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Abstract: This paper studies the formulation of dark and singular stationary optical solitons that stem
from quadratic-cubic and generalized quadratic-cubic forms of nonlinear refractive index coupled
with nonlinear chromatic dispersion. The temporal evolution is taken to be of both kinds, namely
linear and generalized. The enhanced Kudryashov’s approach enables this retrieval possible.
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1. Introduction

The dynamics of soliton propagation through optical fibers and other forms of optical
waveguides is a scientifically rich phenomena. Occasionally, it so happens that such an
engineering marvel encounters several road blocks. A few of them are soliton radiation and
consequently shedding of soliton energy, collision-induced timing jitter, four-wave mixing
and many others. Another lesser known and lesser studied detrimental phenomena is the
formation of quiescent optical solitons when the chromatic dispersion (CD) is rendered
to be nonlinear [1–10]. This can be triggered from several possible unwanted situations
that arise during the course of soliton transmittal across intercontinental distances. These
could include rough handling of fibers, twisting and bending of fibers, water pressure from
undersea cables, and many others. This would lead to solitons getting stalled during its
transmittal. Such a phenomenon is discussed in this paper from a mathematical perspective.

There are two types of nonlinear refractive index structures that are taken into account
in this paper. They are quadratic-cubic (QC) and its generalized version that is referred to
as generalized QC nonlinearity. The enhanced Kudryashov’s scheme makes the retrieval of
the stationary solitons possible. It is dark and singular stationary solitons that are yielded
for the model with the two forms of self-phase modulation (SPM) considered in this paper.
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The temporal evolution is initially considered to be linear and thereafter its generalized
version is taken up. The results are derived and exhibited in the rest of the paper. These are
penned in detail after a succinct introduction to the model and a quick re-visitation of the
integration scheme. To step back in time, the concept of nonlinear CD was introduced by
Yan during 2006 that led to the formation of quiescent optical solitons [10]. Thereafter, this
concept was further explored for a wide variety of models, which otherwise gave way to
mobile solitons, such as the complex Ginzburg–Landau equation, Sasa–Satsuma equation,
Lakshmanan–Porsezian–Daniel equation, and many more [11–15]. The current paper
revisits the familiar nonlinear Schrödinger’s equation (NLSE) with quadratic-cubic and
generalized quadratic-cubic nonlinearities. In this context, for both nonlinear structures,
linear temporal evolution as well as generalized temporal evolutions are considered. It
must be transparent that the derivation of these quiescent soliton solutions was successful
by the aid of direct computer software usage that gave way to implicit forms of quiescent
solitons [11–15]. The analytical derivation of such solitons, however, was carried out
earlier by the usage of Jacobi’s elliptic function expansion and extended the trial function
approach [1,2]. The current paper implements enhanced Kudryashov’s mechanism to
recover quiescent solitons to the NLSE.

2. The Enhanced Kudryashov’s Procedure

Consider a governing model

G(u, ux, ut, uxt, uxx, ...) = 0, (1)

where u = u(x, t) denotes a wave profile, while t and x depict temporal and spatial
variables in sequence.
The relations

u(x, t) = U(ξ), ξ = µ(x− υt), (2)

condense (1) to
P(U,−µυU′, µU′, µ2U′′, ...) = 0, (3)

where µ is the inverse wave width, ξ is the wave variable, and υ is the wave velocity.
Step–1: The reduced model (3) admits the explicit solution

U(ξ) = λ0 +
N

∑
l=1

∑
i+j=l

λijQi(ξ)Rj(ξ), (4)

along with the ancillary equations

R′(ξ)2
= R(ξ)2(1− χR(ξ)2), (5)

and
Q′(ξ) = Q(ξ)(ηQ(ξ)− 1), (6)

where λ0, χ, η, λij(i, j = 0, 1, ..., N) are constants, where N come from the balancing
technique in (3).
Step–2: Equations (5) and (6) also provide the solitons that are of the forms

R(ξ) =
4c

4c2eξ + χe−ξ
, (7)

and
Q(ξ) =

1
η + beξ

, (8)

where c and b are constants.
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Step–3: Substituting (4) along with (5) and (6) into (3) provides us with the much-needed
constants in (2)–(6). Lastly, plugging in the obtained parametric restrictions along with (7)
or (8) into (4), one arrives straddled solitons which can be reduced to dark or singular solitons.

3. Quadratic-Cubic Nonlinearity

The structure of QC nonlinearity was first reported during 1994 [4]. Later, after a long
hiatus, this form of SPM was picked up by Fujioka et al. during 2011 [3] and thereafter a
deluge of results ensued with such a nonlinearity structure. The current section will derive
stationary solitons for QC nonlinearity having nonlinear form of CD.

3.1. Linear Temporal Evolution

In this case, the NLSE shapes up as [3,4]

iqt + a
(
|q|nq

)
xx +

(
b1|q|+ b2|q|2

)
q = 0, (9)

where q = q(x, t) purports the wave profile, while x and t stand for the spatial and temporal
variables in sequence. The first term signifies the linear temporal evolution, while a comes
from the nonlinear CD. Finally, b1 and b2 stem from the SPM, while n arises from the
full nonlinearity. It must be noted that, if n = 1, we recover the linear CD that yields a
mobile soliton.

Equation (2) is the general integration algorithm for real-valued partial differential
equations (PDEs). However, Equation (9) is a complex-valued PDE and consequently the
phase component of the complex variable q(x, t) is split off so that the real part can be
further analyzed as explained in (2). Therefore, model (9) permits the wave form

q(x, t) = U(kx)ei(ωt+θ0), (10)

where θ0 depicts the phase constant, and ω denotes the wave number. Inserting (10) into (9)
retrieves the governing equation

ak2(n + 1)Un+1U′′ + ak2n(n + 1)UnU′2 + b2U4 + b1U3 −ωU2 = 0. (11)

Taking n = 1 simplifies (11) to

2ak2UU′′ + 2ak2U′2 + b2U3 + b1U2 −ωU = 0. (12)

By the implementation of the balancing approach in (12), one reduces (4) to

U(ξ) = λ0 + λ01R(ξ) + λ10Q(ξ) + λ11R(ξ)Q(ξ) + λ02R(ξ)2 + λ20Q(ξ)2. (13)

Inserting (13) along with (5) and (6) into (12) provides us with the results:
Result–1:

λ0 = −5b1

8b2
, λ01 = λ20 = λ11 = λ10 = 0, λ02 = −χλ0,

k = ±1
4

√
b1

2a
, ω = −

15b2
1

64b2
. (14)

Putting (14) along with (7) into (13) paves the way for the straddled soliton

q(x, t) = −5b1

8b2

1− χ

 4c

4c2 exp
[
± 1

4

√
b1
2a x

]
+ χ exp

[
∓ 1

4

√
b1
2a x

]


2 e
i
(
− 15b2

1
64b2

t+θ0

)
. (15)



Telecom 2023, 4 34

If ab1 > 0 and χ = ±4c2 in (15), the dark and singular solitons stick out as

q(x, t) = −5b1

8b2
tanh2

[
1
4

√
b1

2a
x

]
e

i
(
− 15b2

1
64b2

t+θ0

)
, (16)

and

q(x, t) = −5b1

8b2
coth2

[
1
4

√
b1

2a
x

]
e

i
(
− 15b2

1
64b2

t+θ0

)
. (17)

Figure 1 depicts the plots of dark and singular solitons (16) and (17), respectively. The pa-
rameter values chosen are : b1 = 1, b2 = 1 and a = 1.
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Figure 1. Profiles of stationary dark and singular solitons, respectively.

Result–2:

λ0 = −5b1

8b2
, λ01 = λ11 = λ02 = 0, λ20 = 4η2λ0,

λ10 = −4ηλ0, k = ±1
2

√
b1

2a
, ω = −

15b2
1

64b2
. (18)

Putting (18) along with (8) into (13) provides us with the straddled soliton

q(x, t) = −5b1

8b2

1−
4bη exp

[
1
2

√
b1
2a x

]
(

b exp
[

1
2

√
b1
2a x

]
+ η

)2

 e
i
(
− 15b2

1
64b2

t+θ0

)
. (19)

When ab1 > 0 and η = ±b in (19), one retrieves the dark and singular solitons

q(x, t) = −5b1

8b2
tanh2

[
1
4

√
b1

2a
x

]
e

i
(
− 15b2

1
64b2

t+θ0

)
, (20)

and

q(x, t) = −5b1

8b2
coth2

[
1
4

√
b1

2a
x

]
e

i
(
− 15b2

1
64b2

t+θ0

)
. (21)

Figure 2 depicts the plots of dark and singular solitons (20) and (21), respectively. The pa-
rameter values chosen are: b1 = 1, b2 = 1 and a = 1.
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Figure 2. Profiles of stationary dark and singular solitons, respectively.

3.2. Generalized Temporal Evolution

Thus, the model evolves as

i
(

ql
)

t
+ a
(
|q|nql

)
xx

+
(

b1|q|+ b2|q|2
)

ql = 0, (22)

where l stands for the generalized temporal evolution. If l = 1, Equation (22) collapses
to (9) so that one falls back to the case of linear temporal evolution. Plugging (10) into (22)
causes the main equation

ak2
(

l2 + l(2n− 1) + (n− 1)n
)

UnU′2 + ak2(l + n)Un+1U′′ + b1U3 + b2U4 − lωU2 = 0. (23)

Setting n = 1 condenses (23) to

ak2(l + 1)UU′′ + ak2l(l + 1)U′2 + b2U3 + b1U2 − lωU = 0. (24)

By the implementation of the balancing scheme in (24), one collapses (4) to

U(ξ) = λ0 + λ01R(ξ) + λ10Q(ξ) + λ11R(ξ)Q(ξ) + λ02R(ξ)2 + λ20Q(ξ)2. (25)

Plugging (25) along with (5) and (6) into (24) provides us with the results:
Result–1:

λ0 = − b1(2l + 3)
4b2(l + 1)

, λ01 = λ20 = λ11 = λ10 = 0, λ02 = −χλ0,

k = ± 1
2(l + 1)

√
b1

2a
, ω = −

b2
1(4l(l + 2) + 3)
16b2l(l + 1)2 . (26)

Inserting (26) along with (7) into (25) reveals the straddled soliton

q(x, t) = − b1(2l + 3)
4b2(l + 1)

1− χ

 4c

4c2 exp
[
± 1

2(l+1)

√
b1
2a x

]
+ χ exp

[
∓ 1

2(l+1)

√
b1
2a x

]


2
×e

i
(
− b2

1(4l(l+2)+3)

16b2 l(l+1)2
t+θ0

)
. (27)

Taking ab1 > 0 and χ = ±4c2 in (27) secures the dark and singular solitons

q(x, t) = − b1(2l + 3)
4b2(l + 1)

tanh2

[
1

2(l + 1)

√
b1

2a
x

]
e

i
(
− b2

1(4l(l+2)+3)

16b2 l(l+1)2
t+θ0

)
, (28)

and

q(x, t) = − b1(2l + 3)
4b2(l + 1)

coth2

[
1

2(l + 1)

√
b1

2a
x

]
e

i
(
− b2

1(4l(l+2)+3)

16b2 l(l+1)2
t+θ0

)
. (29)
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Figure 3 depicts the plots of dark and singular solitons (28) and (29), respectively. The pa-
rameter values chosen are : b1 = 1, b2 = 1 and a = 1.
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Figure 3. Profiles of stationary dark and singular solitons, respectively.

Result–2:

λ0 = − b1(2l + 3)
4b2(l + 1)

, λ01 = λ11 = λ02 = 0, λ20 = 4η2λ0,

λ10 = −4ηλ0, k = ± 1
l + 1

√
b1

2a
, ω = −

b2
1(2l + 1)(2l + 3)

16b2l(l + 1)2 . (30)

Putting (30) along with (8) into (25) extracts the straddled soliton

q(x, t) = − b1(2l + 3)
4b2(l + 1)

1−
4bη exp

[
1

l+1

√
b1
2a x

]
(

b exp
[

1
l+1

√
b1
2a x

]
+ η

)2

 e
i
(
− b2

1(2l+1)(2l+3)

16b2 l(l+1)2
t+θ0

)
. (31)

Setting ab1 > 0 and η = ±b in (31) recovers the dark and singular solitons

q(x, t) = − b1(2l + 3)
4b2(l + 1)

tanh2

[
1

2(l + 1)

√
b1

2a
x

]
e

i
(
− b2

1(2l+1)(2l+3)

16b2 l(l+1)2
t+θ0

)
, (32)

and

q(x, t) = − b1(2l + 3)
4b2(l + 1)

coth2

[
1

2(l + 1)

√
b1

2a
x

]
e

i
(
− b2

1(2l+1)(2l+3)

16b2 l(l+1)2
t+θ0

)
. (33)

Figure 4 depicts the plots of dark and singular solitons (32) and (33), respectively. The pa-
rameter values chosen are: b1 = 1, b2 = 1 and a = 1.
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Figure 4. Profiles of stationary dark and singular solitons, respectively.

4. Generalized Quadratic-Cubic Nonlinearity

This form of nonlinearity was first studied by Triki et al. during 2019 [8]. It was
established that, with linear CD, mobile solitons exist. The current section will discuss the
formation of stationary solitons when CD is rendered to be nonlinear with linear as well as
generalized temporal evolution effects.
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4.1. Linear Temporal Evolution

Therefore, the model stands as [8]

iqt + a
(
|q|nq

)
xx +

(
b1|q|m + b2|q|2m

)
q = 0. (34)

Plugging (10) into (34) reveals the strategic equation

ak2(n + 1)Un+1U′′ + ak2n(n + 1)UnU′2 + b1Um+2 + b2U2m+2 −U2ω = 0. (35)

Assume n = m. Thus, Equation (35) shapes up as

ak2(m + 1)Um+1U′′ + ak2m(m + 1)UmU′2 + b1Um+2 + b2U2m+2 −U2ω = 0. (36)

The relation
U = V

1
m (37)

collapses Equation (36) to

ak2m(m + 1)VV′′ + ak2(m + 1)V′2 + m2V
(

b2V2 + b1V −ω
)
= 0. (38)

By the implementation of the balancing algorithm in (38), one simplifies (4) to

V(ξ) = λ0 + λ01R(ξ) + λ10Q(ξ) + λ11R(ξ)Q(ξ) + λ02R(ξ)2 + λ20Q(ξ)2. (39)

Inserting (39) along with (5) and (6) into (38) retrieves the results:
Result–1:

λ0 = − b1(2 + 3m)

4b2(1 + m)
, λ01 = λ20 = λ11 = λ10 = 0, λ02 = −χλ0,

k = ± m
2(1 + m)

√
b1

2a
, ω = −

b2
1(2 + m)(2 + 3m)

16b2(1 + m)2 . (40)

Putting (40) along with (7) into (39) derives the straddled soliton

q(x, t) =

− b1(2 + 3m)

4b2(1 + m)

1− χ

 4c

4c2 exp
[
± m

2(1+m)

√
b1
2a x

]
+ χ exp

[
∓ m

2(1+m)

√
b1
2a x

]


2


1
m

×e
i
(
− b2

1(2+m)(2+3m)

16b2(1+m)2
t+θ0

)
. (41)

If ab1 > 0 and χ = ±4c2 in (41), the dark and singular solitons evolve as

q(x, t) =

{
− b1(2 + 3m)

4b2(1 + m)
tanh2

[
m

2(1 + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2+m)(2+3m)

16b2(1+m)2
t+θ0

)
, (42)

and

q(x, t) =

{
− b1(2 + 3m)

4b2(1 + m)
coth2

[
m

2(1 + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2+m)(2+3m)

16b2(1+m)2
t+θ0

)
. (43)

Figure 5 depicts the plots of dark and singular solitons (42) and (43), respectively. The pa-
rameter values chosen are: b1 = 1, b2 = −1 and a = 1.
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Figure 5. Profiles of stationary dark and singular solitons, respectively.

Result–2:

λ0 = − b1(2 + 3m)

4b2(1 + m)
, λ01 = λ11 = λ02 = 0, λ20 = 4η2λ0,

λ10 = −4ηλ0, k = ± m
1 + m

√
b1

2a
, ω = −

b2
1(2 + m)(2 + 3m)

16b2(1 + m)2 . (44)

Inserting (44) along with (8) into (39) secures the straddled soliton

q(x, t) =

−
b1(2 + 3m)

4b2(1 + m)

1−
4bη exp

[
m

1+m

√
b1
2a x

]
(

b exp
[

m
1+m

√
b1
2a x

]
+ η

)2




1
m

e
i
(
− b2

1(2+m)(2+3m)

16b2(1+m)2
t+θ0

)
. (45)

When ab1 > 0 and η = ±b in (45), one acquires dark and singular solitons

q(x, t) =

{
− b1(2 + 3m)

4b2(1 + m)
tanh2

[
m

2(1 + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2+m)(2+3m)

16b2(1+m)2
t+θ0

)
, (46)

and

q(x, t) =

{
− b1(2 + 3m)

4b2(1 + m)
coth2

[
m

2(1 + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2+m)(2+3m)

16b2(1+m)2
t+θ0

)
. (47)

Figure 6 depicts the plots of dark and singular solitons (46) and (47), respectively. The pa-
rameter values chosen are: b1 = 1, b2 = −1 and a = 1.
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Figure 6. Profiles of stationary dark and singular solitons, respectively.

4.2. Generalized Temporal Evolution

In this case, Equation (34) reads as

i
(

ql
)

t
+ a
(
|q|nql

)
xx

+
(

b1|q|m + b2|q|2m
)

ql = 0. (48)
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Again, (48) reduces to (34) for l = 1, which represents the case with linear temporal
evolution. Plugging (10) into (48) paves the way for the fundamental equation

ak2
(

l2 + l(2n− 1) + (n− 1)n
)

UnU′2 + ak2(l + n)Un+1U′′ + b1Um+2 + b2U2m+2 − lωU2 = 0. (49)

Assume n = m. Thus, Equation (49) changes to

ak2
(

l2 + l(2m− 1) + (m− 1)m
)

UmU′2 + ak2(l + m)Um+1U′′ + b1Um+2 + b2U2m+2 − lωU2 = 0. (50)

The restriction
U = V

1
m (51)

collapses Equation (50) to

ak2m(l + m)VV′′ + ak2l(l + m)V′2 + m2V
(

b2V2 + b1V − lω
)
= 0. (52)

By the implementation of the balancing procedure in (52), one translates (4) to

V(ξ) = λ0 + λ01R(ξ) + λ10Q(ξ) + λ11R(ξ)Q(ξ) + λ02R(ξ)2 + λ20Q(ξ)2. (53)

Inserting (53) along with (5) and (6) into (52) retrieves the results:
Result–1:

λ0 = − b1(2l + 3m)

4b2(l + m)
, λ01 = λ20 = λ11 = λ10 = 0, λ02 = −χλ0,

k = ± m
2(l + m)

√
b1

2a
, ω = −

b2
1(2l + m)(2l + 3m)

16b2l(l + m)2 . (54)

Putting (54) along with (7) into (53) leaves us with the straddled soliton

q(x, t) =

− b1(2l + 3m)

4b2(l + m)

1− χ

 4c

4c2 exp
[
± m

2(l+m)

√
b1
2a x

]
+ χ exp

[
∓ m

2(l+m)

√
b1
2a x

]


2


1
m

×e
i
(
− b2

1(2l+m)(2l+3m)

16b2 l(l+m)2
t+θ0

)
. (55)

Taking ab1 > 0 and χ = ±4c2 turns (55) into dark and singular solitons

q(x, t) =

{
− b1(2l + 3m)

4b2(l + m)
tanh2

[
m

2(l + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2l+m)(2l+3m)

16b2 l(l+m)2
t+θ0

)
, (56)

and

q(x, t) =

{
− b1(2l + 3m)

4b2(l + m)
coth2

[
m

2(l + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2l+m)(2l+3m)

16b2 l(l+m)2
t+θ0

)
. (57)

Figure 7 depicts the plots of dark and singular solitons (56) and (57), respectively. The pa-
rameter values chosen are: b1 = 1, b2 = −1 and a = 1.
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Figure 7. Profiles of stationary dark and singular solitons, respectively.

Result–2:

λ0 = − b1(2l + 3m)

4b2(l + m)
, λ01 = λ11 = λ02 = 0, λ20 = 4η2λ0,

λ10 = −4ηλ0, k = ± m
l + m

√
b1

2a
, ω = −

b2
1(2l + m)(2l + 3m)

16b2l(l + m)2 . (58)

Substituting (58) along with (8) into (53) provides us with the straddled soliton

q(x, t) =

−
b1(2l + 3m)

4b2(l + m)

1−
4bη exp

[
m

l+m

√
b1
2a x

]
(

b exp
[

m
l+m

√
b1
2a x

]
+ η

)2




1
m

e
i
(
− b2

1(2l+m)(2l+3m)

16b2 l(l+m)2
t+θ0

)
. (59)

Setting ab1 > 0 and η = ±b condenses (59) to dark and singular solitons

q(x, t) =

{
− b1(2l + 3m)

4b2(l + m)
tanh2

[
m

2(l + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2l+m)(2l+3m)

16b2 l(l+m)2
t+θ0

)
, (60)

and

q(x, t) =

{
− b1(2l + 3m)

4b2(l + m)
coth2

[
m

2(l + m)

√
b1

2a
x

]} 1
m

e
i
(
− b2

1(2l+m)(2l+3m)

16b2 l(l+m)2
t+θ0

)
. (61)

Figure 8 depicts the plots of dark and singular solitons (60) and (61), respectively. The pa-
rameter values chosen are: b1 = 1, b2 = −1 and a = 1.

-6 -4 -2 2 4 6
x

q(x)

label

l=m=0.4

l=m=0.5

l=m=0.6

-6 -4 -2 2 4 6
x

25000

q(x)

label

l=m=0.4

l=m=0.5

l=m=0.6

Figure 8. Profiles of stationary dark and singular solitons, respectively.

5. Conclusions

The current paper revealed stationary singular and dark optical solitons for the model
that came with QC and generalized AC nonlinearity. The temporal evolutions were both
linear and generalized. There are four forms of the governing model that were studied in
this work, which were gradual generalizations of the fundamental model. The first form is
the NLSE with the QC form of the nonlinear refractive index as given by [9]. This model for
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the propagation of optical solitons, with linear CD, was first proposed during 1994 and later
studied again during 2011 [3,4]. Subsequently, the model is addressed with generalized
temporal evolution and nonlinear CD as given by (22) that gave way to quiescent solitons
as well. Thereafter, Equations (9) and (22) are formulated with a generalized form of the QC
law of the nonlinear refractive index, which are represented by (34) and (48), respectively.
It must be noted that (34) with linear CD was first proposed during 2019 [8]. The enhanced
Kudrashov’s scheme has made this retrieval a success. However, it is quite noticeable that
the approach has its shortcoming. It failed to recover stationary bright solitons for both
forms of SPM.

Later, the method will be implemented to retrieve quiescent solitons that come with
triple forms of nonlinearly structured SPM such as polynomial law and triple-power law
of nonlinearity. These would be taken up with time, and their results and findings would
be later revealed and reported. Some of the lesser known nonlinear media would be later
considered. One such form is the saturable form of nonlinearity that yields dissipative
solitons. The results of the work thus show the consequential catastrophic effect that
nonlinear CD would bring in. The mobile solitons would stall during its transmission
along transcontinental and transoceanic distances. Therefore, it is imperative to make sure
that such an unwanted feature of nonlinear CD in an optical fiber, or any other forms of
waveguides such as optical couplers or PCF or optical metamaterials, must be avoided
at all costs. Telecommunication engineers must therefore exercise extreme caution while
laying such fiber optic cables underground or under sea. This is therefore a vital component
and a vital feature of soliton transmission along intercontinental distances.
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