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Abstract: Organophosphorus compounds with stereogenic phosphorus and carbon atoms have
received increasing attention. In this regards, primary phosphines with a stereogenic carbon atom
adjacent to the phosphorus atom were synthesized by the reduction in phosphonates and phos-
phonoselenoates with a binaphthyl group. Their oxidized products, i.e., phosphine oxides with a
stereogenic tetrasubstituted carbon atom, were found to undergo BEt3-mediated radical addition to
cyclohexene to give P-stereogenic secondary phosphine oxides with a diastereoselectivity of 91:9.
The products were characterized by ordinary analytical methods, such as Fourier transform infrared
spectroscopy; 1H, 13C, and 31P NMR spectroscopies; and mass spectroscopy. Computational studies
on the phosphorus-centered radical species and the obtained product implied that the thermodynam-
ically stable radical and the adduct may be formed as a major diastereomer. The radical addition
to a range of alkenes took place in an anti-Markovnikov fashion to give P-stereogenic secondary
phosphine oxides. A variety of functional groups in the alkenes were tolerated under the reaction
conditions to afford secondary phosphine oxides in moderate yields. Primary phosphines with an
alkenyl group, which were generated in situ, underwent intramolecular cyclization to give five- and
six-membered cyclic phosphines in high yields after protection by BH3.

Keywords: anti-Markovnikov radical addition; five- and six-membered cyclic phosphines; primary
phosphine oxides; primary phosphines

1. Introduction

Organophosphorus compounds, and particularly those with three or four substituents
on the phosphorus atom, i.e., tertiary phosphines, phosphine oxides, and their isologues,
are of great importance in organic synthesis and medicinal chemistry [1–3]. The synthesis
and reactions of primary phosphines [4–18] and phosphine oxides [19–21] which contain
two phosphorus–hydrogen (P–H) bonds have received increasing attention because these
highly reactive bonds undergo various types of phosphorus-carbon (P–C) bond-forming
reactions. Their highly efficient addition reactions to alkenes have been achieved with
transition metal catalysts [22–24]. A radical reaction involving phosphorus-centered radi-
cals generated in situ is a classical method for P–C bond formation [25–30]; however, the
use of primary phosphines and phosphine oxides in a radical reaction is relatively rare
compared to that of secondary phosphines and phosphine oxides [31–38]. The stereo-
chemistry on a phosphorus atom has not received much attention, despite the fact that
the introduction of at least three different substituents to the phosphorus atom gives rise
to the stereogenic center on the phosphorus atom. During the course of our studies on
main group chemistry [39,40], we have intensively studied the synthesis and applications
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of organophosphorus compounds with a binaphthyl group [41–45] and recently reported
that the deprotonation and alkylation of phosphonoselenoates and phosphonates with a
binaphthyl group creates stereogenic secondary and tertiary carbon centers adjacent to the
phosphorus atom with high diastereoselectivity (Scheme 1a,b) [46]. The resulting products
are potentially available as precursors of primary phosphines since phosphorus–oxygen
bonds are readily reduced to P–H bonds.
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Herein, we report the generation of primary phosphines and their oxides with a
stereogenic carbon center adjacent to the phosphorus atom and their radical addition
reaction to alkenes to give P–stereogenic secondary phosphine oxides (Scheme 1c,d).

2. Materials and Methods

General Remarks: The IR spectra were obtained on a JASCO FT-IR spectrophotometer.
The 1H NMR spectra were measured on a JEOL AL400 (400 MHz), ECX-400P (400 MHz), or
ECA-500 (500 MHz) in CDCl3. Chemical shifts of protons are reported in δ values referred
to tetramethylsilane as an internal standard in CDCl3, and the following abbreviations
are used: s: singlet, d: doublet, t: triplet, and m: multiplet. The 13C NMR spectra were
measured on a JEOL AL400 (100 MHz), ECX-400P (100 MHz), or ECA-500 (125 MHz) in
CDCl3. The 31P NMR spectra were measured on a JEOL AL400 (162 MHz), ECX-400P
(162 MHz), or ECA-500 (202 MHz) in CDCl3 with 85% H3PO4 as an external standard. All
spectra were acquired in the proton-decoupled mode. The mass spectra (MS) and high
resolution mass spectra (HRMS) were taken on a JMS-700 mass spectrometer. Preparative
recycling gel permeation chromatography (GPC) was carried out using CHCl3 as the eluent.
All these instruments are made in Japan.

Materials: Lithium aluminum hydride, allyl alcohol, allyltrimethylsilane, 6-bromo-
1-hexene, 5-hexene-2-one, and 1,5-hexadiene were purchased from Tokyo chemical industry
Co., Ltd., Tokyo, Japan. Magnesium sulfate anhydrous (MgSO4), α,α′-azobisisobutyronitrile,
hexane, tetrahydrofuran (THF) dehydrate, toluene, ethyl acetate, chloroform, and tri-
ethylborane 1.0 M solution in hexane were purchased from Kanto Chemical Co., Ltd.,
Tokyo, Japan. Chloroform-d, triethylborane 1.0 M solution in THF, and 1,2:3,4-di-O-
isoprorylidene-α-D-galactopyranose were purchased from Aldrich Chemical Company,
Inc., Milwaukee, WI, USA. Cyclohexene was purchased from Nacalai Tesque Inc., Kyoto,
Japan. Dichloromethane and alumina activated were purchased from Waco Inc., Tokyo,
Japan. All manipulations were carried out under argon atmosphere.

3. Results and Discussion

Initially, phosphonate (Sax, Sp)-1a with a trisubstituted carbon atom adjacent to the
phosphorus atom was reduced with lithium aluminum hydride (LAH) (Scheme 2) [47].
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Scheme 2. Reduction of phosphonoselenoates 1 with LiAIH4.

The reaction proceeded smoothly under reflux in diethyl ether to give the primary
phosphine 2a in 65% yield. The use of diastereomerically enriched substrate 1a (dr > 95:5)
was expected to give an enantiomerically enriched product 2a. In fact, 2a and 2d showed a
specific rotation of +9.48 and +24.5, respectively, but the enantiomeric purity of 2a was not
determined because of its lability under HPLC analytical conditions and in the presence
of chiral shift reagents. The efficiency of the reduction was further proved in the reaction
of 1b–1d with LAH leading to the formation of 2b–2d. The reduction in phosphonate 3
having a tetrasubstituted atom adjacent to the phosphorus atom with LAH also took place
to give the corresponding primary phosphine 4 (Scheme 3).
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Scheme 3. Synthesis of primary phosphine and phosphine oxide (* shows a chiral center and the
carbon atom adopts either R or S configuration).

The oxidation of primary phosphine 4 selectively gave primary phosphine oxide 5
with high efficiency, although similar oxidation of 2 with a trisubstituted carbon atom at
the phosphorus atom did not give the desired oxides with high efficiency. The absolute
configuration of the product 5 was not determined at this point, but was later determined
by converting it to an alkene adduct.

Radical addition of the resulting primary phosphines 2 and 4 and phosphine oxide
5 to alkenes under radical reaction conditions was then carried out. However, unlike
the reported addition reaction of primary phosphines with an aromatic group and a
tertiary alkyl group on the phosphorus atom [30], the AIBN-mediated reaction of primary
phosphines 2 and 4 to alkenes gave complex mixtures containing a small amount of the
expected adducts. In contrast, the reaction of primary phosphine oxide 5 with cyclohexene
(6a) gave an isolable product 7a (Table 1).
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Entry Radical Initiator Solvent Temp Yield [%] [b] dr [b]

1 AIBN MeOH rt 0 [c]

2 BEt3 MeOH rt 10
3 BEt3 MeOH 0 ◦C 62 91:9
4 BEt3 MeOH 40 ◦C 75 91:9
5 BEt3 CH2Cl2 rt 12
6 BEt3 THF rt 0 [c]

[a] Reaction conditions: 5 (0.5 mmol, 1 equiv), 6a (0.55 mmol, 1.5 equiv), and radical initiator (0.55 mmol, 1.1 equiv)
in 2.5 mL solvent under air. [b] Yields and dr were determined on the basis of 31P NMR spectra of crude products.
BEt3 (0.1 equiv) was used. [c] The substrate 5 was completely recovered.

The AIBN-mediated reaction [48] did not proceed at room temperature (entry 1). An
increase in temperature gave a small amount of the product 7a. Attempts to enhance
the yield of 7a by using a catalytic amount of BEt3 [49] (entry 2) were not successful. As
solvents, CH2Cl2 and THF were not effective (entries 5 and 6). The reaction in MeOH gave
two diastereomers in a ratio of 91:9, and the reaction temperature did not affect this ratio
(entries 3 and 4). The molecular structure and absolute configurations at the phosphorus
and carbon atoms of the major diastereomer of 7a were unequivocally determined by X-ray
molecular structure analysis [50] (Figure 1). The results showed that the phosphorus and
carbon atoms adopted S configurations.
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The reaction in Table 1 should begin with the formation of phosphorus-centered
radical 8 [51] (Figure 2), which then adds to the alkene 6a. To elucidate the structure of 8,
molecular orbital calculations at the UHF/6-31G (d, p) level of theory [52] were carried out.
The results showed two stable diastereomers: 8a and 8b, whereby the radical center at the
phosphorus atom was oriented in the same or opposite direction toward the carbon-silicon
bond. The diastereomer 8b was more stable than 8a by about 0.5 kcal/mol. The relative
stability of the major product 7a and its diastereomer 7a′ was also estimated by DFT
calculations at the B3LYP/6-31G (d, p) level of theory. On the basis of these calculations,
interconversion of the phosphorus radicals 8a and 8b may be possible, but 8b may mainly
attack cyclohexene to form thermodynamically stable diastereomer 7a.
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Figure 2. Energy diagram of phosphorus centered radicals 8a an 8b, and products 7a and its
diastereomer 7a′.

We next investigated the scope of alkenes with phosphine oxide 5 under the BEt3-
mediated addition reaction conditions (Table 2). Terminal alkenes having hydroxy, trimethylsi-
lyl, acetyl, acetoxy, and acetal groups 6b–6g reacted with the phosphorus-centered radical
generated from 5 to give the corresponding products 7b–7f (entries 1–5).

Table 2. Radical addition of 5 to a range of alkenes.
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In all cases, 31P NMR and 1H NMR spectra showed the formation of anti-Markovnikov
adducts (See Supplementary Materials). This regioselectivity is in accordance with the
addition reaction of phosphorus-centered radical to terminal alkenes [35]. They were
isolated by column chromatography on Al2O3 and gel permeation chromatography to
give the corresponding products with high purity, but in low yields due to their lability
during purification. In the isolated product, 7g from the reaction of 6-bromo-1-hexene (6g)
and a bromine atom remained intact (entry 6). The reaction of 1,5-hexadiene (6h) gave the
product 7h, in which only one alkenyl group participated in the reaction (entry 7). Products
derived from the intramolecular cyclization of a terminal alkene in 7h were not observed,
which is in a marked contrast to the reported reaction of phosphorus-centered radical to
1,5-hexadiene [35].

Finally, primary phosphines with a terminal alkenyl group were subjected to the
radical reaction conditions (Table 3). Reduction in phosphonoselenolate 9a with LAH
followed by alkaline aqueous workup generated primary phosphines 11, which were then
treated with AIBN in toluene for 2 h. Attempts to purify the crude products failed to
give the phosphorus-containing cyclic compounds, probably because of the lability of
presumed phospholanes 12, although similar phospholanes were characterized by their
NMR spectra [53]. Thus, we treated the reaction mixture containing 12 with a THF solution
of BH3 to give boron complexes 13. The use of 9a and 10a gave boron complexes of
phospholanes 13a and 13b, and the reaction of 9b led to the formation of the boron complex
of phosphorinane 13c in high yield with good diastereoselectivities (entries 1–3).

Table 3. Intramolecular cyclization reaction of primary phosphines generated from phosphonoselenoates 9 and phospho-
nates 10.
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4. Conclusions

In summary, we have demonstrated the generation of primary phosphines with a stere-
ogenic carbon atom adjacent to the phosphorus atom. The primary phosphine oxide with a
tetrasubstituted stereogenic carbon center was subjected to BEt3-mediated radical addition
reaction to cyclohexene and terminal alkenes. The reaction gave anti-Markovnikov adducts
as major products. Functional groups, such as hydroxy, trimethylsilyl, acetyl, acetoxy, and
acetal groups, and bromine atoms remained intact under the reaction conditions. To the
best of our knowledge, these products are the first examples of compounds with a succes-
sive stereogenic secondary phosphorus atom and tetrasubstituted carbon atom, although
organophosphorus compounds with a tetrasubstituted carbon atom next to a phosphorus
atom have also been reported to some extent [54–56]. The intramolecular cyclization of
in situ-generated primary phosphines with an alkenyl group was achieved to give phos-
pholanes and phosphorinanes, which were isolated as boron complexes. Further studies
on organophosphorus compounds with a binaphthyloxy group as key precursors [57] for
P-stereogenic organophosphorus compounds are in progress.
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