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Abstract: The stunning advances in understanding the reactivity and selectivity principles of asym-
metric pericyclic reactions have had a profound impact on the synthetic planning of complex natural
products. Indeed, electrocyclizations, cycloadditions, and sigmatropic rearrangements enable syn-
thetic chemists to craft highly functionalized scaffolds that would not otherwise be possible with
a similar atom-, step-, and redox-economy. In this review, selected examples from the last two
decades of research (2003–2020) on tandem processes combining oxa-6π electrocyclic reactions are
discussed in terms of reactivity challenges, inherent reversibility, and key structural bond formation
in the assembly of natural products. A particular emphasis is given to the electrocyclic ring-closures
in the tandem processes featuring Knoevenagel-type condensations, Diels–Alder cycloadditions,
Stille couplings, and oxidative dearomatizations. The synthetic manifolds reviewed here illustrate
how oxa-6π electrocyclizations are intimately linked to the construction of complex natural product
scaffolds and have inspired a number of biomimetic syntheses in the laboratory.

Keywords: biomimetic synthesis; natural products; oxa-6π electrocyclic reactions; privileged scaffolds;
transannular reactions

1. Introduction

Natural products have long held societal value as folk medicines, and even in this
modern era, many FDA-approved drugs are still being derived from terpenes and alkaloids
found in nature. From a fundamental stand-point, the total synthesis of natural products
remains one of the most exhilarating areas of chemical research by providing a unique
platform for the discovery of novel technologies, methodologies, and synthetic strategies
to provide a more sustainable and reliable access to biologically active molecules. In this
context, pericyclic reactions [1] presented in this special issue of Organics (e.g., electrocy-
clizations [2,3], cycloadditions [4], and sigmatropic rearrangements [5]) are some of the
most powerful manifolds to streamline the construction of complex polycyclic natural
products. This short review covers the most recent advances in oxa-6π electrocyclization
and aims to complement the remarkable reviews by Trauner [6], Ding [7], and Sheikh [8]
with an emphasis on complex natural product synthesis. Unlike its aza-congener [9], appli-
cations of oxa-6π electrocyclization in building the molecular complexity found in natural
products has not yet been reviewed. However, natural products displaying a heterocyclic
pyran-derived scaffold are quite common. Cyclic 2H-(benzo)pyrans (e.g., 2) are often
not overly more stable than their opened oxatriene counterpart 1” and are quite reactive
moieties which not surprisingly undergo subsequent transformation to generate a rapid
structural complexity wrapped around a highly functionalized pyran core (Scheme 1). This
review was therefore primarily organized along the rapid generation of complex molecules
with examples of tandem and cascade processes (Sections 2.1 and 2.2) and rare instances of
transannular oxa-6π electrocyclizations involved macrocyclic ring contraction (Section 2.3).
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2. Discussion 
Although all carbon electrocyclic reactions (4π, 6π, 8π,and even 12π [10]) have 

played an important role in advancing asymmetric intermediates towards complex natu-
ral products, excellent reviews on this topic exist and will not be repeated herein [6–8]. 
2H-pyrans and related 2H-benzopyrans are privileged scaffolds found in natural products 
which have attracted the interests of synthetic chemists for decades [11,12]. Interestingly, 
synthetic examples of these heterocycles are relatively scarce due to their innate instability 
as a consequence of the high reversibility of the oxa-6π electrocyclization (forward- and 
retro-). This electrocyclic reaction entails a key σ-bond formation between the termini of 
an 1-oxatriene scaffold 1 via a π-electron redistribution permitted by the principle of or-
bital symmetry conservation (Scheme 1). The oxa-6π electrocyclization is typically in fast 
equilibrium with the retro-oxa-6π due to the thermoneutrality often invoked between the 
opened and closed valence tautomers (isomers) of 2H-(benzo)pyrans, and the relatively 
low-energy barriers of the various interconversion transition states (Scheme 1) [13,14]. For 
example, if R5 = R6 = H, s-cis/s-trans dienal conformers 1′ and 1″ will exist in dynamic equi-
librium between 1 and 2. In regards to enones 1, if R5 and R6 are forming a ring, or if R4 is 
a bulkier substituent than R5, the R4/R6 steric clash will effectively destabilize the s-trans 
conformation towards s-cis enone 1′ exclusively, thus enabling a possible equilibrium shift 
towards the s-cis,s-cis dienone 1″ [15–17]. Another steric clash occurs when R2 ≠ H or for 
disubstituted R2/R2′ ≠ H in terminal E-alkenes, thus forcing the s-cis,s-cis dienone π-system 
of 1″ out of conjugation which ultimately results in a favorable oxa-6π electrocyclic ring-
closure towards the 2H-pyran isomer 2. Aside from these steric factors, the oxa-6π elec-
trocyclic ring-closure is also favored towards 2H-(benzo)pyrans 2 by the presence of either 
electron-withdrawing groups at the C5 and/or C6 positions (reduced nucleophilicity of 
the enol ether moiety), or the stabilizing π-aromaticity of arenes (C5-C6) [18,19]. For most 
oxatriene substrates 1 which do not possess the stereoelectronic characteristics mentioned 
above, the oxa-6π electrocyclic ring-closure is often reversible unless being funneled 
through a cascade reaction [20,21]. As such, the total synthesis of (+)-torreyanic acid by 
Porco involving a oxa-6π electrocyclization/Diels−Alder cycloaddition cascade rapidly 
became a classic biomimetic reaction demonstrating how a 2H-pyran can be seamlessly 
transformed into a much more complex natural scaffold (Scheme 2). 
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2. Discussion

Although all carbon electrocyclic reactions (4π, 6π, 8π,and even 12π [10]) have played
an important role in advancing asymmetric intermediates towards complex natural prod-
ucts, excellent reviews on this topic exist and will not be repeated herein [6–8]. 2H-pyrans
and related 2H-benzopyrans are privileged scaffolds found in natural products which have
attracted the interests of synthetic chemists for decades [11,12]. Interestingly, synthetic
examples of these heterocycles are relatively scarce due to their innate instability as a conse-
quence of the high reversibility of the oxa-6π electrocyclization (forward- and retro-). This
electrocyclic reaction entails a key σ-bond formation between the termini of an 1-oxatriene
scaffold 1 via a π-electron redistribution permitted by the principle of orbital symmetry
conservation (Scheme 1). The oxa-6π electrocyclization is typically in fast equilibrium
with the retro-oxa-6π due to the thermoneutrality often invoked between the opened and
closed valence tautomers (isomers) of 2H-(benzo)pyrans, and the relatively low-energy
barriers of the various interconversion transition states (Scheme 1) [13,14]. For example, if
R5 = R6 = H, s-cis/s-trans dienal conformers 1′ and 1” will exist in dynamic equilibrium
between 1 and 2. In regards to enones 1, if R5 and R6 are forming a ring, or if R4 is a
bulkier substituent than R5, the R4/R6 steric clash will effectively destabilize the s-trans
conformation towards s-cis enone 1′ exclusively, thus enabling a possible equilibrium shift
towards the s-cis,s-cis dienone 1” [15–17]. Another steric clash occurs when R2 6= H or
for disubstituted R2/R2′ 6= H in terminal E-alkenes, thus forcing the s-cis,s-cis dienone π-
system of 1” out of conjugation which ultimately results in a favorable oxa-6π electrocyclic
ring-closure towards the 2H-pyran isomer 2. Aside from these steric factors, the oxa-6π
electrocyclic ring-closure is also favored towards 2H-(benzo)pyrans 2 by the presence of
either electron-withdrawing groups at the C5 and/or C6 positions (reduced nucleophilicity
of the enol ether moiety), or the stabilizing π-aromaticity of arenes (C5-C6) [18,19]. For
most oxatriene substrates 1 which do not possess the stereoelectronic characteristics men-
tioned above, the oxa-6π electrocyclic ring-closure is often reversible unless being funneled
through a cascade reaction [20,21]. As such, the total synthesis of (+)-torreyanic acid by
Porco involving a oxa-6π electrocyclization/Diels−Alder cycloaddition cascade rapidly
became a classic biomimetic reaction demonstrating how a 2H-pyran can be seamlessly
transformed into a much more complex natural scaffold (Scheme 2).
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tivity obtained in the heterodimer 5 was fully controlled by the pair of 2H-pyran epimers. 
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2.2 Tandem Sequences Geared towards Oxa-6π Electrocyclization Reactivity 
Another highly effective strategy to introduce 2H-pyran structures within the skele-

ton of complex natural products requires transformations that install an appropriate oxa-
triene moiety to achieve oxa-6π electrocyclization in a tandem fashion. The most produc-
tive tactic for the formation of various 2H-(benzo)pyrans certainly entails the combination 
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2.1. 6π-Electrocyclization/Diels−Alder Cycloaddition Cascade: The Domino Effect

Torreyanic acid (6) isolated from the endophytic fungus Pestalotiopsis microspore was
proposed by Clardy to arise from a Diels−Alder dimerization of two 2H-pyran epimers
which could have been formed in situ through the oxa-6π electrocyclization of a single
epoxy-quinone precursor [22]. Indeed, Porco was able to validate this biosynthetic hypoth-
esis, by designing a biomimetic cascade reaction that entailed the oxidation of a starting
alcohol (not shown) into the enantiopure quinone epoxide 3 as a trigger for the spontaneous
disrotatory oxa-6π electrocyclization and the ensuing dimerization (Scheme 2) [23,24]. A
related strategy of mild oxidation as a means to produce a reactive oxatriene moiety and
initiate an oxa-6π electrocyclic reaction in tandem was recently reported in a route towards
the papuaforin A-C natural products [25]. The exquisite diastereoselectivity observed
in the heterodimer product 5 was consistent with the theoretical energy-minima calcula-
tions from several competitive reaction pathways, reaction intermediates, and transition
states computed on a model substrate at B3LYP/6-31G* level of theory. Briefly, the results
suggested that both 2H-pyran epimers 4/4′ could be easily accessible (similar potential
energy) and in rapid equilibrium (∆∆G‡ ~5.0 Kcal/mol), while the syn-pyran (9S)-4′ in
which the pentyl side-chain adopts an axial orientation possess a thus more sterically
accessible diene (anti face to the epoxide moiety) for the Diels−Alder cycloaddition to
occur. It was therefore clearly demonstrated that the Diels−Alder dimerization stere-
oselectivity obtained in the heterodimer 5 was fully controlled by the pair of 2H-pyran
epimers. These results were further confirmed by Hayashi during the synthesis of related
epoxyquinol A-C natural products [26]. A similar platform involving a tandem oxa-6π
electrocyclization/Diels−Alder cycloaddition has found interesting applications in the
synthesis of highly functionalized “natural product-like” molecules [20].

2.2. Tandem Sequences Geared towards Oxa-6π Electrocyclization Reactivity

Another highly effective strategy to introduce 2H-pyran structures within the skeleton
of complex natural products requires transformations that install an appropriate oxatriene
moiety to achieve oxa-6π electrocyclization in a tandem fashion. The most productive
tactic for the formation of various 2H-(benzo)pyrans certainly entails the combination
of Knoevenagel condensations with oxa-6π electrocyclizations, although the more recent
approaches via Stille cross-coupling and oxidative dearomatization will also be discussed
in this section. Indeed, the formal [3 + 3] cycloaddition strategy consisting of Knoevenagel-
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type condensation followed by an oxa-6π electrocyclic ring closure (often reversible) enables
two σ bonds and one stereocenter to be installed simultaneously [27]. This methodology
has enjoyed many applications by Hsung and others in the synthesis of complex natural
products (Scheme 3) [28].
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tandem Knoevenagel condensations or Claisen rearrangement.

Although this cascade reaction has been pivotal in the synthesis of numerous natural
products (e.g., arisugacin A (7) [29–31], pinnatal (8) [32], phomactin A (9) [33,34], rhododau-
richromanic acid A (10) [35,36], or desoxymorellin (11) [37]), no real improvements in terms
of catalysis (piperidine, piperidinium, or ethylene diamine diacetate (EDDA)) have been
recently proposed except for the practical and efficient reaction in water by Lee [38] and the
DABCO-catalyzed electrocyclization of dienyl α-diketones by Frontier [39]. This cascade
reaction was also exploited by Hirama in the synthesis the marine steroidal alkaloids,
cortistatins A and J (Scheme 4) [40,41]. The one-step union of cyclohexane-1,3-dione 12
with the advanced CD-ring building block 13 was mediated by piperidine to irreversibly
deliver the tetracyclic product 14 in 87% yield and high diastereoselectivity (~5:1 dr). In
this effort, Yamashita and Hirama had to meticulously optimized the Knoevenagel/oxa-6π
electrocyclization cascade to form the pivotal B ring common to all the cortistatin natural
products and avoid the formation of undesired structural isomers [41].
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Along these lines, Quinn [42] and more recently Heretsch and Christmann [43] have
exploited an organocatalyzed Knoevenagel/oxa-6π electrocyclization cascade towards the
assembly of pyranopyridone-based natural products [44]. In their streamlined synthesis
of yaequinolones J1/J2 (17a-b) in five steps, Heretsch and Christmann reported their ef-
forts in optimizing the 2H-benzopyran forming step catalyzed by EDDA in toluene to
prepare substrate 16 in 49% yield (Scheme 5A) [43]. As shown in Scheme 5B, the pyra-
nopyridone scaffold can also be applied directly to the synthesis of 2H-pyran 18 through
a Knoevenagel/oxa-6π electrocyclization sequence catalyzed by ytterbium triflate, thus
affording a genuinely straightforward synthesis of melicodenine C (19) [42]. The same year,
Zografos and coworkers reported a more systematic study to access pyranopyridones via
a Knoevenagel/oxa-6π electrocyclization process for the synthesis of structurally diverse
natural-product-like pyridines [45].
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and (B) total synthesis of melicodenine C (19) by Quinn (2012).

Another exciting example was reported recently by Newhouse with the ten-step
synthesis of a limonoid alkaloid (+)-granatumine A (24) (Scheme 6). In this synthesis,
Newhouse and his group fully exploited the reversibility of the oxa-6π electrocyclization
to cleverly transform the central 2H-pyran heterocycle of 23 into the highly substituted
pyridine ring of the natural product 24. The Knoevenagel/oxa-6π electrocyclization route
between the cyclohexane 1,3-dione substrate 20 and the α,β—unsaturated aldehyde 21—
once again catalyzed by EDDA [46] delivered the pivotal pentacyclic fused scaffold 23 in
47% yield with high diastereo- and regioselectivity. Through computational DFT (density
functional theory) investigations and the experimental interconversion between pyran
scaffolds, the authors demonstrated that the 2H-pyran C1-regioisomer 23 was indeed
thermodynamically (∆∆G◦ of ~2.8 Kcal/mol) and kinetically preferred and that the electro-
cyclization proceeded with an exquisite disrotatory torquoselectivity.

It is important to note that even if significant progress has been made in under-
standing the general diastereoselectivity outcome of the thermal oxa-6π electrocycliza-
tion (π6s disrotatory), the development of catalytic enantioselective methods towards
enantioenriched 2H-pyrans is lagging far behind [47]. This statement is largely exempli-
fied by comparing the synthetic strategies developed separately by both the Ito [48,49]
and Gong/Yang [50] groups to deliver the asymmetric syntheses of several quignardone
meroterpenoids (Scheme 7). The Ito group exploited the reactivity of a chiral synthetic
C2-symetrical 1,3-diketone 25 in the oxa-6π electrocyclization towards the tricyclic pyran 26
in order to control facial selectivity at late-stage hydrogenation and deliver (−)-guinardone
I (27) in an enantioslective manner. On the other hand, Gong and Yang exploited the
chirality of (D)-quinic acid available from the chiral pool to secure the two stereocenters of
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1,3-diketone 28 in a relatively long sequence of sixteen steps. As shown in Scheme 7B, the
cascade reaction developed to construct pyran 29 was mediated by piperidine and acid
similarly to the report by Ito.
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From all the examples discussed above, it can be concluded that EDDA and piperidine
are the most common catalysts used to achieve the thermal Knoevenagel condensation/oxa-
6π electrocyclization tandem processes. As a more modern synthetic alternative to the
Knoevenagel condensation, Theodorakis evaluated the aromatic Claisen rearrangement in
the synthesis of desoxymorellin (±)-(11) [37]. This strategy was further elegantly exploited
by George in a concise and divergent biomimetic synthesis of naphterpin and marinone
meroterpenoid natural products [51].

An alternative tandem reaction for the synthesis of highly functionalized 2H-pyran
embedded in large and complex scaffolds was developed by the Stoltz group during
their total synthesis campaign of the caged diterpenoid (−)-saudin (35) [52–54]. The
overall synthetic strategy is shown in Scheme 8. After evaluating a number of palladium-
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catalyzed cross-couplings, Stoltz and coworkers were able to develop optimum conditions
for a Stille coupling. Both combinations of vinylstannane 31a-b and vinyl iodide 32a-
b were successfully investigated under Cu(I)-accelerated Stille conditions to provide a
novel route to a variety of 2H-pyrans through a tandem of Stille coupling and the oxa-6π
electrocyclization reaction of intermediates 33. During this methodological development,
the authors noted that the second combination between 31b/32b was more sensitive to
oxidation, which could be overcome by providing rigorous inert conditions in a glove box
to generate the angular and highly substituted 2H-pyrans 34 in good yields. This tandem
process was later evaluated by Mindt and successfully applied to the synthesis of benzo-
and naphtopyrans in a single step from readily available bromoquinone and vinyl stannane
substrates [55].
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In 2020, an oxidative dearomatization for the generation of ortho-quinone methide
with exquisite chemoselectivity has been reported to enable a series of tandem reactions
such as the oxa-6π electrocyclization [56]. This novel and efficient synthetic strategy will
certainly pave the way towards a more modern approach to complex 2H-pyran scaffolds
(Scheme 9). In brief, the transition-metal-free conditions reported in this study enabled the
direct oxidation of phenols (e.g., 36) at their benzylic positions using hypoiodite catalysis
to trigger a dearomatization process forming ortho-quinone methide 37. As shown in
Scheme 9, the highly reactive π-system of o-quinone methide 37 formed by oxidative
dearomatization presumably undergoes a rapid s-cis/s-trans conformational equilibrium
between 37 and 38 to enable the ensuing oxa-6π electrocyclization to take place and yield
the expected 2H-benzopyran products 39 through a favorable rearomatization. This study
reported by Ishihara will certainly find many novel applications in the realm of natural
product synthesis given the potential of reactivity of transient ortho-quinone methides for
tandem reactions. To complete this overview of tandem reactions, we should also note
the unique method recently reported by Bonesi and coworkers via a photo-induced Fries
rearrangement/oxa-6π electrocyclization manifold for the synthesis of chromanones [57].

2.3. Strained Cyclic Oxatriene Involved in “Transannular” Oxa-6π Electrocyclization

It is important to note that unlike the all the cases of intramolecular electrocycliza-
tions shown in Sections 2.1 and 2.2, the examples of oxa-6π electrocyclization presented
below occur within either medium- or large-size macrocycles, hence their classification
as “transannular” reactions. To our knowledge, the first example of transannular oxa-6π
electrocyclization was reported by Hsung and coworkers in 2003 [58] during their efforts
to build the structurally unprecedented ABD-tricyclic ring system of (±)-phomactin A
(9) (Scheme 10A) [33,34]. In this route, a number of steps were required to install the
citral-like side chain onto the cyclohexane 1,3-dione of enal 40 designed by Hsung as
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the starting material for the pivotal cascade reaction. As planned, substrate 40 was sub-
jected to iminium-based activation to construct the 14-membered ring macrocycle 42 via
a Knoevenagel-type condensation under high dilution conditions. The ensuing oxa-6π
electrocyclization took place in tandem to deliver product 43 bearing the contracted 12-
membered D-ring (22% yield) along with an undesired structural isomer (major product)
formed around a smaller and more favorable 10-membered ring macrocycle. As shown in
Scheme 10B, Trauner reported in 2005 a similar approach for the synthesis of the unusual
ansa-terpenoid smenochromene D (±)-(47) [59]. This macrocyclic chromene natural prod-
uct (aka likonide B) was initiated by first installing a long farnesyl-type side chain onto an
hydroquinone to obtain the fully functionalized building block 44. In this study, Trauner
and coworkers exploited a Nagata-type reaction mediated by phenylboronic acid to ob-
tain the ortho-hydroxyalkylation product 45, which upon the effect of temperature further
spontaneously proceeded to elimination via dearomatization to form the 18-membered
ring macrocyclic intermediate 46. The ensuing rearomatization into the 2H-benzopyran
heterocycle is likely a strong driving force to the final transannular oxa-6π electrocycliza-
tion occurring through the ring contraction of 46 into the 16-membered ring of the natural
product (±)-(47).
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Finally, the most recent example was reported by West and Roche during the syn-
thesis of briareolate ester B (50) shown in Scheme 11 [60]. Given the collective isolation
of briareolate esters L (48), G (49), and B (50) from the octocoral Briarium asbestinum, it
was naturally proposed that these briarane cembranoids could be biosynthetically related
through a mechanism of isomerization (48 with 49) and oxa-6π electrocyclization (49 to
50). Surprisingly, the naturally occurring 2H-pyran scaffold of 50 presents an anti-Bredt
bridgehead alkene suggestive of a highly strained oxo-bridged macrocycle [61]. As ex-
pected, the strained (E,Z) 1,3-diene system of briareolate ester L (48) isomerized rapidly
into a more conjugated (Z,Z)-system under UVA-photoirradiation to produce the reactive
but observable intermediate briareolate ester G (49) [62]. After about ten minutes of pho-
toirradiation, the isomerization reached a steady-state and a photoinduced transannular
oxa-6π electrocyclization took place in tandem to afford the highly functionalized briare-
olate ester B (50) in 60% yield. The synthetic cascade reaction validated the biosynthetic
proposal hinging on the spectacular 10- to 8-membered ring contraction of 49 to 50. In
the same study, a unique photochromic switch was also developed via a rapid retro-6π
electrocyclization of 50 under UVC irradiation to produce a coexisting mixture of isomers
48 and 49. Similar photochromic switches are typically valuable tools in material chemistry
and the new recent study by Pei and Zhou on a 1,8-dioxatetraene model will certainly find
multiple applications in the realm of photochromic films [63].
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3. Outlook

This review summarized the most recent advances in oxa-6π electrocyclic reactions
inspired by unique natural products and their biosynthetic pathways. Given the typical
reversibility of 6π-electrocyclic ring closures, a systematic understanding of the stereoelec-
tronic effects stabilizing 2H-(benzo)pyrans is critical. I hope to have demonstrated that
tandem and cascade reactions combined with oxa-6π electrocyclizations play a prevalent
role in constructing strategic bonds while transforming the transient 2H-(benzo)pyran
rings into more stable and complex scaffolds of natural products. Significant method-
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ological advances have been made in controlling the stereochemical outcome of oxa-6π
electrocyclizations, although the lack of catalytic enantioselective variants of this reaction
is evident. By using oxa-6π electrocyclization in tandem reactions, we should be able to
further engineer efficient and atom-economic routes towards numerous intricate molecular
structures and better understand the stereoelectronic factors enabling regio- and confor-
mational selectivity and catalysis in these processes. I hope this review will stir further
interest in these manifolds to explore novel opportunities in catalytic tandem reactions for
the construction of complex (polycyclic)heterocycles.
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