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Abstract: Three chiral diphosphites, (S,S)-5,17-bis(1,1′-binaphthyl-2,2′-dioxyphosphanyloxy)-25,26,27,28-
tetrapropyloxycalix[4]arene (1), (S,S)-5,11,17,23-tetra-tert-butyl-25,27-dipropoxy-26,28-bis(1,1′-binaphthyl-
2,2′-dioxyphosphanyloxy)calix[4]arene (2) and (S,S)-5,11,17,23-tetra-tert-butyl-25,26-dipropoxy-27,28-
bis(1,1′-binaphthyl-2,2′-dioxyphosphanyloxy)calix[4]arene (3), based on conical calix[4]arene were investi-
gated in the rhodium-catalyzed asymmetric hydrogenation of α-dehydroamino esters. High conversions
were observed after 24 h under 5 bar of hydrogen whatever the employed diphosphite, and the chiral
induction increases in the order 1 < 3 < 2. This may be due to the presence of the calix[4]arene moiety,
which by its presence modifies the second coordination sphere of the catalytic center. The larger steric
hindrance around the rhodium atom leads to the higher enantiomeric excess.
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1. Introduction

Since the rational synthetic methods developed by Gutsche 45 years ago via pre-
cise cyclocondensation reactions of para-substituted phenols with formaldehyde [1–4],
calix[4]arene has become a preferred semi-rigid platform for the preparation of convergent
ligands [5–9]. Among these, phosphorus-based ligands are often used in transition metal
chemistry in particular for catalytic applications [10,11]. The phosphorus atom(s) can be
specifically grafted on the upper [12–20] or lower [21–30] rim of the calix[4]arene.

Due to the intrinsic properties of calixarene, its incorporation in the ligand struc-
ture presents many advantages such as stabilization of the active species thanks to the
steric hindrance generated by the macrocycle [31] or by additional interactions with the
auxiliary chains [32,33], increased regioselectivity of the reaction by encapsulation of
the catalytic center [34,35], inherent chirality of the calixarene leading to optically ac-
tive ligands [36–38], intrinsic dynamics of the metal center which allow speeding up
elementary steps of catalytic cycles [39,40], supramolecular catalysis by trapping the aro-
matic substrate in its cavity [41], etc. However, the study of the structure–activity rela-
tionship is rarely studied; especially from the point of view of academic research, the
understanding of the mechanistic aspects needs to be improved. In fact, the position
of the phosphorus atom(s) on the calixarenyl platform can drastically affect the coordi-
nation sphere of the metal and the catalytic outcome as observed, for example, in the
oligomerization of ethylene [42] with tetrahedral [NiX2(diphosphine)] (X = Cl or Br) com-
plexes, namely cis-P,P’-dibromo{5,17-dibromo-11,23-bis(diphenylphosphino)-25,26,27,28-
tetrapropyl-oxycalix[4]arene}nickel [43] (A) and cis-P,P’-dichloro-{5,11,17,23-tetra-tert-butyl-
25,26-bis(diphenylphosphino-methoxy)-27,28-dihydroxycalix[4]arene}nickel [44] (B) using
methylaluminoxane as an activator (Figure 1). While pre-catalyst A led to the formation of
butenes, C4–C12 oligomers with a Schulz–Flory distribution (α = 0.22) were obtained when
complex B, which has a significantly higher steric hindrance, was employed.
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diphosphites 1–3 for the asymmetric hydrogenation of α-dehydroamino esters (Figure 
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macrocycle to the efficiency of the chirality transfer from the ligand to the substrates. 
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31P{1H} spectra were recorded with Bruker FT instruments (AC 300 and 400). 1H NMR 
and 13C{1H} spectra were referenced to residual protonated solvents (δ = 7.16 ppm and 
128.08 ppm for C6D6, respectively, and 7.26 ppm and 77.16 ppm for CDCl3, respectively). 
31P NMR spectroscopic data are given relative to external H3PO4. Chemical shifts and 
coupling constants are reported in ppm and Hz, respectively. Mass spectra were 
recorded on a Bruker MicroTOF spectrometer (ESI-TOF). The catalytic solutions were 
analyzed by using a Varian 3900 gas chromatograph equipped with a CHROMPAK 
chiral fused silica Chirasil-L-Val column (25 m × 0.25 mm). (S,S)-5,17-Bis(1,1′-binaphthyl-
2,2′-dioxyphosphanyloxy)-25,26,27,28-tetrapropyloxycalix[4]arene (1) [45] and (S,S)-
5,11,17,23-tetra-tert-butyl-25,27-dipropoxy-26,28-bis(1,1′-binaphthyl-2,2′-
dioxyphosphanyl-oxy)calix[4]arene (2) [46] were prepared by literature procedures. 

2.1. Synthesis of 5,11,17,23-Tetra-tert-butyl-25,26-dipropyloxy-27,28-dihydroxycalix[4]arene (4) 
[47] 

First, 15,16,17,18-tetra-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene (2.500 g, 3.8 
mmol) dissolved in DMF (500 mL) at 50 °C was deprotonated with NaH (60% dispersion 
in oil; 0.770 g, 19.3 mmol). After 0.5 h, nPrBr (1.050 g, 0.78 mL, 8.5 mmol) was added, and 
the reaction mixture was heated at 60 °C. After 4 days, the solvent was evaporated to 
dryness, and the solid residue was solubilized in CH2Cl2 (100 mL). The resulting 

Figure 1. Nickel complexes A and B for oligomerization of ethylene.

The possibility of fine tuning the coordination sphere of a catalytic center with the
calixarenyl preorganization platform allows the modulation of the steric properties of
the ligand to a specific reaction. In this context, we now report the use of calixarenyl
diphosphites 1–3 for the asymmetric hydrogenation of α-dehydroamino esters (Figure 2).
The objective of this work is to relate the positioning of the phophito units on the macrocycle
to the efficiency of the chirality transfer from the ligand to the substrates.
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Figure 2. Calixarenyl diphosphites 1–3 employed in the present study.

2. Materials and Methods

All manipulations were carried out under dry argon. Routine 1H, 13C{1H} and 31P{1H}
spectra were recorded with Bruker FT instruments (AC 300 and 400). 1H NMR and 13C{1H}
spectra were referenced to residual protonated solvents (δ = 7.16 ppm and 128.08 ppm
for C6D6, respectively, and 7.26 ppm and 77.16 ppm for CDCl3, respectively). 31P NMR
spectroscopic data are given relative to external H3PO4. Chemical shifts and coupling
constants are reported in ppm and Hz, respectively. Mass spectra were recorded on a
Bruker MicroTOF spectrometer (ESI-TOF). The catalytic solutions were analyzed by using
a Varian 3900 gas chromatograph equipped with a CHROMPAK chiral fused silica Chirasil-
L-Val column (25 m × 0.25 mm). (S,S)-5,17-Bis(1,1′-binaphthyl-2,2′-dioxyphosphanyloxy)-
25,26,27,28-tetrapropyloxycalix[4]arene (1) [45] and (S,S)-5,11,17,23-tetra-tert-butyl-25,27-
dipropoxy-26,28-bis(1,1′-binaphthyl-2,2′-dioxyphosphanyl-oxy)calix[4]arene (2) [46] were
prepared by literature procedures.

2.1. Synthesis of 5,11,17,23-Tetra-tert-butyl-25,26-dipropyloxy-27,28-dihydroxycalix[4]arene
(4) [47]

First, 15,16,17,18-tetra-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene (2.500 g, 3.8 mmol)
dissolved in DMF (500 mL) at 50 ◦C was deprotonated with NaH (60% dispersion in oil;
0.770 g, 19.3 mmol). After 0.5 h, nPrBr (1.050 g, 0.78 mL, 8.5 mmol) was added, and the
reaction mixture was heated at 60 ◦C. After 4 days, the solvent was evaporated to dryness,
and the solid residue was solubilized in CH2Cl2 (100 mL). The resulting suspension was
washed with HCl (2 N, 100 mL). The aqueous layer was extracted with CH2Cl2 (2 × 50 mL).
The combined organic layers were dried over MgSO4 and concentrated. The desired
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white solid product was precipitated by addition of methanol, filtered off and dried under
vacuum (1.692 g, 60%). 1H NMR (300 MHz, CDCl3): δ = 8.89 (s, 2H, OH), 7.00 (d, 2H, CH
arom, 4J = 2.4 Hz), 6.98 (d, 2H, CH arom, 4J = 2.8 Hz), 6.97 (d, 2H, CH arom, 4J = 2.8 Hz),
6.91 (d, 2H, CH arom, 4J = 2.4 Hz), 4.49 and 3.32 (AB system, 2H, ArCH2Ar, 2J = 12.6 Hz),
4.32 and 3.34 (AB system, 4H, ArCH2Ar, 2J = 12.9 Hz), 4.29 and 3.32 (AB system, 2H,
ArCH2Ar, 2J = 13.2 Hz), 4.08–4.00 (m, 2H, OCH2), 3.90–3.82 (m, 2H, OCH2), 2.08 (hex, 4H,
CH2CH3, 3J = 7.5 Hz), 1.26 (s, 18H, C(CH3)3), 1.12 (t, 6H, CH2CH3, 3J = 7.5 Hz), 1.10 (s, 18H,
C(CH3)3) ppm.

2.2. Synthesis of (S,S)-5,11,17,23-Tetra-tert-butyl-25,26-dipropoxy-27,28-bis(1,1′-binaphthyl-2,2′-
dioxyphosphanyloxy)calix[4]arene (3)

Here, 5,11,17,23-tetra-tert-butyl-25,26-dipropyloxy-27,28-dihydroxycalix[4]arene (4)
(0.600 g, 0.82 mmol) in refluxing toluene (30 mL) was deprotonated with NaH (60% dis-
persion in oil, 0.072 g, 1.80 mmol). After 24 h, a solution of [(S)-(1,1′-binaphthalene-2,2′-
diyl)]chlorophosphite (0.718 g, 2.05 mmol) in toluene (15 mL) was added at 0 ◦C. The
resulting reaction mixture was stirred at room temperature for an additional 2 h. The crude
solution was filtered through Al2O3, which was washed twice with toluene (2 × 15 mL).
The desired white solid product 3 was obtained by evaporation of the toluene under re-
duced pressure (0.792 g, yield 71%). 1H NMR (300 MHz, C6D6): δ = 8.10 (d, 1H, CH arom,
3J = 8.7 Hz), 7.78 (d, 1H, CH arom, 3J = 8.7 Hz), 7.71 (d, 1H, CH arom, 3J = 8.1 Hz), 7.63 (d,
1H, CH arom, 3J = 8.1 Hz), 7.60–7.53 (m, 3H, CH arom), 7.47 (d, 1H, CH arom, 3J = 8.7 Hz),
7.29–7.22 (m, 4H, CH arom), 7.13–7.02 (m, 12H, CH arom), 7.00–6.93 (m, 3H, CH arom),
6.92–6.90 (m, 2H, CH arom), 6.76 (brs, 2H, CH arom), 6.03 (brs, 1H, CH arom), 5.32 and
3.48 (AB system, 2H, ArCH2Ar, 2J = 13.2 Hz), 4.97 and 3.46 (AB system, 2H, ArCH2Ar,
2J = 12.9 Hz), 4.34 and 3.14 (AB system, 2H, ArCH2Ar, 2J = 12.3 Hz), 4.32 and 3.38 (AB
system, 2H, ArCH2Ar, 2J = 13.5 Hz), 3.78–3.52 (m, 4H, OCH2), 1.81–1.66 (m, 4H, CH2CH3),
1.45 (s, 9H, C(CH3)3), 1.39 (s, 9H, C(CH3)3), 1.09 (s, 9H, C(CH3)3), 0.99 (s, 9H, C(CH3)3),
0.95 (t, 3H, CH2CH3, 3J = 7.4 Hz), −0.17 (t, 3H, CH2CH3, 3J = 7.5 Hz); 13C{1H} NMR
(75 MHz, C6D6): δ = 154.30–122.35 (arom C’s), 78.38 (s, OCH2), 76.28 (s, OCH2), 34.31 (s,
C(CH3)3), 34.15 (s, C(CH3)3), 34.01 (s, C(CH3)3), 32.81 (s, ArCH2Ar), 32.61 (s, ArCH2Ar),
32.36 (s, ArCH2Ar), 32.11 (s, C(CH3)3), 31.96 (s, C(CH3)3), 31.55 (s, ArCH2Ar), 31.40 (s,
C(CH3)3), 23.62 (s, CH2CH3), 22.90 (s, CH2CH3), 10.92 (s, CH2CH3), 8.84 (s, CH2CH3);
31P{1H} NMR (121 MHz, C6D6): δ = 150.7 (s, OP(OAr)2) ppm. Elemental analysis (%): calcd
for C90H90P2O8 (1361.62): C 79.39, H 6.66; found: C 79.16, H 6.84.

2.3. Synthesis of cis-P,P’-{[(S,S)-5,11,17,23-Tetra-tert-butyl-25,27-dipropyloxy-26,28-bis
(1,1′-binaphtyl-phosphite)calix[4]arene]-1,5-cyclooctadiene}rhodium(I) Tetrafluoroborate (5)

Ligand 2 (0.284 g, 0.21 mmol) in CH2Cl2 (5 mL) was added drop to drop to a solution
of [Rh(cod)2]BF4 (0.077 g, 0.19 mmol) in CH2Cl2 (250 mL). After 16 h, the resulted solution
was concentrated to ca. 3 mL, and the complex 5 was precipitated out after the addition of
hexane (50 mL). The orange precipitate was filtered off and dried under vacuum (0.280 g,
89% yield). 1H NMR (300 MHz, CDCl3): δ = 8.24 (d, 2H, CH arom, 3J = 8.8 Hz), 8.03 (d, 2H,
CH arom, 3J = 8.8 Hz), 7.99 (d, 2H, CH arom, 3J = 8.1 Hz), 7.78 (d, 2H, CH arom, 3J = 8.1 Hz),
7.68 (d, 2H, CH arom, 3J = 8.9 Hz), 7.51–7.35 (m, 6H, CH arom), 7.24–7.10 (m, 4H, CH arom),
6.98 (d, 2H, CH arom, 3J = 8.6 Hz), 6.86 (d, 2H, CH arom, 3J = 8.6 Hz), 6.79 (d, 2H, CH arom,
4J = 2.1 Hz), 6.58 (d, 2H, CH arom, 4J = 2.4 Hz), 6.28 (d, 2H, CH arom, 4J = 2.1 Hz), 6.23 (d,
2H, CH arom, 4J = 2.1 Hz), 6.19–6.09 (m, 2H, CH of cod), 5.01 and 2.98 (AB system, 4H,
ArCH2Ar, 2J = 13.5 Hz), 4.89 and 3.31 (AB system, 4H, ArCH2Ar, 2J = 12.7 Hz), 4.46-4.38
(m, 2H, OCH2), 4.36–4.23 (m, 2H, CH of cod), 4.11–3.97 (m, 2H, OCH2), 2.74–2.58 (m, 2H,
CH2 of cod), 2.40–2.33 (m, 2H, CH2 of cod), 2.33–2.10 (m, 4H, CH2CH3), 1.65–1.53 (m, 2H,
CH2 of cod), 1.16 (t, 6H, CH2CH3, 3J = 7.4 Hz), 1.09–1.04 (m, 2H, CH2 of cod), 1.01 (s,
18H, C(CH3)3), 0.74 (s, 18H, C(CH3)3); 13C{1H} NMR (75 MHz, CDCl3): δ = 151.16–119.71
(arom Cs), 106.66 (s, CH of cod), 95.99 (s, CH of cod), 77.92 (s, OCH2), 34.97 (s, CH2
of cod), 33.69 (s, C(CH3)3), 33.61 (s, CH2 of cod), 33.60 (s, ArCH2Ar), 33.61 (s, CH2 of



Organics 2022, 3 473

cod), 33.58 (s, C(CH3)3), 33.36 (s, ArCH2Ar), 31.10 (s, C(CH3)3), 30.90 (s, C(CH3)3), 26.79
(s, CH2 of cod), 23.54 (s, CH2CH3), 10.27 (s, CH2CH3); 31P{1H} NMR (121 MHz, CDCl3):
δ = 120.7 (d, OP(OAr)2, 1JP-Rh = 256.8 Hz) ppm. MS (ESI TOF), m/z: 1571.61 [M–BF4]+

and 1463.54 [M–C8H12–BF4]+ expected isotopic profiles. Elemental analysis (%): calcd for
C98H102BF4O8P2Rh (1659.51): C 70.93, H 6.19; found: C 70.86, H 5.94.

2.4. General Procedure for the Hydrogenation Experiments

Hydrogenation experiments were carried out in a glass-lined, 100 mL stainless steel
autoclave containing a magnetic stirring bar. The reactor was flushed with nitrogen and
charged with [Rh(cod)2]BF4 (0.01 mmol), ligand (0.01 mmol) and CH2Cl2 (10 mL). The
resulting mixture was stirred at room temperature for 0.5 h. The α-dehydroamino esters
(1.00 mmol) were then added. The autoclave was flushed twice with H2, pressurized to
5 bars and stirred at room temperature for 24 h. After depressurization of the reactor, the
solution was passed through a short silica column to remove the catalyst. The conversion
and the enantioselectivity were determined by 1H NMR spectroscopy and by chiral GC
analysis using a CHROMPAK chiral fused silica Chirasil-L-Val column (25 m × 0.25 mm),
respectively.

N-Acetyl-phenylalanine methyl ester (7a) 1H NMR (CDCl3, 300 MHz): δ = 7.31–7.21 (m,
3H, CH arom), 7.09 (dd, 2H, CH arom, 3J = 7.7 Hz, 4J = 1.9 Hz), 6.05 (d, 1H, NH, 3J = 7.8 Hz),
4.87 (dt, 1H, CH2CHNH, 3J = 7.8 Hz, 3J = 5.8 Hz), 3.71 (s, 3H, CO2CH3), 3.12 and 3.09 (ABX
system, 2H, CH2CH, 2J = 13.8 Hz, 3J = 5.8 Hz), 1.97 (s, 3H, NHCOCH3) ppm.

N-Acetyl-4-fluoro-phenylalanine methyl ester (7b) 1H NMR (CDCl3, 300 MHz): δ = 7.07–6.93
(m, 4H, CH arom), 6.02 (d, 1H, NH, 3J = 7.6 Hz), 4.85 (dt, 1H, CH2CHNH, 3J = 7.6 Hz,
3J = 5.7 Hz), 3.71 (s, 3H, CO2CH3), 3.12 and 3.04 (ABX system, 2H, CH2CH, 2J = 14.1 Hz,
3J = 5.7 Hz), 1.98 (s, 3H, NHCOCH3) ppm.

N-Acetyl-4-chloro-phenylalanine methyl ester (7c) 1H NMR (CDCl3, 300 MHz): δ = 7.23
(d, 2H, CH arom, 3J = 8.3 Hz), 7.01 (d, 2H, CH arom, 3J = 8.3 Hz), 6.18 (brs, 1H, NH), 4.83
(dt, 1H, CH2CHNH, 3J = 7.8 Hz, 3J = 5.8 Hz), 3.69 (s, 3H, CO2CH3), 3.98 and 3.01 (ABX
system, 2H, CH2CH, 2J = 13.8 Hz, 3J = 5.8 Hz), 1.95 (s, 3H, NHCOCH3) ppm.

N-Acetyl-3,4-dichloro-phenylalanine methyl ester (7d) 1H NMR (CDCl3, 300 MHz): δ = 7.33
(d, 1H, CH arom, 3J = 8.3 Hz), 7.18 (d, 1H, CH arom, 4J = 2.2 Hz), 6.93 (dd, 1H, CH arom,
3J = 8.3 Hz, 4J = 2.2 Hz), 6.19 (d, 1H, NH, 3J = 7.6 Hz), 4.85 (dt, 1H, CH2CHNH, 3J = 7.6 Hz,
3J = 5.9 Hz), 3.72 (s, 3H, CO2CH3), 3.11 and 2.99 (ABX system, 2H, CH2CH, 2J = 13.9 Hz,
3J = 5.9 Hz), 1.98 (s, 3H, NHCOCH3) ppm.

3. Results

Starting from the 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrol-calix[4]arene, two diphos-
phites in which the phosphito units are grafted on distal aromatic either on the upper or on
the lower rim of the macrocycle, namely (S,S)-5,17-bis (1,1′-binaphthyl-2,2′-dioxyphosphan-
yloxy)-25,26,27,28-tetrapropyloxycalix[4]arene (1) [45] and (S,S)-5,11,17,23-tetra-tert-butyl-
25,27-dipropoxy-26,28-bis(1,1′-binaphthyl-2,2′-dioxyphosphanyloxy)calix[4]arene (2) [46]
were prepared following previous reports of our group. The third diphosphite was obtained
in two steps: firstly, a double alkylation of two proximally phenolic units with NaH and
nPrBr in DMF, which led after 4 days at room temperature to the O-dialkylated precursor
4 [47] in 60% yield. In keeping with a Cs-symmetrical structure, its 1H NMR spectrum
displays three distinct AB patterns for the diastereotopic ArCH2Ar protons at 4.49/3.32
(2J = 12.6 Hz), 4.32/3.34 (2J = 12.9 Hz), and 4.29/3.32 (2J = 13.2 Hz) ppm integrated for 2, 4
and 2 protons, respectively.

The second step consists of a double deprotonation of intermediate with NaH 4 fol-
lowed by a reaction with (S)-(1,1′-binaphthalene-2,2′-diyl)chlorophosphite, which led to the
diphosphite 3 (Scheme 1). After workup, diphosphite 3 was isolated in 71% yield and was
characterized by a singlet peak at 150.7 ppm in its 31P NMR spectrum. As anticipated, the
“cone” conformation of the calix[4]arene was inferred from the corresponding 13C NMR spec-
trum, which shows four signals in the range 32.81–31.55 ppm for the ArCH2Ar groups [48].
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Consistent with a C1-symmetrical compound, the 1H NMR spectrum displays four distinct
AB patterns for the ArCH2Ar protons at 5.32/3.48 (2J = 13.2 Hz), 4.97/3.46 (2J = 12.9 Hz),
4.34/3.14 (2J = 12.3 Hz) and 4.32/3.38 (2J = 13.5 Hz) ppm (see Supplementary Materials).
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The reaction of the lower rim distally substituted diphosphito-calixarene 2 with
[Rh(cod)2]BF4 (cod = 1,5-cyclooctadiene) in CH2Cl2 (0.7 mM) gave, after work-up, the
complex 5 in 89% yield as an orange solid (Scheme 2). Owing to the large separation
between the two coordinated atoms, 12 bonds, the exclusive formation of a P,P-chelate
rhodium complex occurred. The structure of the complex was deduced from its mass
spectrum, which shows strong peaks corresponding to the [M–BF4]+ and [M–C8H12–BF4]+

cations at m/z = 1571.61 and 1463.54, respectively. NMR spectra are consistent with a
C2-symmetrical molecule: a doublet centered at 120.7 ppm (1JP-Rh = 256.8 Hz) and two AB
systems for the diastereotopic ArCH2Ar protons at 5.01/2.98 (2J = 13.5 Hz) and 4.89/3.31
(2J = 12.7 Hz) ppm are observed in the corresponding 31P and 1H NMR spectra, respectively
(see Supplementary Materials). Note that when the synthesis of complex 5 was performed in
lower-dilution conditions (10 mM), the formation of by-products was observed (85% purity).
Nevertheless, with this mixture of complexes, Sandoval et al. observed important enan-
tiomeric excesses in the asymmetric hydrogenation of methyl-(Z)-2-(acetamido)acrylate
and methyl-(Z)-2-(acetamido)cinnamate [49].
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Scheme 2. Formation of [Rh(2)(cod)]BF4 complex (5).

Four different α-dehydroamino esters, namely (Z)-N-acetyl-dehydro-phenylalanine
methyl ester (6a), (Z)-N-acetyl-dehydro-4-fluoro-phenylalanine methyl ester (6b), (Z)-N-
acetyl-dehydro-4-chloro-phenylalanine methyl ester (6c) and (Z)-N-acetyl-dehydro-3,4-
dichloro-phenylalanine methyl ester (6d) were used to assess the performance of diphos-
phites 1–3 in the rhodium catalyzed asymmetric hydrogenation (Scheme 3).
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Scheme 3. Enantiomeric hydrogenation of α-dehydroamino esters 6a–d.

In the following tests, the catalytic system was in situ generated by mixing an equimo-
lar amount (0.01 mmol, 1 mol %) of [Rh(cod)2]BF4 as metal precursor and ligand (1–3)
in CH2Cl2. The resulting solution was stirred at room temperature for 30 min before the
addition of the α-dehydroamino ester (6a–d; 1 mmol). The reaction mixture was stirred
under 5 bar of hydrogen for an additional 24 h. 1H NMR carried out on the reaction mix-
tures revealed that using ligands 1–3, the conversion was increased in the order 1 < 2 < 3
(Table 1). As example, under the latter catalytic conditions, (Z)-N-acetyl-dehydro-4-fluoro-
phenylalanine methyl ester (6b) was reduced into N-acetyl-4-fluoro-phenylalanine methyl
ester (7b) in 83, 92 and 100% conversion when diphosphites 1, 2 and 3 were employed,
respectively (Table 1, entries 2, 6 and 11).

The reduced products 7a–d were obtained with modest enantiomeric excesses (ee) 48–
57% when diphosphite 1 was employed (Table 1, entries 1–4). Slightly higher ee values, 58–
66%, were measured when ligand 3 was used (Table 1, entries 10–13). The more important ee
values, higher than 90%, were measured when the calixarenyl diphosphite 2 was associated
with the rhodium precursor (Table 1, entries 5–8). Using the latter catalytic system, N-acetyl-
4-chloro-phenylalanine methyl ester (7c) and N-acetyl-4-fluoro- phenylalanine methyl ester
(7b) were obtained with ee values of 94 and 95%, respectively. Note that under the previous
catalytic conditions, repeating the hydrogenation of α-dehydroamino ester 6a with the
well-defined [Rh(2)(cod)]BF4 (5) did not change the catalytic outlook; the reduced product
7a was quantitatively formed (ee = 92%) (Table 1, entry 9). No reduction occurred when the
dimeric [RhCl(cod)]2 complex was employed as a rhodium source.
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Table 1. Enantiomeric hydrogenation of α-dehydroamino esters 6a–d 1.

Entry Substrate (Ar) Ligand Conversion (%) 2 ee (%) 3

1 6a (Ar = Ph) 1 100 57 (R)
2 6b (Ar = 4-F-C6H4) 1 83 48 (R)
3 6c (Ar = 4-Cl-C6H4) 1 86 57 (R)
4 6d (Ar = 3,4-Cl2-C6H3) 1 91 52 (R)

5 6a (Ar = Ph) 2 100 91 (R)
6 6b (Ar = 4-F-C6H4) 2 92 95 (R)
7 6c (Ar = 4-Cl-C6H4) 2 97 94 (R)
8 6d (Ar = 3,4-Cl2-C6H3) 2 100 90 (R)

9 4 6a (Ar = Ph) 2 100 92 (R)

10 6a (Ar = Ph) 3 100 62 (R)
11 6b (Ar = 4-F-C6H4) 3 100 66 (R)
12 6c (Ar = 4-Cl-C6H4) 3 100 58 (R)
13 6d (Ar = 3,4-Cl2-C6H3) 3 100 63 (R)

1 Reagents and conditions: [Rh(cod)2]BF4 (1 mol %), ligand (1 mol %), CH2Cl2 (12 mL), P(H2) = 5 bar, 25 ◦C, 24 h;
2 conversions were determined by 1H NMR spectroscopy (see Supplementary Materials); 3 enantiomeric excess
were determinated by chiral GC analysis (CHROMPAK, 25 m × 0.25 mm, Chirasil-L-Val); 4 with [Rh(2)(cod)]BF4
(1 mol %).

It is interesting to note that only a few examples of asymmetric hydrogenation of
α-dehydroamino esters using diphosphites derived from optically pure binol were reported.
The nature of the bridge linking the two phosphorus atoms has a direct effect on the
catalytic outcome. In fact, when D-glucose [50] or N-phenyldiethanolamine [51] were
incorporated in the ligand, low ee values, 28–32%, were measured in the hydrogenation of
(Z)-N-acetyl-dehydro-phenylalanine methyl ester (6a). In contrast, important enantiomeric
excesses, similar to those obtained with our calixarenyl ligand 2, were obtained by Fan et al.
using diphosphite-containing metallacrown ether as a ligand [52] and by Xia et al. with a
norbornane backbone [53].

4. Discussion

As interfered from Table 1, the nature of the diphosphite has a direct influence on the
results of the asymmetric hydrogenation of the α-dehydroamino esters 6a–d; the chiral
induction increases in the order 1 < 3 < 2. Based on the mechanism described by Halpern
et al. (Scheme 4) [54–56], these differences would not come from electronic factors (in each
case P(OAr)3 moieties) but from steric factors generated by the bridge between the two
phosphorus atoms, i.e., by the calix[4]arene platform.

Organics 2022, 3, FOR PEER REVIEW 7 
 

 

Materials); 3 enantiomeric excess were determinated by chiral GC analysis (CHROMPAK, 25 m × 
0.25 mm, Chirasil-L-Val); 4 with [Rh(2)(cod)]BF4 (1 mol %). 

The reduced products 7a–d were obtained with modest enantiomeric excesses (ee) 
48–57% when diphosphite 1 was employed (Table 1, entries 1–4). Slightly higher ee 
values, 58–66%, were measured when ligand 3 was used (Table 1, entries 10–13). The 
more important ee values, higher than 90%, were measured when the calixarenyl 
diphosphite 2 was associated with the rhodium precursor (Table 1, entries 5–8). Using 
the latter catalytic system, N-acetyl-4-chloro-phenylalanine methyl ester (7c) and N-
acetyl-4-fluoro- phenylalanine methyl ester (7b) were obtained with ee values of 94 and 
95%, respectively. Note that under the previous catalytic conditions, repeating the 
hydrogenation of α-dehydroamino ester 6a with the well-defined [Rh(2)(cod)]BF4 (5) did 
not change the catalytic outlook; the reduced product 7a was quantitatively formed (ee = 
92%) (Table 1, entry 9). No reduction occurred when the dimeric [RhCl(cod)]2 complex 
was employed as a rhodium source. 

It is interesting to note that only a few examples of asymmetric hydrogenation of α-
dehydroamino esters using diphosphites derived from optically pure binol were 
reported. The nature of the bridge linking the two phosphorus atoms has a direct effect 
on the catalytic outcome. In fact, when D-glucose [50] or N-phenyldiethanolamine [51] 
were incorporated in the ligand, low ee values, 28–32%, were measured in the 
hydrogenation of (Z)-N-acetyl-dehydro-phenylalanine methyl ester (6a). In contrast, 
important enantiomeric excesses, similar to those obtained with our calixarenyl ligand 2, 
were obtained by Fan et al. using diphosphite-containing metallacrown ether as a ligand 
[52] and by Xia et al. with a norbornane backbone [53]. 

4. Discussion 
As interfered from Table 1, the nature of the diphosphite has a direct influence on 

the results of the asymmetric hydrogenation of the α-dehydroamino esters 6a–d; the 
chiral induction increases in the order 1 < 3 < 2. Based on the mechanism described by 
Halpern et al. (Scheme 4) [54–56], these differences would not come from electronic 
factors (in each case P(OAr)3 moieties) but from steric factors generated by the bridge 
between the two phosphorus atoms, i.e., by the calix[4]arene platform. 

 
Scheme 4. Halpern’s mechanism of hydrogenation. 

With the aim of rationalizing the positioning of the phosphito units on the 
calix[4]arene platform, molecular mechanism calculations using Spartan of [Rh(L)] 
moieties (L = 1–3), in which the rhodium atom adopts a square-planar coordination 
geometry, were performed (Figure 3). 

Scheme 4. Halpern’s mechanism of hydrogenation.



Organics 2022, 3 477

With the aim of rationalizing the positioning of the phosphito units on the calix[4]arene
platform, molecular mechanism calculations using Spartan of [Rh(L)] moieties (L = 1–3), in
which the rhodium atom adopts a square-planar coordination geometry, were performed
(Figure 3).
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square-planar coordination geometry.

Simulation of the rhodium complex involving the ligand whose phosphito units are
grafted onto the distal aromatics on the upper rim of the calixarene [Rh(1)] shows that the
rhodium atom is located near the entrance of the macrocyclic cavity. This leads to a largely
ligand-free coordination sphere, which is an unfavorable situation for an efficient transfer
of chirality from the substituents of the phosphorus atoms to the substrate. In the case of
the P,P-chelate [Rh(2)] complex, the rhodium atom was confined in a tight chiral molecular
pocket made by the two bulky 1,1′-binaphthalene-2,2′-dioxy moieties and the two auxiliary
propyl chains of the calixarene. This feature increases the steric pressure on the catalytic
center generated by the optically active phosphite units, which leads to a specific approach
of the substrate to the metal allowing an excellent chirality transfer to the α-dehydroamino
esters. In the case of diphosphite 3 having its phosphorus atoms grafted on two proximally
phenolic rings of the calixarene, the rhodium atom mainly adopts an exo-orientation with
respect to the macrocycle [57]. The simulations indicate that the rhodium atom lies in a
sterically hindered environment created by the two phosphito units and by one methylenic
moiety of the calixarene. This constrained, asymmetric environment may be responsible
for a better efficient chirality transfer than ligand 1, but it is less efficient when compared to
diphosphite 2.

Regarding the kinetics of the hydrogenation reaction, when substrate (Z)-N-acetyl-
dehydro-4-fluoro-phenylalanine methyl ester (6b) or (Z)-N-acetyl-dehydro-4-chloro-phenyl-
alanine methyl ester (6c) were employed, the reduction rate increased in the order 1 < 2 < 3.
The most efficient diphosphites are those whose Rh(III)-H intermediates adopt distorted
structures due to steric constraints generated by the calix[4]arene (OPr auxiliary groups in 2
and ArCH2Ar moiety in 3). This brings the hydride closer to the coordinated olefin or alkyl
chain, which promotes both its migration on the olefin and the final reductive elimination
step, respectively (Scheme 4).

5. Conclusions

In summary, we have described the synthesis of optically pure diphosphite in which
the two phosphorus atoms are grafted on two proximally phenolic rings of a calix[4]arene.
The latter compound and two related calixarenyl diphosphites have been employed in
the asymmetric hydrogenation of α-dehydroamino esters. With these three ligands, high
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conversions were observed after 24 h under 5 bar of hydrogen. We have shown that the
position of the two phosphito units on the calixarene platform has a determining role in the
chirality transfer from the ligand to the substrate and can be directly related to the steric
hindrance generated by the second coordination sphere [58] of the ligand, in other words
by the calixarenyl skeleton. In fact, the highest enantiomeric excess, 95%, was obtained
with diphosphite 2, which was able to encapsulate the catalytic center inside a molecular
pocket generated by the naphthyl substituents and the auxiliary side groups. Further
studies aim at exploiting the structural diversity offered by the calix[4]arene platform in
homogeneous catalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/org3040030/s1, 1H, 13C and 31P NMR spectra of compounds 3–5
and 7a–d are given.
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