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Abstract: Chloropupukeananin is a natural product that inhibits HIV-1 replication and has antitumor
activity. Its structure consists of a chlorinated tricyclo[4.3.1.03,7]decane core skeleton with an array of
highly oxidized multifunctional groups. In the biosynthesis of chloropupukeananin, (+)-iso-A82775C
and (−)-maldoxin are employed as biosynthetic precursors for the intermolecular Diels–Alder and
carbonyl–ene reactions, followed by the migration of the p-orcellinate group. Chloropupukeanolides
and chloropestolides are intermediates and isomers in biosynthesis; their unique chemical structures
and biosynthetic pathways have attracted significant attention from synthetic chemists. In this review,
I present the synthetic studies on chloropupukeananin and its related compounds that have been
conducted thus far.

Keywords: biomimetic synthesis; Diels–Alder reactions; carbonyl–ene reactions; cascade reactions;
enantioselective synthesis; natural products; total synthesis

1. Introduction

Chloropupukeananin (1) was originally isolated in 2008 by Che et al. from Pestalotiopsis
fici (an endophytic plant fungus) as an antimicrobial agent and inhibitor of HIV-1 replication
(Figure 1) [1]. Simultaneously, iso-A82775C (2) and pestheic acid [2–4] (3) were also isolated
and proposed as biosynthetic precursors of 1 (Scheme 1). Structurally, chloropupkeananin
possesses a highly functionalized pupukeanane skeleton [5–9]. Significantly, both 1 and
pupukeanane share a common skeleton despite possessing no biosynthetic relationship,
as pupukeananes, which are marine sesquiterpenes from sponges, have exclusively been
isolated with a single functional group.

 
 

 

 
Organics 2022, 3, Firstpage–Lastpage. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/organics 

Review 

Total Syntheses of Chloropupukeananin and Its Related  
Natural Products 
Takahiro Suzuki 

Department of Chemistry, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan;  
takahiro-suzuki@sci.hokudai.ac.jp 

Abstract: Chloropupukeananin is a natural product that inhibits HIV-1 replication and has anti-
tumor activity. Its structure consists of a chlorinated tricyclo[4.3.1.03,7]decane core skeleton with an 
array of highly oxidized multifunctional groups. In the biosynthesis of chloropupukeananin, (+)-
iso-A82775C and (−)-maldoxin are employed as biosynthetic precursors for the intermolecular 
Diels–Alder and carbonyl–ene reactions, followed by the migration of the p-orcellinate group. Chlo-
ropupukeanolides and chloropestolides are intermediates and isomers in biosynthesis; their unique 
chemical structures and biosynthetic pathways have attracted significant attention from synthetic 
chemists. In this review, I present the synthetic studies on chloropupukeananin and its related com-
pounds that have been conducted thus far. 

Keywords: biomimetic synthesis; Diels–Alder reactions; carbonyl–ene reactions; cascade reactions; 
enantioselective synthesis; natural products; total synthesis 
 

1. Introduction 
Chloropupukeananin (1) was originally isolated in 2008 by Che et al. from Pestalo-

tiopsis fici (an endophytic plant fungus) as an antimicrobial agent and inhibitor of HIV-1 
replication (Figure 1) [1]. Simultaneously, iso-A82775C (2) and pestheic acid [2–4] (3) were 
also isolated and proposed as biosynthetic precursors of 1 (Scheme 1). Structurally, chlo-
ropupkeananin possesses a highly functionalized pupukeanane skeleton [5–9]. Signifi-
cantly, both 1 and pupukeanane share a common skeleton despite possessing no biosyn-
thetic relationship, as pupukeananes, which are marine sesquiterpenes from sponges, 
have exclusively been isolated with a single functional group. 

Figure 1. The chemical structure of chloropupukeananin and pupukeanane. 

The isolation of chloropestolide A (5) [10] from the same fermentation medium as 1 
in 2009 led Suzuki and Kobayashi to propose that the actual biosynthetic precursors of 
these compounds are 2 and maldoxin (4) [4], which is an oxidized form of 3 [11]. Although 
4 had already been isolated without the determination of its optical rotation and stereo-
chemistry, [4] (R)-4 was assumed to be generated by asymmetric oxidative dearomatiza-
tion in the biosynthesis of 1. The subsequent biosynthetic pathway is as follows: the inter-
molecular reverse electron-demanding Diels–Alder reaction of 2 and 4 gives cycloadduct 
5 and its isomers 6–8, possessing a bicyclo[2.2.2]octane skeleton. Moreover, the normal-
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Figure 1. The chemical structure of chloropupukeananin and pupukeanane.
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electron Diels–Alder reaction, using the vinylallene moiety of 2 as a diene, generates 9 and 
10. Intramolecular carbonyl–ene reactions between the C5 position in the allene moiety 
derived from 2 and the C6 ketone derived from 4 afford 11 and 12 with tricyclo 
[4.3.1.03,7]decane skeletons from 7 and 8, respectively. Finally, the p-orsellinate moiety of 
11 migrates to C18-OH to give 1. In the continuing efforts by Che et al. to elucidate the 
biosynthetic pathway of 1 [12–16], all the aforementioned biosynthetic intermediates 6–12 
(chloropestolides B-F and chloropupukenolides C and D) were isolated along with other 
degradation products 13–17. Notably, optically active (R)-4 was isolated from the related 
fungus, P. theae, [15] along with chlorotheolides A (18) and B (19) and 1-undecene-2,3-
dicarboxylic acid (20), which is a proposed biosynthetic precursor of 18 and 19 (Scheme 
2). To identify a biosynthetic gene cluster in chloropupukeananin-producing bacteria, 
chloropestolides H-K [16] (21–24), which may be produced from 4 and siccayne 25, were 
isolated using a prenyltransferase gene disruption strain. 
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Scheme 1. The biosynthetic pathway of chloropupukeananin and its related natural products.

The isolation of chloropestolide A (5) [10] from the same fermentation medium as 1 in
2009 led Suzuki and Kobayashi to propose that the actual biosynthetic precursors of these
compounds are 2 and maldoxin (4) [4], which is an oxidized form of 3 [11]. Although 4 had
already been isolated without the determination of its optical rotation and stereochem-
istry, [4] (R)-4 was assumed to be generated by asymmetric oxidative dearomatization in the
biosynthesis of 1. The subsequent biosynthetic pathway is as follows: the intermolecular
reverse electron-demanding Diels–Alder reaction of 2 and 4 gives cycloadduct 5 and its
isomers 6–8, possessing a bicyclo[2.2.2]octane skeleton. Moreover, the normal-electron
Diels–Alder reaction, using the vinylallene moiety of 2 as a diene, generates 9 and 10. In-
tramolecular carbonyl–ene reactions between the C5 position in the allene moiety derived
from 2 and the C6 ketone derived from 4 afford 11 and 12 with tricyclo [4.3.1.03,7]decane
skeletons from 7 and 8, respectively. Finally, the p-orsellinate moiety of 11 migrates to C18-
OH to give 1. In the continuing efforts by Che et al. to elucidate the biosynthetic pathway of
1 [12–16], all the aforementioned biosynthetic intermediates 6–12 (chloropestolides B-F and
chloropupukenolides C and D) were isolated along with other degradation products 13–17.
Notably, optically active (R)-4 was isolated from the related fungus, P. theae, [15] along
with chlorotheolides A (18) and B (19) and 1-undecene-2,3-dicarboxylic acid (20), which
is a proposed biosynthetic precursor of 18 and 19 (Scheme 2). To identify a biosynthetic
gene cluster in chloropupukeananin-producing bacteria, chloropestolides H-K [16] (21–24),
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which may be produced from 4 and siccayne 25, were isolated using a prenyltransferase
gene disruption strain.
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Scheme 2. Natural products derived by the intermolecular Diels–Alder reaction of maldoxin.

The face selectivity of the intermolecular Diels–Alder reactions in biosynthesis requires
further discussion. The isolation of chloropestolides (5–8, 21–24) demonstrates the occur-
rence of all possible isomers in reverse electron-requested Diels–Alder reaction (Scheme 3).
In the formation of these bicyclo [2.2.2]octane-containing cycloadducts, the dienophiles
approach the Re- or Si-plane of C4’ of diene 4 in syn- or anti-orientation between the R group
of the dienophiles (2 or 25) and the C2 acetal site of diene 4. While the usual enzymatic
reaction occurs selectively in nature, the current intermolecular Diels–Alder reaction of
4 displays poor selectivity. Therefore, enzymes may not be involved in the Diels–Alder
reaction of 4. However, it is reasonable to assume that enzymes are involved elsewhere in
the series of biosynthetic reactions because the reaction sites are well controlled despite the
presence of several functional groups. The chemical synthesis of the chloropupukeananin
family via the Diels–Alder reactions of 4 and biosynthetic dienophiles helps elucidate the
detailed mechanism of biosynthesis, especially the occurrence of an enzymatic Diels–Alder
reaction. If the enzymatic Diels–Alder reaction does occur, this enzyme is the first example
of an intermolecular Diels–Alderase that constructs a highly functional bicyclo [2.2.2]octane
skeleton [17–20]. Because of the high synthetic convergence and the broad diversity of
products in the intermolecular Diels–Alder reaction, artificial Diels–Alderases such as anti-
body catalysts [21], artificial enzymes [22], and supramolecules [23] have been developed.
Recently, enzymes promoting the intermolecular Diels–Alder reactions to produce pseudo-
dimeric resveratrols have been identified [24]. The identification of an intermolecular
heterodimeric Diels–Alderase is expected to pave the way for the production of a variety of
bioactive natural product-like compounds through its genetic modification [25].
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Therefore, chloropupukeananin has attracted significant research interest, and various
studies have been conducted to elucidate its biosynthesis. In this review, reports on
chloropupukeananin in the context of synthetic chemistry, the synthesis of biosynthetic
precursors, the Diels–Alder reaction mimicking biosynthesis, and the total synthesis of
chloropupukeananin, are presented.

2. Synthesis of the Biosynthetic Precursors of Chloropupukeananin
2.1. Pestheic Acid and Maldoxin

Pestheic acid (3) [2], also known as RES-1214-2 [3] and dihydromaldoxin [4], is
a metabolite of chlorinated lichexanthone derivatives, such as chloroisosulochin (26)
and chloroisosulochin dehydrate (27) [2], and it consists of p-orsellinate and methyl
p-chlorobenzoate moieties (Figure 2). Maldoxin (4) was isolated from Xylaria species,
which was collected from a Malaysian rain forest by Edwards et al., along with 3 and mal-
doxone (28) [4]. Similar to the biosynthesis of nidulin, [26,27] 3 and 28 can be generated by
the oxidative dearomatization of 26, followed by the hydrolysis of the resulting spiroketone
29. The re-dearomatization of the methyl p-chlorobenzoate moiety of 3 produces 4. These
compounds exhibit biological activities; in particular, 3 is a promising selective endothelin
A receptor antagonist.
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Figure 2. The chemical structure of pestheic acid, maldoxin, and these related natural compounds.

In 2012, Yu and Snyder reported the first total synthesis of pestheic acid and mal-
doxin based on a biosynthetic pathway (Scheme 4) [28]. The synthesis was initiated
with a known six-step conversion of methyl 3,5-dihydroxybenzoate to salicylaldehyde
30. Site-selective methylation followed by chlorination [29–31] using SO2Cl2 and 2,2,6,6-
tetramethylpiperidine (TMP) afforded 3-chlorosalicyladehyde 31 (58% yield) and 5-chloride
(15% yield). The use of a bulkier amine is essential because an undesired 5-chlorination
was preferred when using t-butylamine (3-Cl:5-Cl = 1:2.6). After the MOM protection, the
lithiated orcinol derivative 33 [32] was added to aldehyde 32 to produce alcohol 34 in 92%
yield. Oxidation with Dess–Martin periodinane (DMP) gave benzophenone 35 in 90% yield.
Over-reduction during the reductive removal of the benzyl group caused several issues.
Various catalysts and reaction times were investigated, and reduction using the Rosenmund
catalyst selectively afforded alcohol 36. The resulting primary alcohol was converted to
methyl ester 37 via a conventional three-step transformation. The removal of the MOM
groups using TsOH produced chloroisosulochin 26. Oxidation with K3Fe(CN)6 [33–35]
in H2O followed by continuous acidic hydrolysis furnished maldoxone 28. The basic
hydrolysis of 28 achieved a total synthesis of 3. The oxidative dearomatization of 3 with
iodobenzene diacetate (PIDA) afforded racemic 4 in 31% yield. The observed melting
point of synthetic 4 is 193 ◦C, while that of natural 4 reported in the literature is 143 ◦C [4],
indicating that the natural maldoxin is not racemic.
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Scheme 4. Total synthesis of pestheic acid and rac-maldoxin by Yu and Snyder. MOM—
methoxymethyl, DIPEA—diisopropylethylamine, DMP—Dess-Martin periodinane, PIDA—
(diacetoxyiodo)benzene.

The asymmetric synthesis of (R)-4 is essential for the total synthesis of the natural
products in the chloropupukeananin family. In addition, an efficient and robust synthetic
strategy to supply large quantities of 3 and 4 is required. In 2018, Suzuki et al. reported the
asymmetric total synthesis of (−)-(R)-4 via the intramolecular SNAr etherification and asym-
metric oxidative dearomatization of 3 using the Ishihara catalyst (Scheme 5) [36]. Herein,
the right-hand benzoate moiety 40 was synthesized from 5-methoxysalicylic acid. After a
three-step conversion to phenol 38 [37], chlorination with sodium hypochlorite proceeded
nonselectively to afford a 1:1 mixture of 4-Cl and 6-Cl. Subsequent acidic esterification
produced the 4-chlorobenzoate 39 (40% yield in two steps) [11]. The site-selective removal
of the methyl group using AlCl3 achieved the synthesis of the right-hand moiety 40. As
shown in Snyder’s synthesis, the nonselectivity of the chlorination of these compounds is a
fundamental issue that may necessitate alternative functionalization reactions. The alterna-
tive synthesis [38] was initiated with commercial 2-chloro-1,4-dimethoxybenzene, which
was converted to methyl 4-chloro-2,5-dimethoxybenzoate 42 by three-step sequence (formy-
lation, Pinnick oxidation, and acidic esterification). The oxidative nucleophilic substitution
reaction [39,40] using PIDA in trifluoroacetic acid (TFA)/AcOH mixed solvent occurred
selectively at the C3 position (C3/C6 = 6:1) to give 43, which was directly subjected to basic
hydrolysis to produce phenol 39 in 68% yield.

The left fragment 44 was prepared using two-step transformation: the lithiation of
3,5-difluorotoluene followed by carboxylation with CO2 (64% yield) [41] and intermolecular
SNAr etherification of the resulting benzoic acid using KOBn (quantitative yield). The
preparation of acyl chloride from the left-hand fragment 44 and the subsequent regiose-
lective esterification with the right-hand fragment 40 afforded benzoate ester 45 in 79%
yield. The intramolecular SNAr reaction [42,43] was initiated by the treatment of benzoate
45 with Cs2CO3 (0.05 M, 80 ◦C) in DMSO, and the one-pot acid hydrolysis of the resulting
7-membered lactone 46 produced diaryl ether 47 in 51% yield. The synthesis of pestheic
acid 3 was achieved by removing the Bn group of diaryl ether 47. The asymmetric oxidative
dearomatization [44–46] of 3 to maldoxin 4 using Ishihara catalysts has been thoroughly
investigated. As a result, the optically pure (−)-(R)-4 was successfully obtained with 93%
yield using the (2R,2′R)-Ishihara catalyst (10 mol%), mCPBA (1.5 equiv.) as the co-oxidant,
methanol (20 equiv.) as an additive, and chloroform (0.01 M) as the solvent [47–49]. The
stereochemistry of (−)-(R)-4 was confirmed by X-ray crystallographic analysis. The lev-
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orotation of synthetic (R)-4 indicates that natural 4 isolated from P. theae possesses the
R-configuration. Moreover, as the melting point of synthetic 4 is 142–143 ◦C, the originally
isolated natural 4 was likely to be optically pure.
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2.2. Iso-A82775C

As the name indicates, iso-A82775C is a diastereomer of the known natural product
A82775C 48 [50] (Figure 3), isolated from an unknown terrestrial fungus collected in Egypt.
Another natural diastereomer is Spartinoxide [51] (49), which is an enantiomer of 48, iso-
lated from a marine-derived fungus and identified as an inhibitor of human leukemia
elastase. These compounds belong to a class of naturally occurring cyclohexene epoxides.
Typically, these compounds (such as eutypoxides, asperpentyne, harveynone, panepoxy-
done, and isopanepoxydone) possess one prenyl chain; cyclohexene epoxides with two
prenyl side chains are rare. To the best of our knowledge, only two natural products (other
than compounds 2, 48, and 49) have been reported: pestalofone A (50) [52] and biscogniene
B (51) [53]. Significantly, one of the prenyl units of these compounds is oxidized and
rich in sp2 carbon. These oxidized prenyl side chains can undergo dimerization, forming
a variety of natural products; for instance, pestalofones B and C have been isolated as
dimeric natural products of iso-A82775C. Interest in the biological activity, as well as the
biosynthetic pathway of these dimers, prompted investigations into the total synthesis of
naturally occurring cyclohexene epoxides with prenyl side chains.
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duction using NaBH(OAc)3, 1,3-diol 59 was obtained as a single diastereomer [61]. Pd-
coupling precursor 53 was obtained via the TES protection of 1,3-diol 59 in quantitative 
yield. Pd coupling reactions with various allyl metal reagents were conducted, but allyla-
tion occurred only under standard Stille conditions, quantitatively producing 60. Stille 
coupling with prenylstannane reagents was unsuccessful, and prenylcyclohexene 61 was 
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Suzuki et al. reported the enantioselective total synthesis of (+)-iso-A82775C in
2017, [54] which is the first report of the synthesis of naturally occurring cyclohexene
epoxides with two prenyl side chains. The synthetic strategy is illustrated in Scheme 6. The
installation of the labile axially chiral vinylallene to 52 would be achieved in the final stage
of the total synthesis using a 2-propenyl metal reagent via an anti-SN2′ reaction. The stere-
oselective epoxidation of 53 and Pd-catalyzed prenylation would envision vinyl bromide
54. Further, optically active 54 could be obtained via the base-catalyzed asymmetric Diels–
Alder reaction reported by Okamura et al. [55–58] using pyrone 55 and 2-chloroacrylate
56. First, 55 was prepared on a decagram scale from mucic acid using a modified two-step
procedure [59,60]. By investigating the intermolecular Diels–Alder reaction using various
cinchona alkaloids, the optimal result was obtained using 0.1 equiv of cinchonine in toluene
at 0 ◦C to produce the desired endo cycloadduct 54 with 67% ee (endo:exo = 3.6:1). Recrys-
tallization of 54 (67% ee) from EtOAc/n-hexane gave enantiomerically pure crystalline
(−)-54 (>99% ee, 42% yield from pyrone 55), and the absolute stereochemistry of the prod-
uct was determined via X-ray crystallographic analysis. Chemoselective reduction of the
ester with LiBH4, the protection of the resulting alcohol, and the reduction of the lactone
moiety with DIBAL afforded α-hydroxylactol 57. The Criegee oxidation of α-hydroxylactol
57 furnished α-bromoenone 58 in 43% overall yield from 54. After the protection of the sec-
ondary alcohol, removal of the TES group, and one-pot hydroxyl group-induced reduction
using NaBH(OAc)3, 1,3-diol 59 was obtained as a single diastereomer [61]. Pd-coupling
precursor 53 was obtained via the TES protection of 1,3-diol 59 in quantitative yield. Pd cou-
pling reactions with various allyl metal reagents were conducted, but allylation occurred
only under standard Stille conditions, quantitatively producing 60. Stille coupling with
prenylstannane reagents was unsuccessful, and prenylcyclohexene 61 was obtained only
in trace amounts. However, the cross-metathesis of 60 with 2-methylbut-2-ene furnished
prenylcyclohexene 61 in 91% yield. Selective deprotection, the Dess–Martin oxidation
of the resulting primary alcohol, and subsequent Seyferth–Gilbert homologation gave
propargylic chloride 62. After the removal of the silyl-protecting groups of alkyne 62,
vanadium-catalyzed hydroxyl-directed epoxidation [62], and re-protection of the resulting
diol, epoxide 52 was obtained as a single diastereomer. An anti-SN2′ reaction was first
conducted with CuCN and isopropenyl-MgBr to afford the corresponding vinylallene as
a single diastereomer; however, the conversion was low (~30%), probably because of the
competitive deprotonation of the terminal alkyne. In contrast, the use of an organoindium
reagent in the presence of a Pd-catalyst [63] resulted in the consumption of all the starting
materials, and subsequent deprotection of the TES groups of the resulting allene gave (+)-2
in 92% yield on a subgram scale.
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n-butylammonium fluoride.

The concise total synthesis of rac-51, which is a naturally occurring cyclohexene epox-
ide with two prenyl side chains, was achieved by Han et al. in 2018 (Scheme 7) [64], along
with the enantioselective total synthesis of (−)-51 and its dimeric congener via biomimetic
heterodimerization. The synthesis started with Mehta’s four-step procedure [65] to convert
p-methoxyphenol to tricyclic diketone 63. The stereoselective reduction of the less hindered
ketone [66] followed by the retro-Diels–Alder reaction afforded prenylated epoxyenone 64.
The following three-step conversion (α-iodination of enone, Luche reduction, and Stille
coupling with alkynylstannane 66) completed the synthesis of 51. Similarly, Han et al.
reported the total synthesis of (+)-1 and (+)-50 using a common synthetic intermediate,
rac-64 [67]. The Mitsunobu reaction of rac-64 with O-methyl-D-mandelic acid furnished
ester 67 and its diastereomer, which gave pure 67 in 40% yield on chromatographic separa-
tion. The removal of the O-methylmandelate group via methanolysis produced prenylated
epoxyenone 68, which is an epimer of 64, with 97.5% ee. The protection of the secondary
alcohol with a TBS group and α-iodination of the enone moiety furnished iodide 69. The
installation of the other prenyl unit via Stille coupling with alkynylstannane 66 was suc-
cessful, following a procedure similar to the synthesis of 51. Attempts to reduce enone
69 resulted in a 1,2-reduction instead of the desired 1,4-reduction, owing to conjugation
with the alkyne moiety. Therefore, after converting the alkyne to dicobalt complex 71,
1,4-reduction using K-selectride and the oxidative decobaltation of the resulting ketone
with CAN successfully afforded β,γ-ynone 72. The tautomerization of 72 was achieved
by treatment with a catalytic amount of triethylamine [68], resulting in the desired axially
chiral vinylallene 73 as a single diastereomer (40% yield, in three steps). The isomerization
reaction proceeded in a 3:1 diastereomeric ratio, but the minor product was labile with
an affinity for dimerization reaction at room temperature. The 1,2-reduction of ketone
73 occurred diastereoselectively with LiBHEt3 to produce alcohol 74. Desilylation with
TBAF achieved the total synthesis of (+)-iso-A82775C (2) (66% yield, over two steps). The
authors investigated the dimerization reactions of the synthetic iso-A82775C and its 16-
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oxo derivative and found that, in contrast to biscognienyne B, these compounds did not
undergo dimerization under any condition.
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3. Biomimetic Synthesis of Chloropupukeananin
3.1. Model Studies on the Intermolecular Diels–Alder Reaction

Synthetic studies using model compounds of biosynthetic precursors to elucidate the
biosynthetic pathway of chloropupukeananin (Scheme 8) were independently conducted
by Suzuki et al. and Yu and Snyder. Suzuki and Kobayashi reported the biomimetic Diels–
Alder reaction with the simple model compounds 74 and 75 (both achiral compounds) in
2010 [11]. With these substrates, the Diels–Alder reaction barely occurred under heating
and Lewis acid conditions, resulting in low yields of cycloadducts. Regarding selectivity,
the ratio of syn- and anti-cycloadducts 76 and 77 (corresponding to chloropupukeananin
and chloropestolide A, respectively) was 1:3, and a small amount of normal electron-
demand (NED) cycloadduct 78 was obtained. The reaction under high-pressure conditions
improved the yield and selectivity and produced a mixture of 76 and 77 (76:77 = 1:1.6) in
70% yield.

Yu and Synder in 2011 reported the Diels–Alder reaction using the synthetic racemic
4 and the same achiral vinylallene 74 under the thermal conditions (75 ◦C, 24 h) [69].
This cycloaddition reaction displayed a selectivity of nearly 1:1:1 for Si-syn, Si-anti, and
NED, giving tricyclic cycloadduct 80 (corresponding to chloropupukeanolide D) in 22%
yield. This study reveals that the cyclic p-orsellinate moiety accelerates the intermolecular
Diels–Alder reaction and completely controls the facial selectivity from the Si face.
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In 2013, Suzuki et al. reported synthetic studies with advanced model compounds
83 and 84, cyclohexane possessing a vinylallene and its adjacent hydroxyl group as a model
compound for Iso-A82775C, and a compound simplifying to a salicylate moiety instead
of the p-orsellinate moiety of maldoxin, respectively [70]. Initially, using both racemic
model compounds, the Diels–Alder reaction under high-pressure conditions (1.0 GPa,
96 h) afforded tricyclic compound 85 in 48% yield, and its structure was unambiguously
confirmed via X-ray crystallographic analysis. However, the stereochemistry of the other
products 86 and 87 (two anti- and one NED cycloadduct) could not be identified using NMR
studies. Using optically pure model compounds (+)-83 and (−)-84 (a natural combination),
the intermolecular Diels–Alder reaction furnished tricyclic compound 85 in 70% yield,
along with anti-cycloadduct 86 in 20% yield. These results indicate that the hydroxyl group
is important for Si-syn selectivity, probably because of the hydrogen bonding with the
carbonyl groups of the maldoxin unit.

Furthermore, Suzuki et al. studied the thermal intermolecular Diels–Alder reaction of
(−)-4 with typical alkenes 88a–c to acquire the trends of the facial selectivity of 4 [36]. In the
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case of ethyl vinyl ether 88a and styrene 88b, the reactions occurred at room temperature
and favored Si-anti cycloadducts 90. However, in the case of methyl acrylate 88c, the
reaction required heating to 80 ◦C and showed a slightly lower Si-anti selectivity.

3.2. Syntheses of Chloropupukeananin and Its Related Natural Products

The total syntheses of the optically pure biosynthetic precursors (+)-2 and (−)-4
enabled the synthesis of chloropupukeananin via the intermolecular Diels–Alder reac-
tion (Scheme 9) [38]. First, the reaction between (+)-2 and (−)-4 was performed under
high-pressure conditions. The intermolecular Diels–Alder reaction and the subsequent
carbonyl-ene reaction achieved a near-completion after 64 h, producing the desired Si-syn
cycloadduct 7 (5%) and carbonyl-ene product 11 (71%), along with Si-anti cycloadduct
6 (17%). Similar to previous studies using enantiopure model compounds, no other cy-
cloadducts were detected. To complete the intramolecular carbonyl-ene reaction, the
products of the high-pressure reaction were heated to 60 ◦C at the atmospheric pressure,
furnishing 11 and 6 in 69% and 21% isolated yields, respectively. The thermal conditions
required for the Diels–Alder/carbonyl–ene cascade reactions at atmospheric pressure were
also investigated. The intermolecular Diels–Alder reaction between (+)-2 and (−)-4 was
performed under neat conditions (25 ◦C, 120 h). After the completion of the Diels–Alder
reaction, the mixture was heated (60 ◦C, 68 h) to afford the target compounds 11 (57% yield)
and 6 (25% yield).
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The migration of the p-orsellinate group of 11, which was the final step in the biosyn-
thetic pathway of chloropupukeananin, was conducted under basic conditions (Scheme 10).
Migration was accomplished by the nucleophilic attack on C26 in the p-orsellinate group by
the secondary alkoxide moiety at the C18 position generated from 11 using a strong base. This
was followed by the elimination of the p-orsellinate group from the tetrahedral intermediate.
The total synthesis of 1 was achieved by the treatment of 11 with KOt-Bu in DMF.
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Further, the one-pot biomimetic transformation of (+)-2 and (−)-4 to (+)-1 was accom-
plished as part of an alternative synthetic approach (Scheme 11); this was easily achieved
because the Diels–Alder/carbonyl–ene cascade reaction did not require any reagents or
solvents. The cascade reaction at atmospheric pressure (neat, 5 ◦C, 7 days; thereafter, 60 ◦C,
9 h) and subsequent migration reaction of the p-orsellinate group (KOt-Bu, DMF) provided
(+)-1 in 64% yield, along with 6 in 20% yield.

Organics 2022, 3, FOR PEER REVIEW 12 
 

 

mixture was heated (60 °C, 68 h) to afford the target compounds 11 (57% yield) and 6 (25% 
yield). 

 

 

Scheme 9. The intermolecular Diels–Alder/carbonyl–ene cascade reaction using (+)-iso-A82775C 
and (−)-maldoxin. All yields in italics are calculated by 1H NMR. 

The migration of the p-orsellinate group of 11, which was the final step in the biosyn-
thetic pathway of chloropupukeananin, was conducted under basic conditions (Scheme 
10). Migration was accomplished by the nucleophilic attack on C26 in the p-orsellinate 
group by the secondary alkoxide moiety at the C18 position generated from 11 using a 
strong base. This was followed by the elimination of the p-orsellinate group from the tet-
rahedral intermediate. The total synthesis of 1 was achieved by the treatment of 11 with 
KOt-Bu in DMF. 

Scheme 10. Migration reaction of p-orsellinate group of chloropupukeanolide D. DMF—N,N-dime-
thylformaminde. 

Further, the one-pot biomimetic transformation of (+)-2 and (−)-4 to (+)-1 was accom-
plished as part of an alternative synthetic approach (Scheme 11); this was easily achieved 
because the Diels–Alder/carbonyl–ene cascade reaction did not require any reagents or 
solvents. The cascade reaction at atmospheric pressure (neat, 5 °C, 7 days; thereafter, 60 
°C, 9 h) and subsequent migration reaction of the p-orsellinate group (KOt-Bu, DMF) pro-
vided (+)-1 in 64% yield, along with 6 in 20% yield. 

Scheme 11. One-pot biomimetic synthesis of chloropupukeananin.

The synthesis of chloropestolides H-K (21–24) via the intermolecular Diels–Alder
reaction of siccayne [71] (25) and (−)-4 was also achieved by Suzuki et al. (Scheme 12) [38].
The intermolecular Diels–Alder reaction using common organic solvents was studied, and
the reaction in CH2Cl2 produced a quantitative mixture of the four cycloadducts 21–24
(21:22:23:24 = 14:44:36:6). As expected, owing to the nature of (−)-4, a preference for the Si
face was observed, and 22 and 23 were isolated with 39% and 34% yields, respectively. The
use of other solvents afforded a mixture predominantly comprising Si-anti 23. Significantly,
the ratio of cycloadducts, particularly 22:23, depended on the solvent basicity (SB), [72,73]
with the ratio of 23 to 22 increasing as the SB value increased. In a solvent-free reaction,
a mixture of 25 and (−)-4 was maintained undisturbed at room temperature for 24 h to
complete the Diels–Alder reaction, affording a mixture of 21–24 (21:22:23:24 = 9:32:51:8). A
high-pressure reaction in CH2Cl2 at 1.0 GPa for 1 h provided a mixture of the same ratio as
that in the reaction under atmospheric pressure conditions (21:22:23:24 = 15:46:33:6). Under
high-pressure conditions, the intermolecular Diels–Alder reaction between 25 and (−)-4
was significantly accelerated, but the facial selectivity remained unaffected.
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4. Conclusions

This review outlines synthetic studies on the natural product chloropupukeananin and
its analogs. Based on synthetic studies using model compounds, the biosynthetic pathway
of chloropupukeananin was speculated to involve the intermolecular Diels–Alder reaction
between maldoxin and iso-A82775C, carbonyl-ene reaction, and the migration reaction
of the p-orsellinate group. Additionally, enantioselective syntheses of both biosynthetic
precursors, (−)-maldoxin and (+)-iso-A82775C, were achieved. Combining these findings,
the one-pot total synthesis of chloropupukeananin mimicking the biosynthetic pathway
was accomplished (overall 4.5% yield, 19 steps from 3-bromo-2-hydroxypyrone). As a
further bonus, the total synthesis of chloropestolides B, I, and J, and chloropupukeanolide
D was achieved.

However, this synthetic approach preferentially gives Si-syn and Si-anti isomers among
the possible cycloadducts in intermolecular Diels–Alder reactions, and it is difficult to syn-
thesize natural products derived from other cycloadducts. Controlling the facial selectivity is
possible by using computational chemistry, careful examination of reaction conditions (such
as solvents and additives), and modifications to the biosynthetic precursors themselves to
create appropriate reaction substrates. Chemical syntheses of natural/non-natural analogs
of chloropupukeananin provide a wide variety of bioactive compounds. Additionally, these
chemical syntheses are expected to contribute significantly to the identification and elucidation
of the function of enzymes involved in chloropupukeananin biosynthesis. I hope that this
review will provide new insight into the total synthesis of complex natural products.
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