hz, 4J = 1.6 Hz, 1 H), 7.25 (ddd, 3J = 8.3, 7.2 Hz, 4J = 1.6 Hz, 1 H),
7.64 (d, 4J = 1.9 Hz, 1 H), 7.75 (dd, 3J = 8.4 Hz, 4J = 1.9 Hz, 1 H), 9.8 (s, 1 H). 13C{1H} NMR
(75 MHz, acetone-d6): δ 14.4 (CH3), 23.4 (CH2), 26.9 (CH2), 30.1 (CH2), 30.2 (CH2), 30.3
(CH2), 30.39 (CH2), 30.4 (CH2), 30.43 (CH2), 30.6 (CH2), 32.2 (CH2), 32.7 (CH2), 35.60 (CH),
52.6 (CH2), 117.0 (CH), 118.0 (CH), 124.5 (CH), 125.6(Cquat), 126.8 (Cquat), 128.4 (CH), 128.6
(CH), 128.8 (CH), 130.7 (CH), 132.7 (Cquat), 145.2 (Cquat), 152.3 (Cquat), 190.4 (CH). IR:
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Bromination of phenothiazine carbaldehyde 2 proceeded in dichloromethane in a 
closed vessel at 50 °C (10 degrees above the boiling point of dichloromethane) with N-
bromo succinimide (NBS) [29] to give 7-bromophenothiazine-3-carbaldehyde 3 with an 
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and the expected splitting pattern accounts for selective bromination para to the nitrogen 
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[cm−1] = 2953 (m), 2920 (s), 2851 (s), 2718 (w), 1688 (s), 1597 (m), 1574 (m), 1558 (m), 1491
(w), 1460 (s), 1445 (m), 1416 (w), 1371 (m), 1339 (m), 1308 (m), 1287 (m), 1250 (m), 1196 (s),
1163 (w), 1150 (w), 1134 (w), 1101 (w), 1042 (w), 1001 (w), 920 (w), 897 (w), 883 (w), 853 (w),
814 (m), 745 (s), 719 (m), 691 (m), 640 (w), 606 (w). MS (MALDI-TOF): m/z = 563 ([M]+).
Anal. calcd. for C37H57NOS (563.4): C 78.81, H 10.19, N 2.48, S 5.69; found: C 78.64, H 10.26,
N 2.42, S 5.68.

2.3. 7-Bromo-10-(2-decyl-tetradecyl)-10H-phenothiazine-3-carbaldehyde (3)

In a sintered screw-cap Schlenk tube with magnetic stir bar, phenothiazine carbalde-
hyde 2 (2.22 g, 3.95 mmol, 1.00 equiv) was dissolved in dry dichloromethane (39.5 mL)
and N-bromo succinimide (0.77 g, 4.34 mmol, 1.10 equiv) was added portion wise. The
reaction mixture was stirred at 50 ◦C for 15 h (be careful: the vessel is under pressure).
After cooling to room temperature, the solvent was removed under reduced pressure and
the crude product was adsorbed onto Celite® 545. Product 3 was purified by absorptive
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filtration on silica gel (n-hexane/diethyl ether 30:1), dried overnight under vacuo, and
obtained as bright yellow oil (2.48 g, 3.90 mmol, 98%). Rf (30:1 n-hexane/diethyl ether):
0.14. 1H NMR (300 MHz, acetone-d6): δ 0.84–0.92 (m, 6 H), 1.17–1.42 (m, 40 H), 1.92–2.02
(m, 1 H), 3.91 (d, 3J = 7.2 Hz, 2 H), 7.02 (d, 3J = 8.7 Hz, 1 H), 7.18 (d, 3J = 8.5 Hz, 1 H), 7.29
(d, 4J = 2.3 Hz, 1 H), 7.35 (dd, 3J = 8.7 Hz, 4J = 2.3 Hz, 1 H), 7.62 (d, 4J = 1.9 Hz, 1 H), 7.74
(dd, 3J = 8.5 Hz, 4J = 1.9 Hz, 1 H), 9.85 (s, 1 H). 13C{1H} NMR (75 MHz, acetone-d6): δ 14.4
(CH3), 23.4 (CH2), 26.7 (CH2), 30.3 (CH2), 30.4 (CH2), 30.43 (CH2), 31.9 (CH2), 32.7 (CH2),
35.3 (CH), 52.5 (CH2), 116.1 (Cquat), 117.2 (CH), 119.4 (CH), 125.9 (Cquat), 127.9 (Cquat), 128.9
(CH), 130.3 (CH), 130.8 (CH), 131.2 (CH), 132.8 (Cquat), 144.5 (Cquat), 151.6 (Cquat), 190.3
(CH). MS (MALDI-TOF): m/z = 643 ([M81Br]+). IR:
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[cm−1] = 2920 (m), 2851 (m), 2722
(w), 1690 (m), 1593 (m), 1555 (m), 1491 (w), 1456 (s), 1414 (w), 1393 (w), 1377 (w), 1335 (w),
1304 (w), 1269 (w), 1196 (m), 1155 (w), 1103 (w), 1082 (w), 1042 (w), 918 (w), 897 (w), 868
(w), 812 (m), 774 (w), 741 (w), 714 (w), 698 (w), 687 (w), 656 (w), 617 (w). Anal. calcd. for
C37H56BrNOS (642.3): C 69.13, H 8.78, N 2.18, S 4.99; found: C 68.81, H 8.46, N 2.24, S 5.14.

3. Results and Discussion

Starting from the N-alkylated phenothiazine 1 reaction with the in situ generated
Vilsmeier reagent in chloroform furnishes carbaldehyde 2 by Vilsmeier–Haack formylation
(Figure 1) [28]. In comparison to the protocol described in the literature, here the phe-
nothiazine carbaldehyde 2 was obtained in a shorter reaction time and with significantly
better yields around 90% [2]. The dropwise addition of substrate 1 to the in situ generated
formylation agent from DMF and POCl3 ensures rapid initiation of the formylation, which
then proceeds in a closed vessel at an oil bath temperature of 70 ◦C, i.e., 10 degrees higher
than the boiling point of chloroform. The reaction reproducibly gives yields around 90%
after purification. The regioselective formylation rationalizes by the stronger para-directing
effect of the alkyl-substituted nitrogen atom. Indeed, the 1H NMR spectrum in the aro-
matic region is very well resolved and the single set of aromatic protons with the expected
splitting pattern accounts for a single isomer of the para-formylated product 2.
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Figure 1. Synthesis of 7-bromo-10-(2-decyl-tetradecyl)-10H-phenothiazine-3-carbaldehyde (3) in a
two-step sequence of Vilsmeier–Haack formylation and NBS bromination.

Bromination of phenothiazine carbaldehyde 2 proceeded in dichloromethane in a
closed vessel at 50 ◦C (10 degrees above the boiling point of dichloromethane) with N-
bromo succinimide (NBS) [29] to give 7-bromophenothiazine-3-carbaldehyde 3 with an
excellent yield of 98%. The 1H NMR spectrum in the aromatic region is again well resolved
and the expected splitting pattern accounts for selective bromination para to the nitrogen
atom, now on the other benzo ring. It is noteworthy to mention that for the isolation and
purification of the crude products, a simple adsorptive filtration through a plug of silica
gel is sufficient to furnish, after drying in high vacuum, the compounds 2 and 3 essentially
analytically pure. Compared to the established protocol, the combined yield of both steps
has been increased from 51 to 88%, with a concomitant reduction in the total reaction time
from 60 to 30 h.

4. Conclusions

The two-step formylation–bromination process provides improved access to an N-
alkyl 7-bromophenothiazine-3-carbaldehyde in shorter reaction times and very high yield.
This polyfunctional phenothiazine building block is broadly used in forming phenothiazine-
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based functional chromophores and can be likewise extended to alternate N-alkyl sub-
stituents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/org3040033/s1, Figure S1: 1H NMR spectrum of compound
2 (recorded in acetone-d6 at 300 MHz, T = 298 K); Figure S2: 13C NMR spectrum of compound 2
(recorded in acetone-d6 at 75 MHz, T = 298 K); Figure S3: DEPT-135 NMR spectrum of compound 2
(recorded in acetone-d6 at 75 MHz, T = 298 K); Figure S4: 1H NMR spectrum of compound 3 (recorded
in acetone-d6 at 300 MHz, T = 298 K); Figure S5: 13C NMR spectrum of compound 3 (recorded in
acetone-d6 at 75 MHz, T = 298 K); Figure S6: DEPT-135 NMR spectrum of compound 3 (recorded in
acetone-d6 at 75 MHz, T = 298 K).
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