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Abstract: The stereoselective formation of tetrasubstituted alkenes remains one of the key goals of
modern organic synthesis. In addition to other methods, the stereoselective synthesis of tetrasubsti-
tuted alkenes can be achieved by means of cross-coupling reactions of electrophilic and nucleophilic
alkene templates. The use of electrophilic templates for the stereoselective synthesis of tetrasub-
stituted alkenes has previously been described. Therefore, the present review summarizes the
procedures available for the stereoselective preparation of tetrasubstituted alkenes using stable and
isolable nucleophilic templates.
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tetrasubstituted alkene

1. Introduction

Alkenes are organic compounds with a double bond between two carbon atoms. Such
compounds have undergone tumultuous development in terms of their preparation, reac-
tivity, and applications in the fields of materials and medicinal chemistry. The applications
of alkenes in organic synthesis include carbonyl olefin metathesis [1], alkene epoxidation [2],
hydrogenation [3], and transition-metal-catalyzed functionalization [4,5]. Those alkenes
with four different substituents represent a specific group of alkenes. They are usually
referred to as tetrasubstituted alkenes, and they are considered attractive compounds due
to their synthesis and application potential. An interesting feature of tetrasubstituted
double bonds is the presence of four substituents, which allows for better modification of
their properties via the introduction of different substituents. An example of a biologically
relevant alkene is tamoxifen (F1–1). Variations of the substituents on the double bond can
yield other biologically relevant derivatives of tamoxifen F1–2 and GDC-0810 (F1–3), which
have received considerable attention from synthetic [6] and biological [7–9] perspectives
(Figure 1).
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Figure 1. Structure of tamoxifen and related tetrasubstituted alkenes. 
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The general procedures available for the preparation of tetrasubstituted alkenes S1–3
can be divided into several groups. The oldest procedures are arguably those involving
elimination and olefination reactions, although it must be acknowledged that they are
associated with a considerable disadvantage due to their low stereoselectivity in certain
cases (Scheme 1) [10,11]. Carbometalation of alkynes [12–16] is a simple procedure for
the preparation of tetrasubstituted alkenes. Yet, a typical drawback associated with the
carbometallation of alkynes is the limited regioselectivity of the carbometallation step,
especially for alkynes bearing substituents with similar electron and steric properties. The
frequently used procedure for the stereoselective preparation of tetrasubstituted alkenes
makes use of transition-metal-catalyzed cross-coupling reactions of electrophilic S1–1
templates. The popularity of such procedures can be attributed to the availability of the
electrophilic templates S1–1 and organometallic compounds used for the cross-coupling
reactions. This concept has been the subject of several reviews in previous years [17–21].
However, procedures that use nucleophilic alkene templates S1–2 for the stereoselective
synthesis of alkenes are also widely used, although this concept has not previously been
the subject of a review article.
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Nucleophilic alkene templates represented by a borylated double bond S1–2 are an
important alternative for the stereoselective preparation of tetrasubstituted alkenes for
researchers involved in organic synthesis, materials, and medicinal chemistry. Therefore,
the aim of this review is to summarize procedures developed for the stereoselective syn-
thesis of tetrasubstituted alkenes based on the cross-coupling reactions of trisubstituted
alkenylboronic acids and alkenylboronic acid esters over the last seven years. In addition,
the procedures available for the preparation of alkenylboronic acids and alkenylboronates
will also be briefly mentioned here, although it is not the aim of this review to provide
a complete list of them, as prior work has already done so [21,22]. Although alkenyl-
boronic acid derivatives have lower toxicity compared to alkenylstannanes, this review
also briefly summarizes the most recent developments in the use of alkenylstannanes for
the stereoselective preparation of tetrasubstituted alkenes.
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2. Recent Developments in Stereoselective Synthesis of Tetrasubstituted Alkenes by
Palladium-Catalyzed Cross-Coupling Reactions of Trisubstituted Alkenylstannanes
and Alkenylsilanes

Depending on the properties of the organometallic compounds, a variety of procedures
can be used to prepare metalated tetrasubstituted alkenes. The use of Grignard and
organozinc reagents is limited by their low stability in acidic conditions. Tetrasubstituted
alkenyl stannanes exhibit substantially better stability when compared with Grignard
and organozinc reagents. Recent approaches to stannylated double bonds include Li–Sn
exchange reactions. In this case, the organolithium compounds generated in situ reacted
with trialkyltin chlorides (Scheme 2a) [23]. A different procedure for the preparation of
the stannylated tetrasubstituted double bond makes use of the transition-metal-catalyzed
carbostannylation of internal alkynes (Scheme 2b) [24,25]. Finally, alkenyl stannanes can be
prepared by means of cyclization procedures, including the cobalt-catalyzed Pauson–Khand
reaction [26], radical cyclization [27], or [4 + 2] cycloaddition [28] (Scheme 2c).
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Stannylated tetrasubstituted alkenes have a wide range of applications, including the
synthesis of natural compounds. Aside from the other natural products that can be synthe-
sized by means of the Stille reaction [29–33], the organostannanes attached to the acyclic
S3–2 and cyclic S3–7 double bond have been used in the preparation of trichoaurantiano-
lides C and D and delavatine A (Scheme 3). The preparation of intermediate S3–3 during
the synthesis of trichoaurantianolides C and D is accomplished via the cross-coupling reac-
tion of allyl acetate with stannane S3–2 [34]. Analogously, the formation of delavatine A
(S3–9) is completed via the Stille reaction of aryl triflate S3–6 with cyclic stannane S3–7 [35].
It is worth noting that cyclic stannane S3–7 is prepared from triflate S3–8 by means of the re-
action with the corresponding cuprate. In addition to the above-mentioned applications of
organostannanes with a cyclic and acyclic tetrasubstituted double bond, the Stille reactions
of similar stannylated tetrasubstituted alkenes have been used to synthesize substrates for
the thermal ring expansion of boroles [36], palladium-catalyzed carbocyclization [37], the
cascade reaction [38], and other reactions [39–43].
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An alternative method for the preparation of tetrasubstituted alkenes based on nu-
cleophilic templates involves the use of a silylated double bond. This type of silane, as
represented by the general structure S4–1 (Scheme 4a), is not often used for the preparation
of tetrasubstituted alkenes by means of their transition-metal-catalyzed reaction with elec-
trophiles. The most common means of using alkenyl silane S4–1 involves the substitution
of the SiR3 group for the halogen via halogenation [44,45]. Then, the obtained organohalide
S4–2 is subsequently used in cross-coupling reactions with organometallic reagents. In
addition, the Hiyama reaction of silylated alkenes can be used for the preparation of tetra-
substituted alkenes. An example published in 2020 makes use of the syn-carbosilylation
of oct-4-yne (S4–4), which is catalyzed by a palladium catalyst and a DrewPhos ligand to
synthesize alkene S4–5 (Scheme 4b) [46]. Interestingly, the use of a JessePhos ligand prefers
anti-carbosilylation. Then, the stereoselective synthesis of the tetrasubstituted alkene S4–6
is achieved via the Hiyama reaction under Denmark conditions [47].
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3. Acyclic Boron-Based Tetrasubstituted Double Bond Templates
3.1. Synthetic Approaches to Acyclic Borylated Alkenes

Typically, the preparation of borylated tetrasubstituted alkenes begins with two readily
available starting materials: alkyne S2–4 and alkenes S5–3 and S5–4. In this way, various
types of borylated alkenes can be synthesized, including the mono-, di-, and triborylated
templates S5–1, S5–2, S5–5, and S5–6 (Scheme 5).
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The preparation of diborylated alkenes is a widespread process that makes use of
alkynes as the starting materials. The transition-metal-free borylation of alkyne S6–1
can be performed in the presence of a catalytic amount of base, as described by Song
(Scheme 6a) [48]. An optimization study determined that 10 mol% of potassium carbonate
gave the best yields of borylated alkene S6–2. The reaction tolerates a minimal number of
functional groups, and a reaction mechanism has been proposed based on experimental
studies. This proposal involves the formation of an ate complex S6–A which reacts with
the starting alkynes S6–1 to give the borylated alkenes S6–2. An analogous procedure for
the preparation of diborylated alkenes is shown in Scheme 6b [49]. The formation of the
borylated product is achieved through the reduction of alkyne S2–4 with sodium in the
presence of trimethyl borate. The published reaction involves the preparation of 18 dibory-
lated alkenes S6–3, while the proposed mechanism for the formation of the products S6–3
considers the formation of the intermediate S6–B by means of the reduction of the triple
bond via a SET (single electron transfer) mechanism, followed by transmetallation to give
the ate complex S6–A, which reacts with pinacol to provide the major reaction products.
It is important to note that internal alkynes with aryl and alkyl substituents require three
equivalents of sodium dispersion.
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The fact that borylmetallation remains a popular method for the preparation of dibo-
rylated tetrasubstituted alkenes was demonstrated by Nakamura (Scheme 7) [50]. Here,
the starting internal alkyne S2–4 is diborylated in the presence of a catalytic amount of iron
(II) dichloride with limited scope and good functional group tolerance, which includes a
substrate with a bromine atom or ester group. The authors also proposed and confirmed
the mechanism behind the discovered reaction via quantum chemical calculations. The first
step of the reaction involves transmetallation with lithium methoxide, and the resultant
intermediate S7–A subsequently reacts with pinB–Bpin and then with alkynes S2–4 to
form the alkenyl complexes S7–C. Finally, the borylferration product S7–C reacts with
MeOBpin to form the main reaction product S7–1. In addition to the above-mentioned
examples of alkyne diborylation, examples of cobalt-catalyzed di- and monoborylation of
internal alkynes have previously been published. This borylation has mostly been studied
on pinacolborane affording a trisubstituted double bond with the Bpin moiety. However,
for a limited number of internal alkynes, pinB–Bpin has been used to provide diborylation
products with limited stereoselectivity [51].
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The original procedure for the preparation of the triborylated alkene S8–2 starts with
alkyne S8–1 substituted with the Bmida moiety (Scheme 8). The subsequent Suzuki reaction
of boronate S8–2 with aryliodides proceeds with different regioselectivity when compared
with the Suzuki reaction given in Scheme 9. The reaction scope of the Suzuki reaction is
limited to 12 examples, albeit with satisfactory functional group tolerance [52].
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Scheme 9. Synthesis of triborylated alkenes via C–H borylation of terminal alkenes followed
by diborylation.

A slightly different procedure for the preparation of triborylated alkenes relies on the
iridium-catalyzed C–H borylation of terminal alkynes to form the borylated alkynes S9–4,
which are then further borylated in the presence of carbon monoxide (Scheme 9) [53,54].
The reaction is limited in terms of its scope and functional group tolerance (see unreactive
alkyne S9–2a), although the selected example S9–2c illustrates how diborylated dienes can
also be prepared via this procedure. In addition, the authors showed that borylated alkene
S9–2b reacts in the Suzuki reaction with trans selectivity, thereby affording the diborylated
alkene S9–3 in a 77% isolated yield.

A similar approach for the preparation of mono- and diborylated alkenes was pub-
lished in 2020 (Scheme 10) [55]. The starting terminal alkyne S9–1 is triborylated in the
presence of a catalytic amount of copper acetate and a tributylphosphine ligand. The
developed borylation conditions tolerate a wide variety of functional groups, including
–CN, –Cl, –F, or –CO2Me groups. The proposed mechanism involves the borylation of
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terminal alkyne followed by syn-cupraborylation. The triborylated alkene S9–2 can be used
in a Suzuki reaction with trans regioselectivity or in a Bpin–halogen exchange reaction.
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A rapid approach to the preparation of 1,1-diborylated alkenes by means of the copper-
catalyzed dehydrogenative borylation of the terminal alkene S5–3 has been published by
Yamaguchi (Scheme 11) [56]. Different reaction conditions allow for the formation of the
mono- and diborylated products S11–2 and S11–1. However, the borylation of disubstituted
terminal alkenes to the borylated products S11–1 is associated with a long reaction time and
only moderate isolated yields of alkenes S11–1a and S11–1c. Other tetrasubstituted alkenes
have not been synthesized. The authors proposed that 2-adamantanone and benzophenone
are used as HBpin acceptors as can be seen from proposed mechanism for the formation of
the alkenes S11–1.
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The monoborylated tetrasubstituted alkene S12–2 can also be prepared via coopera-
tive catalysis (Scheme 12) [57]. The starting materials are usually the symmetrical internal
alkynes S2–4, which can be converted into monoborylated alkenes S12–2 by means of the
reaction with aryl chlorides. The reaction proceeds well for symmetric alkenes, although
unsymmetric alkynes with similar substituents give a stereoselective mixture of the regioi-
somers S12–2a and S12–3a. High regioselectivity is achieved only for alkynes with the
aromatic and aliphatic substituents S12–2b and S12–2c. The proposed mechanism assumes
the oxidative addition of Pd0 to the C–Cl bond, while the alkenylcopper reagent S12–C is
used for the transmetallation step, which results in the formation of the borylcupration
product S12–B. The final step is reductive elimination. A similar approach was published
by Brown [58], although in that work the prepared monoborylated alkenes are oxidized
to the corresponding ketones. In addition, Pd/Cu cooperative catalysis has been used to
prepare symmetrical monoborylated tetrasubstituted alkenes from allenylic carbonates [59].
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3.2. Applications of the Borylated Acyclic Double Bond for Stereoselective Synthesis of
Tetrasubstituted Alkenes

In the previous section, various procedures for the synthesis of the borylated tetra-
substituted double bond were briefly introduced. This type of organometallic reagent
can be used for the nonstereoselective preparation of tetrasubstituted fluoroalkenes [60]
or corrphycene derivatives [61]. However, this review focuses on their conversion into
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tetrasubstituted alkenes. Therefore, in this section, the use of the borylated tetrasubstituted
double bond for the stereoselective synthesis of tetrasubstituted alkenes is discussed. These
applications go hand in hand with the preparation of the borylated double bond, which led
to the inclusion of the synthesis of borylated alkenes in this paper.

The reaction of carbonyl compounds S13–1 with the C1 synthon S13–2 can directly
afford the silylborylation products S13–3 and S13–4 (Scheme 13) [62]. The selected exam-
ples show that the reaction is sensitive to the structures of the starting ketones. Ketones
with aliphatic and aromatic substituents undergo silylborylation with high regioselectivity.
In contrast, ketones with two similar substituents give a mixture of both regioisomers.
The preparation of (Z)-tamoxifen (F1–1) can be performed starting with the alkene S13–3d,
which is iodinated before a double Suzuki reaction gives (Z)-tamoxifen as >93% Z. Thus,
the above-mentioned examples of the stereoselective synthesis of (Z)-tamoxifen comple-
ment previous preparations of (Z)-tamoxifen via the cross-coupling reactions of borylated
alkenes [63,64].
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The synthesis of tetrasubstituted alkenes without the use of transition metal catalysis
was published by Liu in 2021 (Scheme 14) [65]. The reaction starts with the isomeriza-
tion of boronate S14–1 into S14–3 by means of Zweifel-type deprotonative olefination.
Subsequently, the reaction of the allylboronate S14–3 with benzaldehyde resulted in the
tetrasubstituted alkene S14–5 in a high yield and with high stereoselectivity. Alternatively,
protodeborylation into the symmetrical alkene S14–4 can also be performed. The use of
highly reactive organolithium reagents and resulting low functional group tolerance, as
well as the limited scope of synthesized tetrasubstituted alkenes is a major drawback of
this protocol.
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A comprehensive solution for the preparation of the tetrasubstituted skipped diene
S15–2 was published by Zhong (Scheme 15) [66]. The developed procedure makes use of
copper-catalyzed borylation of internal and terminal alkynes. Terminal alkynes are suitable
for the preparation of trisubstituted alkenes. In contrast, a tetrasubstituted double bond
with a Bpin group is formed from the internal alkynes as the major stereo- and regioisomer
S15–2. The published reaction was optimized to determine the influence of the structures of
allyl phosphate S15–1 and alkyne S2–4 on the regio- and stereoselectivity of the carbobora-
tion reaction. The findings were then used for the regio- and stereoselective preparation of
a wide variety of skipped dienes containing both trisubstituted and tetrasubstituted double
bonds. Unfortunately, the scope of the reaction includes only simple functional groups
(MeO, F, Cl, CF3, and TMS). In addition, chirality retention can be observed in relation to
the borylation of the diphenylacetylene S2–4a with the chiral allyl phosphate S15–1a.
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In 2016, Kanai et al. published a procedure for the preparation of compounds
with tetraalkylated and monoarylated double bonds (Scheme 16) [67]. Borylated tri-
alkylethylenes were prepared via the NQIMesCuCl-catalyzed [68] reaction of the internal
alkynes S2–4 with the alkyl iodide S16–1 in the presence of pinB–Bpin with satisfactory
regioselectivity. This method tolerates a variety of functional groups, including the ether
(BnO, TBSO), ester (CO2Me, PivO), dialkyamino (Bn2N), and amide (NH2(O)C) groups.
The priming of tetralkyl olefins is completed via the reaction of the borylated alkene S16–2a
with dodecyl bromide or iodobenzene in the presence of a catalytic amount of a palladium
complex and potassium hydroxide as a base.
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Scheme 16. Alkyne carboboration for the stereoselective synthesis of tetraalkylated alkenes.

Two reports describing the borylative cyclization of alkynyl bromides were published
by Ito’s research group. In the first report, the copper-catalyzed silicon-tethered cycliza-
tion of the silylated alkyne S17–2 was shown to result in products with the borylated
tetrasubstituted double bond S17–3 (Scheme 17) [69]. Starting alkynes S17–1 are readily
available by means of the iridium-catalyzed hydrosilylation of alkynes, as reported by
Rahaim’s group [70]. However, the method suffers from low functional group tolerance,
where only alkynes with Cl, OTBS, OTHP, and OMe groups are used. The products of the
carboborylation reaction can be used to prepare tetrasubstituted acyclic alkenes. This has
been demonstrated through the preparation by means of stereoselective synthesis of the
alkene S17–6 via the Suzuki reaction of borylated alkene S17–3a. Then, the opening of the
silacyclopentane ring via the reaction of alkene S17–4 with bromine followed by the Suzuki
reaction with 4-methoxyphenylboronic acid resulting in the alkene S17–5. The preparation
of the tetrasubstituted alkene was completed by Tamao oxidation [71].

Subsequently, Ito et al. used copper-catalyzed borylation of the internal alkyne S18–1
to prepare tetrasubstituted alkenes (Scheme 18). [72] Similar to their previous work [69],
the authors proposed that the cupraborylation of the triple bond forms the cuprate S18–2,
which completes the stereoselective synthesis of the borylated alkene S18–3 by means of
intramolecular alkylation. The reaction is also suitable for the preparation of trisubstituted
double bonds. The obtained borylated alkene S18–3, in conjunction with the Suzuki
reaction or the Diels–Alder reaction, allows for the preparation of the tetrasubstituted
alkenes S18–4a and S18–4b or the cyclic boronate S18–5.
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In addition, allenes can also be used for the stereoselective formation of tetrasub-
stituted alkenes via borylated intermediates (Scheme 19 [73] and Scheme 20 [74]). The
borylated alkenes S19–2 and S20–3 are prepared via palladium-catalyzed hydroboration
or oxidative borylation of allenes. These reactions are characterized by good functional
group tolerance and a good reaction scope. Moreover, the oxidative borylation of al-
lenes is sensitive to additives and the utilized oxidant. Benzoquinone (BQ) prefers the
carbocyclization of the starting allenes into cyclobutene S20–2, while the formation of bory-
lated tetrasubstituted alkenes was accomplished by means of 2,6-dimethylbenzoquinone
(2,2-diMeBQ) (Scheme 20). The prepared borylated alkenes were used for the stereoselec-
tive formation of tetrasubstituted alkenes by means of the Suzuki reaction catalyzed by
tetrakis(triphenylphosphine)palladium.
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The above-mentioned reactions differ significantly in terms of the mechanism behind
the formation of borylated alkenes (Scheme 21). Thus, the palladium-catalyzed hydrob-
oration of allenes begins with the reduction of palladium acetate by pinB–Bpin, which is
followed by the oxidative addition of palladium to the H–O bond of methanol or acetic
acid to obtain the catalytic species HPdX [73]. The next step involves the coordination
of the allene, followed by the hydropalladation of the allenic double bond to S19–B. The
reaction product S19–2 is obtained via transmetallation and reductive elimination. In
contrast, the oxidative borylation of allenes can be explained by the coordination of pal-
ladium acetate to the starting material and the subsequent isomerization to the vinyl
intermediate S20–B. Next, transmetallation and reductive elimination complete the syn-
thesis of the borylated alkene S20–3. The oxidation of Pd0 into PdII is achieved using
2,6-dimethylbenzoquinone [74].
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An unusual trans borylation of propargyl alcohol S22–1 was reported by Fürstner in
2019 (Scheme 22) [75]. The starting material is converted into the ate complex S22–2 via
the reaction with NaHMDS and pinB–Bpin. Subsequently, the borylated alkene S22–3 is
formed in excellent isolated yields and with excellent reaction scopes via the palladium-
catalyzed reaction with methyliodide or diaryliodonium triflate under different conditions.
The selected examples illustrate how the methodology is suitable for the preparation of the
conjugated diene S22–3c, the enyne S22–3d, and the tetrasubstituted double bond with a
steroid skeleton S22–3b. In addition, the methodology can be used for the preparation of
tetrasubstituted alkene S22–4 and the nonsteroidal estrogen receptor modulator iodoxifen
(S22–5).

The diborylated tetrasubstituted double bond has also been used for the synthesis
of (Z)-tamoxifen (Scheme 23). Nogi et al. extended the sodium-mediated preparation
of cis diborylated alkenes [49] to the preparation of trans diborylated alkene S23–2 [76].
The authors experimentally verified that the dianion S23–1 acts as an intermediate in
the formation of the alkene S23–2, which is formed by means of the oxidation of S23–1
with 2,3-dibromobutane. The formal synthesis of (Z)-tamoxifen was performed via the
palladium-catalyzed ethylation of alkene S23–2a in a 56% isolated yield.
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A similar iterative approach for the stereoselective preparation of tetrasubstituted
alkenes was reported by Tsuchimoto (Scheme 24) [77]. This work builds on previous results
concerning the preparation of borylated compounds reported by Tsuchimoto’s research
group [78,79]. Thus, the starting triborylated alkene S24–2 is synthesized by means of the
dehydrogenative coupling of the terminal alkyne S9–1 with 1,8-naphthalenediamineborane
(HB(dan)) followed by the diborylation of the internal alkyne S24–1 (Scheme 24a). In a
further step, the triborylated alkene is trans arylated with high regioselectivity to form the
diborylated alkene S24–3 as the major product (Scheme 24b). The second introduction of
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aryl substituents was performed with only a limited amount of aryl iodides, as illustrated
in Scheme 24c. Subsequently, the B(dan) group was esterified via the reaction with pinacol
under acidic conditions, and the stereoselective synthesis of tetrasubstituted alkenes was
completed by the Suzuki reaction with aryl iodides. In addition, a complementary series
of (E)- and (Z)-tetraarylethylenes can be prepared using this procedure. The developed
procedure can also be used for the formal synthesis of (Z)-tamoxifen from the triborylated
alkene S24–2a. The starting compound was initially used in the Suzuki reaction with
iodobenzene and vinyl bromide under optimized reaction conditions. The reduction of the
vinyl group with hydrogen gives the B(dan) derivative S24–5b in a high yield (86% in three
steps). The substitution of the dan group for pinacol provides the intermediate needed for
the preparation of (Z)-tamoxifen in a 98% yield [63].
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Scheme 24. Iterative synthesis of tetrasubstituted alkenes, including the formal stereoselective
synthesis of (Z)-tamoxifen (a–d).

An exhaustive approach for the preparation of tetraarylated ethylenes was reported in
2020 (Scheme 25) [80]. In this work, various mono-, di-, tri-, and tetraborylated ethylenes
were used in palladium-catalyzed Suzuki reactions to produce symmetrically and un-
symmetrically substituted tetraarylethylenes. It is worth noting here that the triborylated
alkene S9–2 coupled with aryl iodide to give trans diarylated alkene S25–4 (Scheme 25c). A
wide reaction scope is typical for all starting alkenylboronic acid esters. In conclusion, the
developed methodology enabled a Lego-based approach to the preparation of the tetraary-
lated alkenes S25–2, S25–3, S25–5, S25–7, and S25–9 from the easily available borylated
double bond.
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Scheme 25. Lego-based approach to tetraarylated ethylenes (a–e).

As mentioned in the introductory section, tetrasubstituted alkenes have a wide range
of applications, including the field of materials chemistry. A detailed survey of the available
literature has revealed that the symmetrical tetrasubstituted double bond is most commonly
used for materials chemistry purposes. Examples of these borylated alkenes are given in
Scheme 26. Miyaura borylation, [81–83], the Li–B exchange reaction [84], and platinum-
catalyzed diborylation of internal alkynes [85–88] are commonly used for the synthesis
of the borylated alkenes S26–2 and S26–5. The applications of borylated alkenes S26–2
and S26–5 include the Suzuki–Miyaura reaction, which is commonly catalyzed by the
tetrakis(triphenylphosphine)palladium complex along with inorganic bases (Na2CO3 [89],
K2CO3 [82,90–92]), organic solvents (THF, toluene, MeOH, 1,4-dioxane), and water.
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4. Synthetic Approaches to and Applications of Cycloalkenylboronates

In the previous section, we showed that the acyclic tetrasubstituted double bond with
a boryl group is frequently synthesized from alkynes by means of triple bond borylation.
The situation is different with regard to tetrasubstituted alicyclic alkenylboronic acids and
alkenylboronic acid esters. Cyclooctyne is an isolable compound [93], although four-, five-,
six-, and seven-membered cycloalkynes are unstable compounds under normal conditions
that can be stabilized via, for example, the formation of cobalt complexes [94]. Therefore,
cycloalkynes are considered unsuitable substrates for use in the preparation of cycloalkenyl
boronic acids and their esters. In principle, the modification of the tetrasubstituted cy-
cloalkene S27–3 with a suitable functional group or the cyclization of the acyclic precursor
S27–2 can be used for the synthesis of cyclic boronic acid esters (Scheme 27).
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Scheme 27. Synthetic approaches toward alicyclic boronic acid esters.

The [2 + 2]-cycloaddition of borylated acetylene can be used to prepare the cy-
clobutenylboronate S28–3 in a high yield (Scheme 28) [95]. The reaction is catalyzed
by a cobalt complex and proceeds at room temperature. Unfortunately, the scope of the
reaction is limited to the preparation of only the single cyclobutenylboronate S28–3. Based
on mechanistic studies, it has been suggested that the reaction involves the formation of
cobalt(III) metallacycle S28–4.
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Scheme 28. [2 + 2]-Cycloaddition for the synthesis of borylated cyclobutene.

Cyclic boronates derived from cyclobutene can be used for the preparation of [4]den-
dralenes (Scheme 29) [96]. Starting neopentylglycol (npg) boronates are prepared via the
reaction of cyclobutenyl lithium with triethylborate, which is followed by esterification
with neopentylglycol. The Suzuki reaction of boronates S29–2a and S29–2b with diethyl
2-bromocyclobutenyl phosphate results in phosphates S29–3a and S29–3b. Subsequently,
the phosphate group is replaced by means of the Negishi reaction with arylzinc chlorides
in the presence of aluminum chloride, and [4]dendralenes are obtained via the thermal
opening of cyclobutenes S29–4a and S29–4b in xylene at 150 ◦C.
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Scheme 29. Synthesis of [4]dendralenes by means of the ring-opening reaction of biscyclobutenes. 

Pinacol cyclobutenylboronic acid ester can be prepared via the Miyaura borylation 
of triflate S30−1 (Scheme 30) [97]. The subsequent Suzuki reaction of the borylated cyclo-
butene with aryl bromide (ArBr) gives 1,2-disubstituted cyclobutene S30−2 in a 52% iso-
lated yield. Removal of the MOM-protecting group and hydrogenation of the cyclobutene 
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Pinacol cyclobutenylboronic acid ester can be prepared via the Miyaura borylation of
triflate S30–1 (Scheme 30) [97]. The subsequent Suzuki reaction of the borylated cyclobutene
with aryl bromide (ArBr) gives 1,2-disubstituted cyclobutene S30–2 in a 52% isolated yield.
Removal of the MOM-protecting group and hydrogenation of the cyclobutene double bond
result in combretastatin analogue A-4 S30–3.
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The cyclization procedure for the preparation of cyclopentenylboronic acid esters is
shown in Scheme 31 [98]. The cobalt-mediated Pauson–Khand reaction is used to prepare
the alicyclic boronate S31–2, which is subsequently used in a palladium-catalyzed Suzuki
reaction. As the selected examples show, this procedure is useful for the preparation of
tetrasubstituted cycloalkenes with a wide range of functional groups.
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An application of the Suzuki reaction of cyclopentylboronate also involves the prep-
aration of photoswitchable deoxyuridine nucleosides S33–3 under standard reaction con-
ditions (Scheme 33) [100–102]. In addition, a catalytic system based on Pd2(dba)3, along 
with an AsPh3 ligand and silver oxide as a base, can be used for intramolecular Suzuki 
coupling in order to afford the tetrasubstituted double bond as a part of a tricyclic mole-
cule [103,104]. 
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The further cyclization of alkynylboronic acid esters makes use of zirconium-mediated
cyclization (Scheme 32) [99]. The zirconacyclopentene S32–1 is proposed as an intermediate
for the preparation of cyclopentenylboronate S32–2. Although the reaction is limited in
terms of its scope, the prepared pinacol boronic acid ester S32–2b can be used for the
preparation of the 2,3-disubstituted cyclopentenone S32–3.
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Scheme 32. Zirconium-mediated cyclization of borylated alkynes en route to disubstituted cyclopentenone.

An application of the Suzuki reaction of cyclopentylboronate also involves the prepa-
ration of photoswitchable deoxyuridine nucleosides S33–3 under standard reaction condi-
tions (Scheme 33) [100–102]. In addition, a catalytic system based on Pd2(dba)3, along with
an AsPh3 ligand and silver oxide as a base, can be used for intramolecular Suzuki coupling
in order to afford the tetrasubstituted double bond as a part of a tricyclic molecule [103,104].



Organics 2022, 3 231
Organics 2022, 3, FOR PEER REVIEW 22 
 

 

 
Scheme 33. Suzuki reaction of cyclopentenylboronic acid esters for the preparation of photoswitch-
able deoxyuridine nucleosides. 

The Suzuki reactions of cyclic borylated alkenes have been used to synthesize the 
natural compounds delavatine A (S34−5) and (−)-incarviatone A (S34−6) (Scheme 34) 
[105,106]. The key step in the synthesis of the natural compounds S34−5 and S34−6 is the 
site-selective oxidative addition of a palladium catalyst at 3,5-dibromo-2-pyrone (S34−1). 
Moreover, it has been experimentally verified that the formation of oxidative addition 
products depends on the reaction conditions [105]. In N,N-dimethylformamide (DMF) and 
in the presence of CuI, the oxidative addition product S34−3b is preferentially formed. In 
addition, it has been shown that S34−3a undergoes conversion into the oxidative addition 
product S34−3b during the subsequent transmetallation and reductive elimination step. 
Thus, the complex S34−3a is a kinetic oxidative addition adduct, while complex S34−3b is a 
thermodynamic oxidative addition adduct. A detailed mechanism has been proposed based 
on quantum chemical calculations. The observed reactivity was used for the preparation of 
the natural compounds delavatine A (S34−5) and (−)-incarviatone A (S34−6). The similar 
borylated alkene S34−8 can be used in the alternative total synthesis of (−)-incarviatone A 
(S34−6), although in this case the Suzuki reaction is performed under standard conditions 
[107]. The borylated alkenes S34−2 and S34−8 are prepared from the corresponding bromo-
cyclopentenes by means of Miyaura borylation in the presence of a catalytic amount of 
Pd(dppf)Cl2 and pinB−Bpin, and AcOK as a base in 1,4-dioxane at 80 °C. 
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able deoxyuridine nucleosides.

The Suzuki reactions of cyclic borylated alkenes have been used to synthesize the natu-
ral compounds delavatine A (S34–5) and (−)-incarviatone A (S34–6) (Scheme 34) [105,106].
The key step in the synthesis of the natural compounds S34–5 and S34–6 is the site-selective
oxidative addition of a palladium catalyst at 3,5-dibromo-2-pyrone (S34–1). Moreover, it
has been experimentally verified that the formation of oxidative addition products depends
on the reaction conditions [105]. In N,N-dimethylformamide (DMF) and in the presence
of CuI, the oxidative addition product S34–3b is preferentially formed. In addition, it
has been shown that S34–3a undergoes conversion into the oxidative addition product
S34–3b during the subsequent transmetallation and reductive elimination step. Thus, the
complex S34–3a is a kinetic oxidative addition adduct, while complex S34–3b is a thermo-
dynamic oxidative addition adduct. A detailed mechanism has been proposed based on
quantum chemical calculations. The observed reactivity was used for the preparation of
the natural compounds delavatine A (S34–5) and (−)-incarviatone A (S34–6). The similar
borylated alkene S34–8 can be used in the alternative total synthesis of (−)-incarviatone
A (S34–6), although in this case the Suzuki reaction is performed under standard condi-
tions [107]. The borylated alkenes S34–2 and S34–8 are prepared from the corresponding
bromocyclopentenes by means of Miyaura borylation in the presence of a catalytic amount
of Pd(dppf)Cl2 and pinB–Bpin, and AcOK as a base in 1,4-dioxane at 80 ◦C.

Typical examples of the preparation of alicyclic alkenylboronates are shown in
Scheme 35a,b. The first example illustrates the iron-catalyzed borolysis of carbamate
S35–1 in the presence of a bpy ligand and lithium methoxide as a base. The reaction leads
to the preparation of different alkenyl and arylboronic acid esters as well as only two
borylated tetrasubstituted alkenes S35–2a and S35–2b [108]. The second process relies on
the iridium-catalyzed C–H borylation of the cyclohexenyl carboxylate S35–3 [109]. The
reaction tolerates a variety of functional groups, as illustrated by selected examples S35–4a,
S35–4b, S35–4c, and S35–4d, and the overall isolated yields of the boronates are high. The
C–H borylation process can also be used to prepare acyclic tetrasubstituted vinylboronic
acid esters, although the cyclopentenyl-, cycloheptenyl-, and cyclooctenylboronic acid
esters are only obtained in moderate isolated yields.
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The preparation of the borylated dihydronaphthalene derivative S37−2 was per-
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Scheme 35. Synthesis of the borylated tetrasubstituted double bond via the iron-catalyzed cross-
coupling of the activated C–O bond and iridium-catalyzed C–H borylation.

Another approach for the preparation of alicyclic alkenylboronates makes use of the
cyclization of acyclic precursors. An example of this approach is shown in Scheme 36 [110].
Initially, the brominated diene S36–1 is borylated, although alkene S36–2 cannot be isolated
in its pure form, meaning that the subsequent ring-closing metathesis must be performed in
a tandem reaction setup. Then, the borylated cycloalkenes S36–3a and S36–3b are obtained
in high yields.
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Scheme 36. Tandem Miayura borylation–RCM for the synthesis of alicyclic vinylboronates.

The preparation of the borylated dihydronaphthalene derivative S37–2 was performed
via the trans borylative cyclization of the internal alkyne S37–1 by means of the reaction
with boron trichloride and the subsequent conversion into the pinacol boronic acid ester
S37–2 under various reaction conditions (Scheme 37) [111]. The selected examples illustrate
how borylative cyclization is not limited to the formation of the dihydronaphthalene
derivatives S37–2a and S37–2b, as depending on the structures of the starting materials, it
is possible to obtain the tricyclic compounds S37–2c and S37–2d. In addition, oxidation of
the dihydronaphthalene derivative S37–2f can yield the boronate S37–4, while the Suzuki
reaction of boronate S37–2f allows for formal access to biologically relevant nafoxidine-
derived compounds.
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the borylation of aryl and vinyl halides was performed with a borylating reagent in the 
presence of sodium ethoxide. The authors mainly used the developed procedure for the 
preparation of arylboronic acid esters, as well as borylated mono- and disubstituted al-
kenes. In addition, only two examples of borylated trisubstituted double bond S38−2a and 
S38−2b were synthesized to expand the scope of the developed borylation protocol. 
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Aside from the modular and asymmetric preparation of baskets [116] and starting 
materials for the photoelectrocyclization of bis-aryl cycloalkenones [117,118], the synthe-
sis of substituted cyclopentenones involving the benzofuran-ring opening reaction [119], 
and the oxidation of nonactivated anilines [120,121], cyclohexenylboronic acid esters can 
be used in natural product synthesis. Selected examples are shown in Scheme 39. The tri-
cyclic cores of cyrneine B (S39−4) and glaucopine C (S39−5) are synthesized from the diene 
S39−3, which is prepared by means of the Suzuki reaction of the cyclohexenylboronic acid 

Scheme 37. Transition-metal-free trans borylative cyclization for the synthesis of dihydronaphtha-
lene derivatives.

Transition-metal-catalyzed Miyaura borylation is a popular tool for the preparation
of organoboronic acid esters [112–114]. Thus far, an interesting alternative to transition-
metal-catalyzed borylation has been published by Ito et al. (Scheme 38) [115]. In this work,
the borylation of aryl and vinyl halides was performed with a borylating reagent in the
presence of sodium ethoxide. The authors mainly used the developed procedure for the
preparation of arylboronic acid esters, as well as borylated mono- and disubstituted alkenes.
In addition, only two examples of borylated trisubstituted double bond S38–2a and S38–2b
were synthesized to expand the scope of the developed borylation protocol.
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Aside from the modular and asymmetric preparation of baskets [116] and starting
materials for the photoelectrocyclization of bis-aryl cycloalkenones [117,118], the synthesis
of substituted cyclopentenones involving the benzofuran-ring opening reaction [119], and
the oxidation of nonactivated anilines [120,121], cyclohexenylboronic acid esters can be
used in natural product synthesis. Selected examples are shown in Scheme 39. The tricyclic
cores of cyrneine B (S39–4) and glaucopine C (S39–5) are synthesized from the diene
S39–3, which is prepared by means of the Suzuki reaction of the cyclohexenylboronic acid
ester S39–2 with the cyclopentenyl triflate S39–1 [122]. By contrast, the Suzuki reaction
of the boronic acid S39–6 is used to prepare the polyenes S39–9 and S39–10 during the
preparation of the dihydroretinoic acids S39–11a and S39–11b [123].
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5. Conclusions 
In this work, we have shown how the borylated tetrasubstituted double bond has 

become an indispensable tool for the stereoselective preparation of tetrasubstituted al-
kenes. Alkenylboronic acids and alkenylboronates are the most commonly used tools for 
this purpose. These substances are mostly stable and easy to isolate compounds, which 
facilitates their use for the preparation of tetrasubstituted alkenes. In addition, a number 
of procedures have been developed for the stereoselective preparation of acyclic alkenyl-
boronic acids from readily available compounds without the need for highly reactive or-
ganolithium and Grignard reagents. The situation is dramatically different for cycloal-
kenylboronic acids and cycloalkenylboronates. In this case, the stereoselectivity of the 
double bond is fixed, however, the limited stability and availability of cycloalkynes re-
stricts their preparation to Li–B exchange reaction, Miyaura borylation, and cyclization 
procedures. The lack of suitable procedures for the preparation of cycloalkenylboronates 
is characteristic especially for the cyclization procedures. On the other hand, cyclic and 
acyclic vinylstannanes and vinylsilanes are less commonly used for the stereoselective 
preparation of tetrasubstituted alkenes, which leaves the door open for further research 
in this regard. 
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In this work, we have shown how the borylated tetrasubstituted double bond has
become an indispensable tool for the stereoselective preparation of tetrasubstituted alkenes.
Alkenylboronic acids and alkenylboronates are the most commonly used tools for this pur-
pose. These substances are mostly stable and easy to isolate compounds, which facilitates
their use for the preparation of tetrasubstituted alkenes. In addition, a number of proce-
dures have been developed for the stereoselective preparation of acyclic alkenylboronic
acids from readily available compounds without the need for highly reactive organolithium
and Grignard reagents. The situation is dramatically different for cycloalkenylboronic acids
and cycloalkenylboronates. In this case, the stereoselectivity of the double bond is fixed,
however, the limited stability and availability of cycloalkynes restricts their preparation
to Li–B exchange reaction, Miyaura borylation, and cyclization procedures. The lack of
suitable procedures for the preparation of cycloalkenylboronates is characteristic especially
for the cyclization procedures. On the other hand, cyclic and acyclic vinylstannanes and
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vinylsilanes are less commonly used for the stereoselective preparation of tetrasubstituted
alkenes, which leaves the door open for further research in this regard.
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40. Ruan, Y.; Wang, B.-Y.; Erb, J.M.; Chen, S.; Hadad, C.M.; Badjić, J.D. On the role of guests in enforcing the mechanism of action of
gated baskets. Org. Biomol. Chem. 2013, 11, 7667–7675. [CrossRef]

41. Tanino, K.; Yamada, T.; Yoshimura, F.; Suzuki, T. Cyanoazulene-based Multistage Redox Systems Prepared from Vinylcyclo-
propanecarbonitrile and Cyclopentenone via Divinylcyclopropane-rearrangement Approach. Chem. Lett. 2014, 43, 607–609.
[CrossRef]

42. Kats-Kagan, R.; Herzon, S.B. The Discovery of a Novel Route to Highly Substituted α-Tropolones Enables Expedient Entry to the
Core of the Gukulenins. Org. Lett. 2015, 17, 2030–2033. [CrossRef]

43. Dastan, A.; Uzundumlu, E.; Balci, M.; Fabris, F.; De Lucchi, O. An Investigation on the Synthesis of New Molecular Architectures
from the Cyclotrimerisation of exo- and endo-Benzotricyclo[4.2.1.02,5]nonene. Eur. J. Org. Chem. 2004, 183–192. [CrossRef]

44. Shintani, R.; Kurata, H.; Nozaki, K. Intermolecular Three-Component Arylsilylation of Alkynes under Palladium/Copper
Cooperative Catalysis. J. Org. Chem. 2016, 81, 3065–3069. [CrossRef]

45. Zhou, B.; Lu, A.; Shao, C.; Liang, X.; Zhang, Y. Palladium-catalyzed sequential three-component reactions to access vinylsilanes.
Chem. Commun. 2018, 54, 10598–10601. [CrossRef]

46. Wisthoff, M.F.; Pawley, S.B.; Cinderella, A.P.; Watson, D.A. Stereoselective Synthesis of Cis- and Trans-Tetrasubstituted Vinyl
Silanes Using a Silyl-Heck Strategy and Hiyama Conditions for Their Cross-Coupling. J. Am. Chem. Soc. 2020, 142, 12051–12055.
[CrossRef]

47. Denmark, S.E.; Kallemeyn, J.M. Stereospecific Palladium-Catalyzed Cross-Coupling of (E)- and (Z)-Alkenylsilanolates with Aryl
Chlorides. J. Am. Chem. Soc. 2006, 128, 15958–15959. [CrossRef]

48. Kuang, Z.; Gao, G.; Song, Q. Base-catalyzed diborylation of alkynes: Synthesis and applications of cis-1,2-bis(boryl)alkenes. Sci.
China Chem. 2019, 62, 62–66. [CrossRef]

49. Ito, S.; Fukazawa, M.; Takahashi, F.; Nogi, K.; Yorimitsu, H. Sodium-Metal-Promoted Reductive 1,2-syn-Diboration of Alkynes
with Reduction-Resistant Trimethoxyborane. Bull. Chem. Soc. Jpn. 2020, 93, 1171–1179. [CrossRef]

http://doi.org/10.1246/bcsj.75.1435
http://doi.org/10.1055/s-0035-1561462
http://doi.org/10.1016/j.tet.2004.01.041
http://doi.org/10.1021/jacs.5b02373
http://doi.org/10.1016/j.tet.2015.02.023
http://doi.org/10.1021/ol0259342
http://doi.org/10.1021/ja060847g
http://doi.org/10.1039/b924542a
http://www.ncbi.nlm.nih.gov/pubmed/20204197
http://doi.org/10.1016/j.tet.2010.03.117
http://doi.org/10.1002/anie.200905732
http://www.ncbi.nlm.nih.gov/pubmed/20127921
http://doi.org/10.1021/acs.joc.5b00355
http://www.ncbi.nlm.nih.gov/pubmed/25974179
http://doi.org/10.1021/jacs.7b01718
http://www.ncbi.nlm.nih.gov/pubmed/28271887
http://doi.org/10.1002/chem.201700749
http://www.ncbi.nlm.nih.gov/pubmed/28430374
http://doi.org/10.1002/adsc.201600175
http://doi.org/10.1021/acs.joc.5b01693
http://doi.org/10.1002/chin.201217194
http://doi.org/10.1039/c3ob41511b
http://doi.org/10.1246/cl.131149
http://doi.org/10.1021/acs.orglett.5b00841
http://doi.org/10.1002/ejoc.200300478
http://doi.org/10.1021/acs.joc.6b00587
http://doi.org/10.1039/C8CC05254A
http://doi.org/10.1021/jacs.0c05382
http://doi.org/10.1021/ja065988x
http://doi.org/10.1007/s11426-018-9344-4
http://doi.org/10.1246/bcsj.20200110


Organics 2022, 3 237

50. Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Iron-Catalyzed Diboration and Carboboration of Alkynes. Chem. Eur. J. 2015, 21,
4257–4261. [CrossRef]

51. Ferrand, L.; Lyu, Y.; Rivera-Hernández, A.; Fallon, B.J.; Amatore, M.; Aubert, C.; Petit, M. Hydroboration and Diboration of
Internal Alkynes Catalyzed by a Well-Defined Low-Valent Cobalt Catalyst. Synthesis 2017, 49, 3895–3904. [CrossRef]

52. Hyodo, K.; Suetsugu, M.; Nishihara, Y. Diborylation of Alkynyl MIDA Boronates and Sequential Chemoselective Suzuki–Miyaura
Couplings: A Formal Carboborylation of Alkynes. Org. Lett. 2014, 16, 440–443. [CrossRef]

53. Lai, Q.; Ozerov, O.V. Dehydrogenative Diboration of Alkynes Catalyzed by Ir/CO/tBuNC System. J. Organomet. Chem. 2021,
931, 121614. [CrossRef]

54. Lee, C.-I.; Shih, W.-C.; Zhou, J.; Reibenspies, J.H.; Ozerov, O.V. Synthesis of Triborylalkenes from Terminal Alkynes by Iridium-
Catalyzed Tandem C–H Borylation and Diboration. Angew. Chem. Int. Ed. 2015, 54, 14003–14007. [CrossRef]

55. Liu, X.; Ming, W.; Friedrich, A.; Kerner, F.; Marder, T.B. Copper-Catalyzed Triboration of Terminal Alkynes Using B2pin2: Efficient
Synthesis of 1,1,2-Triborylalkenes. Angew. Chem. Int. Ed. 2020, 59, 304–309. [CrossRef]

56. Yoshii, D.; Jin, X.; Mizuno, N.; Yamaguchi, K. Selective Dehydrogenative Mono- or Diborylation of Styrenes by Supported Copper
Catalysts. ACS Catal. 2019, 9, 3011–3016. [CrossRef]

57. Semba, K.; Yoshizawa, M.; Ohtagaki, Y.; Nakao, Y. Arylboration of Internal Alkynes by Cooperative Palladium/Copper Catalysis.
Bull. Chem. Soc. Jpn. 2017, 90, 1340–1343. [CrossRef]

58. Huang, Y.; Bergmann, A.M.; Brown, M.K. (Hetero)arylboration of alkynes: A strategy for the synthesis ofα,α-bis(hetero)arylketones.
Org. Biomol. Chem. 2019, 17, 5913–5915. [CrossRef]

59. Zhang, W.-D.; Zou, J.-Y.; Zhong, Q.; Li, S.-S.; Zhao, J. Synergistic Pd/Cu-catalysed regio- and stereoselective borylation of allenylic
carbonates. Chem. Commun. 2022, 58, 1037–1040. [CrossRef]

60. Wigman, B.; Lee, W.; Wei, W.; Houk, K.N.; Nelson, H.M. Electrochemical Fluorination of Vinyl Boronates through Donor-Stabilized
Vinyl Carbocation Intermediates. Angew. Chem. Int. Ed. 2022, 61, e202113972. [CrossRef]

61. Nozawa, R.; Shinokubo, H. Synthesis and Properties of meso-Arylated Corrphycenes. Org. Lett. 2017, 19, 4928–4931. [CrossRef]
[PubMed]

62. La Cascia, E.; Cuenca, A.B.; Fernández, E. Opportune gem-Silylborylation of Carbonyl Compounds: A Modular and Stereocon-
trolled Entry to Tetrasubstituted Olefins. Chem. Eur. J. 2016, 22, 18737–18741. [CrossRef] [PubMed]

63. Cho, S.H.; Hartwig, J.F. Iridium-catalyzed diborylation of benzylic C–H bonds directed by a hydrosilyl group: Synthesis of
1,1-benzyldiboronate esters. Chem. Sci. 2014, 5, 694–698. [CrossRef]

64. Zhou, Y.; You, W.; Smith, K.B.; Brown, M.K. Copper-Catalyzed Cross-Coupling of Boronic Esters with Aryl Iodides and
Application to the Carboboration of Alkynes and Allenes. Angew. Chem. Int. Ed. 2014, 53, 3475–3479. [CrossRef] [PubMed]

65. Xu, N.; Xu, J.; Zhu, Q.; Liu, C. Synthesis of Allylboronates via Zweifel-type Deprotonative Olefination. Adv. Synth. Catal. 2021,
363, 2403–2407. [CrossRef]

66. Bin, H.-Y.; Wei, X.; Zi, J.; Zuo, Y.-J.; Wang, T.-C.; Zhong, C.-M. Substrate-Controlled Regio- and Stereoselective Synthesis of Boron-
Substituted 1,4-Dienes via Copper-Catalyzed Boryl–Allylation of Alkynes with Allyl Phosphates and Bis(pinacolato)diboron.
ACS Catal. 2015, 5, 6670–6679. [CrossRef]

67. Itoh, T.; Shimizu, Y.; Kanai, M. Ligand-Enabled, Copper-Catalyzed Regio- and Stereoselective Synthesis of Trialkylsubstituted
Alkenylboronates from Unactivated Internal Alkynes. J. Am. Chem. Soc. 2016, 138, 7528–7531. [CrossRef]

68. Sanderson, M.D.; Kamplain, J.W.; Bielawski, C.W. Quinone-Annulated N-Heterocyclic Carbene-Transition-Metal Complexes:
Observation of π-Backbonding Using FT-IR Spectroscopy and Cyclic Voltammetry. J. Am. Chem. Soc. 2006, 128, 16514–16515.
[CrossRef]

69. Kubota, K.; Iwamoto, H.; Yamamoto, E.; Ito, H. Silicon-Tethered Strategy for Copper(I)-Catalyzed Stereo- and Regioselective
Alkylboration of Alkynes. Org. Lett. 2015, 17, 620–623. [CrossRef]

70. Muchnij, J.A.; Kwaramba, F.B.; Rahaim, R.J. Sterically Directed Iridium-Catalyzed Hydrosilylation of Alkenes in the Presence of
Alkynes. Org. Lett. 2014, 16, 1330–1333. [CrossRef]

71. Tamao, K.; Ishida, N.; Kumada, M. (Diisopropoxymethylsilyl)methyl Grignard reagent: A new, practically useful nucleophilic
hydroxymethylating agent. J. Org. Chem. 1983, 48, 2120–2122. [CrossRef]

72. Iwamoto, H.; Ozawa, Y.; Kubota, K.; Ito, H. Copper(I)-Catalyzed Regio- and Stereoselective Intramolecular Alkylboration of
Propargyl Ethers and Amines. J. Org. Chem. 2017, 82, 10563–10573. [CrossRef]

73. Zhu, C.; Yang, B.; Qiu, Y.; Bäckvall, J.-E. Olefin-Directed Palladium-Catalyzed Regio- and Stereoselective Hydroboration of
Allenes. Chem. Eur. J. 2016, 22, 2939–2943. [CrossRef]

74. Qiu, Y.; Yang, B.; Zhu, C.; Bäckvall, J.-E. Palladium-Catalyzed Oxidative Carbocyclization–Borylation of Enallenes to Cyclobutenes.
Angew. Chem. Int. Ed. 2016, 55, 6520–6524. [CrossRef]

75. Jin, H.; Fürstner, A. Regioselective trans-Carboboration of Propargyl Alcohols. Org. Lett. 2019, 21, 3446–3450. [CrossRef]
76. Takahashi, F.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Diborative Reduction of Alkynes to 1,2-Diboryl-1,2-Dimetalloalkanes: Its

Application for the Synthesis of Diverse 1,2-Bis(boronate)s. Org. Lett. 2019, 21, 4739–4744. [CrossRef]
77. Tani, T.; Takahashi, N.; Sawatsugawa, Y.; Osano, M.; Tsuchimoto, T. Stepwise Suzuki–Miyaura Cross-Coupling of Triborylalkenes

Derived from Alkynyl–B(dan)s: Regioselective and Flexible Synthesis of Tetrasubstituted Alkenes. Adv. Synth. Catal. 2021, 363,
2427–2442. [CrossRef]

http://doi.org/10.1002/chem.201406595
http://doi.org/10.1055/s-0036-1588996
http://doi.org/10.1021/ol403326z
http://doi.org/10.1016/j.jorganchem.2020.121614
http://doi.org/10.1002/anie.201507372
http://doi.org/10.1002/anie.201908466
http://doi.org/10.1021/acscatal.9b00761
http://doi.org/10.1246/bcsj.20170226
http://doi.org/10.1039/C9OB00961B
http://doi.org/10.1039/D1CC05854A
http://doi.org/10.1002/anie.202113972
http://doi.org/10.1021/acs.orglett.7b02390
http://www.ncbi.nlm.nih.gov/pubmed/28850242
http://doi.org/10.1002/chem.201604782
http://www.ncbi.nlm.nih.gov/pubmed/27735083
http://doi.org/10.1039/C3SC52824C
http://doi.org/10.1002/anie.201310275
http://www.ncbi.nlm.nih.gov/pubmed/24677502
http://doi.org/10.1002/adsc.202001351
http://doi.org/10.1021/acscatal.5b01441
http://doi.org/10.1021/jacs.6b04646
http://doi.org/10.1021/ja067475w
http://doi.org/10.1021/ol503620n
http://doi.org/10.1021/ol5000549
http://doi.org/10.1021/jo00160a046
http://doi.org/10.1021/acs.joc.7b02071
http://doi.org/10.1002/chem.201505130
http://doi.org/10.1002/anie.201601613
http://doi.org/10.1021/acs.orglett.9b01225
http://doi.org/10.1021/acs.orglett.9b01622
http://doi.org/10.1002/adsc.202001116


Organics 2022, 3 238

78. Tani, T.; Sawatsugawa, Y.; Sano, Y.; Hirataka, Y.; Takahashi, N.; Hashimoto, S.; Sugiura, T.; Tsuchimoto, T. Alkynyl–B(dan)s in
Various Palladium-Catalyzed Carbon–Carbon Bond-Forming Reactions Leading to Internal Alkynes, 1,4-Enynes, Ynones, and
Multiply Substituted Alkenes. Adv. Synth. Catal. 2019, 361, 1815–1834. [CrossRef]

79. Tsuchimoto, T.; Utsugi, H.; Sugiura, T.; Horio, S. Alkynylboranes: A Practical Approach by Zinc-Catalyzed Dehydrogenative
Coupling of Terminal Alkynes with 1,8-Naphthalenediaminatoborane. Adv. Synth. Catal. 2015, 357, 77–82. [CrossRef]

80. Zhang, M.; Yao, Y.; Stang, P.J.; Zhao, W. Divergent and Stereoselective Synthesis of Tetraarylethylenes from Vinylboronates.
Angew. Chem. Int. Ed. 2020, 59, 20090–20098. [CrossRef]

81. Biswas, S.; Jana, D.; Kumar, G.S.; Maji, S.; Kundu, P.; Ghorai, U.K.; Giri, R.P.; Das, B.; Chattopadhyay, N.; Ghorai, B.K.; et al.
Supramolecular Aggregates of Tetraphenylethene-Cored AIEgen toward Mechanoluminescent and Electroluminescent Devices.
ACS Appl. Mater. Interfaces 2018, 10, 17409–17418. [CrossRef]

82. Wang, L.; Li, W.; Wang, Z.; Luo, Q. Triptycene-scaffolded tetraphenylethylenes with irregular temperature-dependence AIE.
Tetrahedron Lett. 2019, 60, 439–443. [CrossRef]

83. Liu, Y.; Bai, Q.; Li, J.; Zhang, S.; Zhang, C.; Lu, F.; Yang, B.; Lu, P. Efficient pyrene-imidazole derivatives for organic light-emitting
diodes. RSC Adv. 2016, 6, 17239–17245. [CrossRef]

84. Dong, Y.; Shen, J.; Li, W.; Zhao, R.; Pan, Y.; Song, Q.; Zhang, C. Opposite ESIPT characteristic of two AIE-active isomers with
different linkage sites. Tetrahedron 2019, 75, 2670–2675. [CrossRef]

85. Huang, W.; Zhang, H.; Ma, J.; Chen, M.; Zhu, H.; Wang, W. Ladder-type conjugated oligomers prepared by the Scholl oxidative
cyclodehydrogenation reaction: Synthesis, characterization and application in field effect transistors. J. Mater. Chem. C 2015, 3,
6200–6208. [CrossRef]

86. Huang, Y.; Huang, W.; Yang, J.; Ma, J.; Chen, M.; Zhu, H.; Wang, W. The synthesis, characterization and flexible OFET application
of three (Z)-1,2-bis(4-(tert-butyl)phenyl)ethane based copolymers. Polym. Chem. 2016, 7, 538–545. [CrossRef]

87. Yang, J.; Huang, W.; Lin, T.; Pan, X.; Zhu, H.; Huang, Y.; Wang, W. Intramolecular oxidative cyclodehydrogenation route for the
synthesis of strap-like conjugated polymers. RSC Adv. 2017, 7, 10763–10773. [CrossRef]

88. Yang, L.; Zhang, Y.; Zhang, X.; Li, N.; Quan, Y.; Cheng, Y. Doping-free circularly polarized electroluminescence of AIE-active
chiral binaphthyl-based polymers. Chem. Commun. 2018, 54, 9663–9666. [CrossRef]

89. Bijesh, S.; Misra, R. Triphenylamine Functionalized Unsymmetrical Quinoxalines. Asian J. Org. Chem. 2018, 7, 1882–1892.
[CrossRef]

90. Li, Y.; Liu, K.; Li, X.; Quan, Y.; Cheng, Y. The amplified circularly polarized luminescence regulated from D–A type AIE-active
chiral emitters via liquid crystals system. Chem. Commun. 2020, 56, 1117–1120. [CrossRef]

91. Maragani, R.; Sharma, R.; Misra, R. Donor-Acceptor Triphenylvinyl and Tetraphenyl Conjugates: Synthesis, Aggregation and
Computational Studies. ChemistrySelect 2017, 2, 10033–10037. [CrossRef]

92. Qi, J.; Duan, X.; Cai, Y.; Jia, S.; Chen, C.; Zhao, Z.; Li, Y.; Peng, H.-Q.; Kwok, R.T.K.; Lam, J.W.Y.; et al. Simultaneously boosting
the conjugation, brightness and solubility of organic fluorophores by using AIEgens. Chem. Sci. 2020, 11, 8438–8447. [CrossRef]
[PubMed]

93. Blomquist, A.T.; Liu, L.H. Many-membered Carbon Rings. VII. Cycloöctyne. J. Am. Chem. Soc. 1953, 75, 2153–2154. [CrossRef]
94. Green, J.R. Cycloheptyne–cobalt complexes via allylation of stabilized γ-carbonyl cations. Chem. Commun. 1998, 1751–1752.

[CrossRef]
95. Farmer, M.E.; Ehehalt, L.E.; Pabst, T.P.; Tudge, M.T.; Chirik, P.J. Well-Defined Cationic Cobalt(I) Precatalyst for Olefin-Alkyne

[2 + 2] Cycloaddition and Olefin-Diene Hydrovinylation Reactions: Experimental Evidence for Metallacycle Intermediates.
Organometallics 2021, 40, 3599–3607. [CrossRef]

96. Polák, P.; Tobrman, T. Novel Selective Approach to Terminally Substituted [n]Dendralenes. Eur. J. Org. Chem. 2019, 2019, 957–968.
[CrossRef]

97. Nowikow, C.; Fuerst, R.; Kauderer, M.; Dank, C.; Schmid, W.; Hajduch, M.; Rehulka, J.; Gurska, S.; Mokshyna, O.; Polishchuk, P.;
et al. Synthesis and biological evaluation of cis-restrained carbocyclic combretastatin A-4 analogs: Influence of the ring size and
saturation on cytotoxic properties. Bioorg. Med. Chem. 2019, 27, 115032. [CrossRef]

98. León, T.; Fernández, E. The Pauson–Khand reaction using alkynylboronic esters: Solving a long-standing regioselectivity issue.
Chem. Commun. 2016, 52, 9363–9366. [CrossRef]

99. Albarghouti, G.; Rayyan, S. General Method for the Synthesis of Substituted Cyclopentenones via α-Borylzirconacyclopentene
Intermediates. Org. Prep. Proced. Int. 2020, 52, 1–8. [CrossRef]

100. Sarter, C.; Dey, S.; Jäschke, A. Photoswitchable Oligonucleotides Containing Different Diarylethene-Modified Nucleotides. ACS
Omega 2019, 4, 12125–12129. [CrossRef]

101. Buckup, T.; Sarter, C.; Volpp, H.-R.; Jäschke, A.; Motzkus, M. Ultrafast Time-Resolved Spectroscopy of Diarylethene-Based
Photoswitchable Deoxyuridine Nucleosides. J. Phys. Chem. Lett. 2015, 6, 4717–4721. [CrossRef]

102. Kellis, D.L.; Sarter, C.; Cannon, B.L.; Davis, P.H.; Graugnard, E.; Lee, J.; Pensack, R.D.; Kolmar, T.; Jäschke, A.; Yurke, B.; et al. An
All-Optical Excitonic Switch Operated in the Liquid and Solid Phases. ACS Nano 2019, 13, 2986–2994. [CrossRef]

103. Altenhofer, E.; Harmata, M. Radical isomerization of borylated allylic sulfones. Tetrahedron Lett. 2015, 56, 3176–3178. [CrossRef]
104. Altenhofer, E.F.; Harmata, M. Suzuki–Miyaura Coupling Reactions of Conjunctive Reagents: 2-Borylated Allylic Sulfones. J. Org.

Chem. 2015, 80, 8168–8174. [CrossRef]

http://doi.org/10.1002/adsc.201801527
http://doi.org/10.1002/adsc.201400767
http://doi.org/10.1002/anie.202008113
http://doi.org/10.1021/acsami.8b00165
http://doi.org/10.1016/j.tetlet.2018.12.069
http://doi.org/10.1039/C5RA25424H
http://doi.org/10.1016/j.tet.2019.03.041
http://doi.org/10.1039/C5TC00354G
http://doi.org/10.1039/C5PY01647A
http://doi.org/10.1039/C6RA25214A
http://doi.org/10.1039/C8CC05153D
http://doi.org/10.1002/ajoc.201800384
http://doi.org/10.1039/C9CC09067C
http://doi.org/10.1002/slct.201701373
http://doi.org/10.1039/D0SC03423A
http://www.ncbi.nlm.nih.gov/pubmed/34123103
http://doi.org/10.1021/ja01105a039
http://doi.org/10.1039/a803316a
http://doi.org/10.1021/acs.organomet.1c00473
http://doi.org/10.1002/ejoc.201801522
http://doi.org/10.1016/j.bmc.2019.07.048
http://doi.org/10.1039/C6CC04717C
http://doi.org/10.1080/00304948.2019.1677998
http://doi.org/10.1021/acsomega.9b01070
http://doi.org/10.1021/acs.jpclett.5b01949
http://doi.org/10.1021/acsnano.8b07504
http://doi.org/10.1016/j.tetlet.2014.12.047
http://doi.org/10.1021/acs.joc.5b01253


Organics 2022, 3 239

105. Palani, V.; Hugelshofer, C.L.; Kevlishvili, I.; Liu, P.; Sarpong, R. A Short Synthesis of Delavatine A Unveils New Insights into
Site-Selective Cross-Coupling of 3,5-Dibromo-2-pyrone. J. Am. Chem. Soc. 2019, 141, 2652–2660. [CrossRef]

106. Palani, V.; Hugelshofer, C.L.; Sarpong, R. A Unified Strategy for the Enantiospecific Total Synthesis of Delavatine A and Formal
Synthesis of Incarviatone A. J. Am. Chem. Soc. 2019, 141, 14421–14432. [CrossRef]

107. Hong, B.; Li, C.; Wang, Z.; Chen, J.; Li, H.; Lei, X. Enantioselective Total Synthesis of (−)-Incarviatone A. J. Am. Chem. Soc. 2015,
137, 11946–11949. [CrossRef]

108. Geng, S.; Zhang, J.; Chen, S.; Liu, Z.; Zeng, X.; He, Y.; Feng, Z. Development and Mechanistic Studies of Iron-Catalyzed
Construction of Csp2–B Bonds via C–O Bond Activation. Org. Lett. 2020, 22, 5582–5588. [CrossRef]

109. Sasaki, I.; Taguchi, J.; Doi, H.; Ito, H.; Ishiyama, T. Iridium(I)-catalyzed C–H Borylation of α,β-Unsaturated Esters with
Bis(pinacolato)diboron. Chem. Asian J. 2016, 11, 1400–1405. [CrossRef]

110. Heinrich, C.F.; Durand, D.; Starck, J.; Michelet, V. Ruthenium Metathesis: A Key Step To Access a New Cyclic Tetrasubstituted
Olefin Platform. Org. Lett. 2020, 22, 7064–7067. [CrossRef]

111. Warner, A.J.; Lawson, J.R.; Fasano, V.; Ingleson, M.J. Formation of C(sp2)–Boronate Esters by Borylative Cyclization of Alkynes
Using BCl3. Angew. Chem. Int. Ed. 2015, 54, 11245–11249. [CrossRef] [PubMed]

112. Kamio, S.; Yoshida, H. Synthetic Chemistry with Lewis Acidity-Diminished B(aam) and B(dan) Groups: Borylation Reactions and
Direct Cross-Couplings. Adv. Synth. Catal. 2021, 363, 2310–2324. [CrossRef]

113. Kubota, K.; Iwamoto, H.; Ito, H. Formal nucleophilic borylation and borylative cyclization of organic halides. Org. Biomol. Chem.
2017, 15, 285–300. [CrossRef] [PubMed]

114. Steven, A. Micelle-Mediated Chemistry in Water for the Synthesis of Drug Candidates. Synthesis 2019, 51, 2632–2647. [CrossRef]
115. Yamamoto, E.; Ukigai, S.; Ito, H. Boryl substitution of functionalized aryl-, heteroaryl- and alkenyl halides with silylborane and

an alkoxy base: Expanded scope and mechanistic studies. Chem. Sci. 2015, 6, 2943–2951. [CrossRef]
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