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Abstract: Micro-electromechanical systems (MEMS) technology-based sensors have found diverse
fields of application due to the advancement in semiconductor manufacturing technology, which
produces sensitive, low-cost, and powerful sensors. Due to the fabrication of different electrical
and mechanical components on a single chip and complex process steps, MEMS sensors are prone
to deterministic and random errors. Thus, testing, calibration, and quality control have become
obligatory to maintain the quality and reliability of the sensors. This is where Artificial Intelligence
(AI) can provide significant benefits, such as handling complex data, performing root cause analysis,
efficient feature estimation, process optimization, product improvement, time-saving, automation,
fault diagnosis and detection, drift compensation, signal de-noising, etc. Despite several benefits,
the embodiment of AI poses multiple challenges. This review paper provides a systematic, in-depth
analysis of AI applications in the MEMS-based sensors field for both the product and the system
level adaptability by analyzing more than 100 articles. This paper summarizes the state-of-the-art,
current trends of AI applications in MEMS sensors and outlines the challenges of AI incorporation in
an industrial setting to improve manufacturing processes. Finally, we reflect upon all the findings
based on the three proposed research questions to discover the future research scope.

Keywords: artificial intelligence; machine learning; micro-electromechanical systems; manufacturing
process; sensors

1. Introduction

Micro-electromechanical systems (MEMS)-based technologies have been in the market
for decades due to the rapid integration of MEMS sensors. It has revolutionized market
segments, such as consumer electronics, automotive, healthcare, industry 4.0, internet-of-
things, etc. Figure 1 shows that the demand for MEMS sensors is ever-increasing and will
keep rising, as shown. The growth is due to the highly scalable and efficient manufacturing
technology available to mass-produce the sensors at a low cost, mostly in the consumer
electronics and automotive industry. The most common and heavily used MEMS inertial
sensors are gyroscopes and accelerometers used in consumer devices and automotive [1,2].
The advancement in the silicon MEMS/CMOS technology at both chip and device levels has
enabled further improvement of MEMS sensors in terms of miniaturization, high accuracy,
high quality and performance at low cost. MEMS design and manufacturing processes are
becoming more complex and diverse due to incorporating newer technologies and their
multi-domain structure. Due to this, sensors are prone to various kinds of deterministic and
random errors, such as misalignment, white noise, random walk, quantization noise, etc.
If these errors are not handled promptly, they can accumulate and affect the behavior of the
sensors negatively [3–7]. This makes the quality checks even more challenging, resulting in
increased testing costs. Testing cost consists of wafer-level testing and packaging-related
testing costs, contributing to the overall device manufacturing cost [8–10]. Thus, there is an
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ongoing demand to reduce these costs and improve the production process in hardware
and software domains.

Figure 1. MEMS market revenues by application from 2014 to 2024 (projected) worldwide in million
USD [11].

Artificial Intelligence (AI) has been around for decades, and the recent applications
of AI are more intensive than ever due to the latest boom in data availability, increased
system computational power, and storage capacity. AI applications branch out to multiple
sub-disciplines, such as deep learning (DL), machine learning (ML), natural language
processing (NLP), computer vision, robotics, etc.

Figure 2 depicts a high-level overview of different components, types, and sub-fields
of AI. Machine learning, which emerged from the statistical background, has shown its
strength and convenience from complex data understanding to multidimensional data han-
dling. AI applications are countless, such as autonomous vehicles, predictive maintenance,
supply chain optimization, resource optimization, manufacturing process optimization,
banking, financing, surveillance, recommendation system, healthcare, marketing, quality
inspection, education, etc. [12–15]. Looking at the current trends, it can be seen that differ-
ent AI algorithms, such as tree-based algorithms, deep neural networks, and reinforcement
learning, are mainly used for industrial domain applications.

Hence, it is worth looking into the possible amalgamations of these two strong do-
mains, MEMS and AI, to benefit both. This paper surveys AI applications in MEMS-based
sensors and related processes. We try to find research opportunities in the MEMS sensors
manufacturing domain that are not well explored or less investigated. The rest of the
paper is structured as follows. A brief overview of the MEMS sensors types, applications,
and MEMS manufacturing process is presented in Section 2. In Section 3, the research
methodology and materials used for this review paper are discussed. Section 4 provides a
detailed analysis of the current trends of AI applications in the MEMS-based sensors, de-
sign, and manufacturing process. A review summary of the papers is presented in a tabular
format in Section 5. Section 6 reflects on the three research questions raised in Section 3. It
provides an overview of AI implementation benefits and challenges in industrial settings.
Finally, we conclude the paper in Section 7.
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Figure 2. AI Components, types, and sub-fields [16].

2. MEMS Background

In this section, we briefly introduce the MEMS-based system. MEMS devices are
rugged, small, and silicon-based and are fabricated in the micrometer range with advanced
technologies, such as semiconductor manufacturing. MEMS involves electrical and mechan-
ical components fabricated using Integrated circuits (IC) batch processing at the micrometer
scale [17]. Often, multiple devices are fabricated into a single chip, and cross-signal interac-
tion and interference are unavoidable. This is why new failure modes are introduced and
must be taken care of efficiently.

Figure 3 depicts a simplified MEMS manufacturing process. After the design, process
simulation, layout, and mask generation, the micro-fabrication process starts with a sili-
con substrate. The material deposition, pattern transfer, and excess material removal run
multiple cycles until the desired result is achieved. Compared to traditional IC fabrication
techniques, thicker films and deeper etching lead to fewer cycles to achieve the desired
result. Special probing and sectioning techniques are used to protect the parts. Testing and
calibration are crucial in the MEMS manufacturing process to retain high quality and relia-
bility. The complexity comes from the spatial distribution of the wafers, the process-induced
effects, and the combination of both. Moreover, complexity plays such an important role
because the useful signal from the MEMS and the degree of fluctuations/effects from the
process (temperature, pressure, mechanical stress, gas concentration, etc.) are much more
comparable than in the case of a macroscopic product. At the same time, the expectation is
that each product has the same properties compared to its specification.
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Figure 3. MEMS Manufacturing Process.

In comparison to traditional sensors, MEMS-based sensors provide significant advan-
tages, such as (i) low production cost, (ii) less power consumption, (iii) improved sensing in
terms of accuracy and sensitivity, (iv) lightweight, (v) more diminutive size, (vi) high and
straightforward integration, (vii) parallelism, (viii) resilient to shock, vibration, and radia-
tion, (xi) scalability, etc. MEMS-based gyroscopes and accelerometers were first developed
around the 1990s for automotive applications, triggering the high demand for consumer
electronics. Mid-2000 marked the boom of MEMS sensors by incorporating MEMS sensors
into Nintendo’s Wii. Later, a high adaptation rate could be seen in other areas, such as
smartphones, microphones, motion detection, image stabilization, home security, wearable
devices, such as fitness watches, the automotive industry, military, unmanned aerial vehi-
cles (UAV), air crafts, etc. Due to more interest and research in autonomous vehicles, it has
become more critical than ever.

MEMS’s current market size value in 2022 is 14.32 billion USD and is projected to
reach 75 billion USD by 2032 with a global growth rate of 18.01% from 2022–2032 [18].
Advancements in new technology, such as sensor fusion, big data, AI, and the industrial
internet of things, created opportunities for new application areas, such as smart homes,
connected cars, and autonomous vehicles.

2.1. MEMS Components

As can be seen from Figure 4, MEMS are not only sensors; MEMS components can be
subdivided into four categories, (1) microelectronics, (2) microactuators, (3) microsensors,
and (4) microstructures, which are integrated into a single chip. Microsensors sense the
physical parameters and detect changes in stimuli, such as pressure, temperature, motion,
mass, light, etc. The microelectronics then process and analyze the collected information,
which sends the signal to the microactuators. Upon receiving the signal, the microactuators
respond and provide outputs as a change in the environment. MEMS components are
packaged together with an application-specific integrated circuit (ASIC), which acts as
an electrical interface among the components to send and receive analog and digital
information. This makes the calibration and packaging processes quite complicated. As
discussed so far, MEMS technology and related components are diverse, and the discussion
of this paper is limited to only MEMS-based sensors.

Types of MEMS Sensors and Applications

Based on the received responses and measured quantity, the microsensors used in MEMS
can be broadly divided into different types, such as physical, chemical, and biological.

Table 1 shows a high-level classification of the microsensors used in MEMS-based
systems [19] based on the received signal. MEMS sensors can be classified in many ways,
such as application area, adaptation rate, popularity, MEMS structure, etc., but this is not
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in the scope of this paper. The most common form of application and adaptation will be
discussed for simplicity.

Figure 4. MEMS Components Overview.

Table 1. Microsensor Classification.

Sensor Types Input Signal Type Measured quantity

Physical Mechanical, Electric, Magnetic,
Optical, Thermal, etc.

Acceleration, Force, Pressure, Charge,
Magnetic field

Chemical Gas, Humidity, etc. Toxic gases, Flammable gases, pH, H+,
Metallic ions, etc.

Biological Enzyme, Immuno, etc. Glucose, Lactic acid, Protein,
Virus, etc.

Popular MEMS sensor types according to application:

• Accelerometers
• Gyroscopes
• Pressure sensors
• Temperature sensors
• Inertial Measurement Units (IMU)
• Proximity sensors etc.

Most common MEMS inertial sensors consist of accelerometers and gyroscopes. It will
be later seen, in Section 4, that the contributions made in MEMS inertial sensors are pretty
impressive. We will briefly discuss the working principle of the most important types, such
as accelerometers and gyroscopes. This will help understand the problem’s complexity and
the contribution made by researchers using AI.

In general, accelerometers can be divided into two categories based on the response
type, such as (1) AC-response and (2) DC-response. AC-response accelerometers consist of
piezoelectric elements for sensing. Thus, they are also known as piezoelectric accelerome-
ters. The piezoelectric element “displaces” a charge when the accelerometer experiences
acceleration, resulting in an electrical output proportional to acceleration. DC-response
accelerometers can be of two types: piezoresistive (mainly used for low-range devices) and
capacitive (high accuracy and sensitivity). They make use of MEMS fabrication technology,
which scales to big-volume applications and lowers the cost of production. The advantages
of using a MEMS-based accelerometer over a piezoelectric accelerometer are (i) active
self-test, (ii) can measure both dynamic and static movement, (iii) generates precise velocity
and displacement information, (iv) excellent bias stability and minimal noise, etc.
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The most commonly used MEMS accelerometer is the capacitive type, which is the
cheapest and smallest. The accelerometer can be a single-axis, where acceleration is mea-
sured or a multi-axis, where the orientation of gravity is measured as well. The accelerome-
ter measures acceleration in terms of movement, shock, or vibration. The basic working
principle can be explained with a mass suspended on a spring attached to a fixed frame,
i.e., a comb capacitor plate. In the presence of an external force, the mass moves, and the
distance between the fixed plate and the seismic mass changes. This further changes the
capacitance between the set and the movable plate [20,21]. The challenge of this design
is to provide DC accuracy over temperature and reduce the temperature drift and bias
drift as much as possible. The drift compensation by AI algorithm has become an attrac-
tive research topic. From an application perspective, MEMS accelerometers are used in
smartphones, airbags in cars, cameras for anti-blur, real time applications, such as the
military, etc.

MEMS vibratory gyroscopes measure the angular rate of rotation or displacement by
using Coriolis force. Based on the transduction type, a MEMS gyroscope can be of different
types, such as silicon tuning fork, quartz tuning fork, vibratory ring, etc. The purpose of
a gyroscope is to measure the acceleration of its oscillating mechanical sensing compo-
nents. The mechanical structure remains in active resonance, and a small displacement
as a response is produced due to Coriolis acceleration [22]. Managing this quadrature
signal requires a clever gyroscope design so that the small signal is detectable. This is why
many electronic compensation methods exist to de-noise the signal. Thus, noise modeling,
random drift construction, temperature drift compensation, fault detection, and diagno-
sis of the gyroscope have become some of the most lucrative fields of interest for data
scientists. The main application areas can be found in stability control in the automotive in-
dustry, short-range navigation, such as missile navigation, image stabilization in industrial
applications, submarines, UAVs, aeronautics navigation, etc.

2.2. MEMS Manufacturing Process

The MEMS manufacturing process is an extensive and time-consuming endeavor
that requires numerous quality checks before completing the entire process. The design
requires simultaneously considering devices from electrical, mechanical, and electronic
domains. Not only that, the design should consider the cross-domain effect and analyze
it. MEMS fabrication is based on chemical etching and photo-lithography. It consists of
bulk micro-machining, surface micro-machining, and high-aspect-ratio micro-machining
using techniques, such as LIGA (Lithographie, Galvanoformung, Abformung-Lithography,
Electroplating, and Molding) [23]. New micro-manufacturing methods, including micro-
mechanical cutting, micro-electrical discharge machining, micro-electrochemical machining,
micro-forming, laser technology, laser-assisted forming, replication techniques, deposition
methods, etc., have been emerging to create a hybrid process. Multiple companies exist,
such as MEMSCAP Inc., IntelliSense Software Corp, ABAQUS, Inc., Coventor Inc., etc.,
and research bodies, such as U.C. Berkeley, Carnegie Mellon University, TU Chemnitz, etc.,
who are continuously working on providing improved solutions for MEMS design [24].
Figure 5 shows a high-level overview of the MEMS design structure flow [25,26]. Given the
numerous steps involved, several challenges occur at different levels, such as design issues,
fabrication issues, bulk micro-machining issues, dicing issues, packaging issues, technical
issues [27,28] etc.

As stated in article [29], manufacturing defects can be categorized into the following
three categories.

• Type A defects: These types of defects are evenly random with a stable mean density.
There is no repeated occurrence or visible systematic pattern, i.e., the probability of a
dice being good or bad is equal. Thus, the root-cause analysis of such defects is not
straightforward. Only an accurate and stable process can help reduce these kinds
of defects.
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• Type B defects: These types of defects are repeatable and of systematic pattern from
wafer to wafer. These defects’ source can be generated from anomalies in the process
or machine, such as mask induced or during the variation while applying films.

• Type C defects: The most common type of defect seen in semiconductor manufacturing
is Type C defect, a combination of Type A and Type B defects. It is essential to
eliminate random defects to recognize and eradicate systemic flaws. There can be
multiple causes, such as structural defects coming from the raw material, asymmetrical
presence of contaminants, irregular presence of defect generation particles, etc.

All these defects can be visible or invisible. The visible wafer defects can be clas-
sified as local, random, center, and scrape based on the visual pattern type. Currently,
manual inspections are performed to detect visible surface anomalies, which are prone to
erroneous outcomes.

Figure 5. Detailed MEMS Design Flow Schematic Diagram.

The lack of a standardized framework to resolve the aforementioned issues obstructs
the manufacturing process. However, this can not be achieved easily as the expected
solutions are based on the nature and complexity of the problems. The solution requires
in-depth domain knowledge and process knowledge and can be cumbersome. Given the
rise in the market demand for cheaper, smaller, and high-performance MEMS sensors,
organizations and researchers are constantly looking for new means to improve the MEMS
sensor production process to meet the market demand. This is where AI can provide a
massive benefit for process optimization. In the following section, we will look into several
problem areas of MEMS-based manufacturing where AI-based solutions are beneficial
to incorporate.

3. Research Methodology

The motivation of this study is to find the current trends, challenges, and prospects
of AI applications in MEMS-based sensors and their manufacturing process. This study
identifies the most common MEMS sensor application domains of AI-based solutions.
Special attention was given to the papers that provided an overall AI implementation
process in sensor production. The review process was carried out systematically and
methodically using Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) [30].
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3.1. Research Questions

The following research questions were formulated to establish the scope and address
the paper’s main objective.

• Q1: What are the most researched areas of AI implementation for MEMS sensors?
• Q2: What are the advantages of AI-based solutions compared to state-of-the-art ones?
• Q3: What are the open issues of incorporating AI-based solutions in the MEMS

sensors production process? Does there exist any standardized framework to integrate
AI solutions?

3.2. Search Strategy

The search strategy helps to identify and analyze the questions raised in Section 3.1.
The databases selected for this study are well-established and recognized in the scien-
tific community.

As shown in Table 2, eight database resources were use. To search for effective and
precise results, the following conditions were included:

• Articles in the MEMS sensor domain should be related to AI, ML, NN, CNN, etc.
• Publications until 2022, November, were considered.
• Original publications were selected.
• The publication language was restricted to English only.
• Duplicate works were rejected.

Table 2. Literature review repository information.

Category Sources

Databases IEEEXplore, SpringerLink, ACM Digital Library, ScienceDirect, Elsevier, Web of
Science, Google Scholar

For data collection, search terms corresponding to (“artificial intelligence” AND
“MEMS”) OR (“machine learning” AND “MEMS”) OR (“neural network” AND “MEMS”)
OR (“artificial intelligence" AND “MEMS sensors”) OR (“machine learning” AND “MEMS
sensors”) OR (“artificial intelligence” AND “sensor manufacturing”) OR (“machine learn-
ing” AND “sensor manufacturing”) OR (“artificial intelligence” AND “MEMS manufac-
turing”) OR (“machine learning” AND “MEMS manufacturing”). Index terms such as
“MEMS”, “MEMS manufacturing”, “artificial intelligence”, and “machine learning” were
used. Patent applications were also checked to investigate the interest in the field of MEMS
and AI together.

3.3. Search Result

The literature selection criterion is shown in Figure 6 using the PRISMA flow diagram.
Eight databases were searched to gather 427 articles. After thorough checking, 131 duplicate
records were found, which were excluded from the study. For the screening process,
296 articles remained. Applying the inclusion and exclusion criterion as mentioned in
Section 3.2, 103 articles remained after the screening process for the study.

Figure 7 depicts the categorization of AI and MEMS sensors in different fields. The data
were extracted from the web of science in the last ten years for the top 25 application domain
where most publications were published. The filter criterion was put for “All Fields” with
condition ( MEMS) AND (machine learning OR deep learning OR artificial intelligence OR
neural network) and date range 2012-01-01 to 2022-10-30, and the language of the article
should be in English.

Patent information was retrieved from the World Intellectual Property Organization
website [31] for the last ten years with the keywords (MEMS sensors OR inertial sensors)
AND ( machine learning OR Artificial Intelligence). This was to check the patent scope and
interest trend. Further information is not included in the study, but it provided a powerful
technology watch background for our research and validated the motivation of this article.
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Figure 6. Literature Selection Criteria.

Figure 7. Combination of AI and MEMS sensor applications in different fields.
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4. Artificial Intelligence Application in MEMS System: Current Trends

Due to infrastructure advancement and data availability, disciplines such as data
science and data analytics have gained significant attention from an application perspective
in different domains, such as the MEMS sensors manufacturing process. Sampaio et al. [32],
Cinar et al. [33], Podder et al. [34], Tariq et al. [35], Gupta et al. [36], Li et al. [37,38], and
Shen et al. [39] have provided extensive overviews of ML applications for predictive main-
tenance application in the manufacturing domain of Industry 4.0. This provides a strong
motivation for exploring AI benefits in the MEMS domain. AI algorithms can efficiently
and effectively analyze massive amounts of data and identify particular trends and patterns
humans cannot see, enabling process automation and discarding human intervention. Real
data contains noise, complex patterns, multi-modal distributions, variance, etc., which
makes the analysis computationally extensive and difficult using traditional methods. AI
algorithms are adept at managing multidimensional and multivariate data in dynamic or
uncertain environments. It is not predisposed toward particular datasets; thus, learning
can, therefore, aid in minimizing bias in corporate choices. Data scarcity and confidentiality
can be challenging in certain domains in finding the optimal solution. This issue can be
handled by different RNN variants or DL-based synthetic data generation. The benefits of
the AI algorithms are discussed, in detail, in Section 6.2.

In this section, we surveyed the current trends of AI applications in different process
parts for MEMS-based sensors. MEMS gyroscopes and accelerometers have been scorch-
ing research topics due to their diverse application in consumer, automotive, industrial,
and medical fields. Thus, more attention is given to improving and optimizing the hard-
ware and software system for these two applications. A brief overview of AI algorithm
implementation is discussed in Section 4.1. In Section 4.2, we investigated different ap-
plication areas of AI in MEMS-based sensors. In Section 4.3, AI application for the overall
MEMS manufacturing and design is covered.

4.1. AI Implementation Workflow

A high-level overview of AI algorithm implementation workflow is presented in
Figure 8, where the overall goal is to build an efficient model using the collected data to
achieve a certain objective. Acquiring and getting the data ready for analysis is the first
stage in any data science workflow. Typically, data are combined from many sources and
come in various formats. Data pre-processing is followed after the data retrieval step. This
step is the most resource and time extensive stage.

Data cleaning is crucial to prevent errors from spreading to the data exploration phase,
which could lead to incorrect conclusions being drawn from the data. This step includes
missing value imputation, format specification, noise removal, etc. The next step, the data
exploration stage, finds the complex relationship and hidden patterns in the data. The data
preparation and transformation stage allows the data to be transformed according to the
model requirement. It includes feature engineering, data labeling, and data splitting. All
these aforementioned three stages are iterative. The data are then divided into training
and test sets and sometimes into a third set called the validation set. The data used to fit
the model are called the training set. A validation set is the subset of data used to assess
a model’s fit to a training dataset while adjusting model hyperparameters. A test set is a
sample of data used to objectively assess how well a final model fits the training dataset.
Model preparation and training is the stage in which training data are used to train a
model and comprises the hyperparameter adjustment. Before delivering the ML model
in production to the end user, the trained model must be validated to ensure it satisfies
the originally stated objectives. This is called model evaluation. After this, the model is
ready to be deployed in production, followed by a monitoring stage to check the deployed
model’s performance using real-time and unseen data to make predictions or provide
recommendations that are further logged. The articles analyzed in this review follow the
aforementioned process. Depending on the objective, sometimes importance is given to
specific steps, such as data pre-processing or model preparation, etc.
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Figure 8. AI implementation process flow

4.2. AI Application in MEMS-Based Sensors

A MEMS IMU unit consists of a multi-axis gyroscope and accelerometer, which are
used for positioning and navigation systems when integrated with the global positioning
system (GPS). A MEMS IMU system is preferred over traditional solutions due to its higher
accuracy, small size, and lower cost. Compared to fiber or laser-based IMUs, MEMS-based
IMUs are susceptible to more deterministic and random errors, such as measurement,
quantization noise, alignment, bias, etc. Such uncompensated errors accumulate over time
and adversely impact the precision and sensitivity of the sensors. There exist mathematical
and statistical model-based calibration methods for error compensation. However, random
errors (which contain high-frequency and low-frequency components) introduce drift and
bias into the Inertial Navigation System (INS). Thus, adequate signal de-noising schemes
are required to remove random errors. Allan Variance, Auto-Regressive, Moving Average,
and Wavelet De-noising methods exist for error modeling, but this still requires an accurate
model to ensure accuracy.

The following papers [40–52] show that DL-based error compensation models can
learn more characteristics of the reference signals, such as identifying the particular accel-
erations and angular velocities, in comparison to traditional calibration processes, such
as the six-position static test and rate test. It is crucial to note that the same deep learning
networks may eliminate different error sources from IMUs of any performance grade.

Jiang et al. [40] proposed a Long Short-Term Memory Recurrent Neural Networks (LSTM-
RNN) for MEMS IMU (MSI3200) de-noising, which outperformed the Auto-Regressive and
Moving Average (ARMA) method. This paper was limited to a static dataset and limited
layers of LSTM-RNN and thus needed more experimentation. Jiang et al. [41] proposed
a heterogeneous deep learning recurrent neural network (RNN) design to suppress the
MEMS gyroscope signal noise. Here, two deep-layered RNN algorithms, Gated Recurring
Unit (GRU) and Long Short Term Memory (LSTM), were used individually and mixed for
the experimentation. The outcome of this analysis showed promising results for significant
noise reduction of the MEMS gyroscope using the LSTM-GRU network.
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Zhu et al. [42] described a method using the three-axis Neural Architecture Search
Recurrent Neural Network (NAS-RNN) for noise modeling and compensation of MEMS
Gyroscope for MEMS IMU STIM300 unit. The limitation of this approach was that the
experiments were performed only on the STIM300 unit and using only RNN models.
Nevertheless, this research paper demonstrates that incorporating DL in MEMS gyroscope
can improve accuracy significantly by reducing noise.

Nevertheless, this research paper showcases the strength of incorporating a deep
learning module in the MEMS gyroscope that can significantly improve the accuracy by
reducing the noise.

Jiang et al. [43] proposed an RNN variant called Simple Recurrent Unit (SRU-RNN) for de-
nosing MEMS IMU MSI3200 gyroscope signals. The authors claimed that SRU-RNN provided
significant advantages over the conventional approaches using SVM, LSTM, or LSTM-RNN
methods. This research was limited to a single-layer SRU-RNN and fixed parameters.

Thermal calibration of the MEMS gyroscope is required to compensate for error
drift, which can affect the accuracy of the gyroscopes. Traditionally, polynomial fitting
is performed to overcome this. The authors of [44–47] have shown that Artificial Neural
Networks (ANN) have superior performance compared to the traditional method.

Fei et al. [48] proposed a radial basis function (RBF) neural network-based control
scheme to reduce non-linearity during fabrication, such as drift, to improve the robustness
of the MEMS gyroscope. However, the proposed method might be prone to over-fitting,
which is why Xing et al. [49] proposed a fusion algorithm consisting of least squares support
vector machine (LSSVM) [53] and chaotic particle swarm optimization (CPSO). It proved to
have better performance than the backpropagation artificial neural network (BP-ANN) for
reducing the random drift of the MEMS gyroscope. The authors treated the problem as a
chaotic time series issue and performed signal de-noising. Using phase space reconstruction
(PSR) along with the C-C method helped with dimension and complexity reduction.

Yang et al. [50] proposed a method that comprised a genetic algorithm (GA) and a
very well-known and intensively used ML model, support vector machine (SVM), to solve
the temperature drift in MEMS gyroscope.

Interestingly, S. Wang et al. [51] also used GA with an optimized backpropagation
neural network (BPNN) for temperature drift compensation. GA helped the BPNN to
avoid local minimums by search optimization. The achieved result was 173 times better
than the traditional polynomial fitting.

Ma et al. [52] targeted a similar issue of temperature drift by proposing a parallel
approach in their article. The presented method was more complete than the earlier
approaches discussed. The analysis included the signal value analysis along with temper-
ature compensation. They decomposed the signal using Immune-Based Particle Swarm
Optimization (IPSO) for optimal Variational Modal Decomposition (VMD). After signal
decomposition, the obtained intrinsic mode functions were further classified into the noise
term (this was removed), the mixed term (consisting of both the noise and useful informa-
tion), and the feature term. The feature term contained the temperature drift, which was
further compensated by using Backpropagation (BP)-Adaboost prediction, which was then
mixed with the SG-filtered mixed term to obtain the de-noised, temperature-compensated
signal. The papers discussed above demonstrate that combining different disciplines,
such as GA and PSO, with AI can improve data analysis and understand and improve
model performance.

Effective ground vibration monitoring is crucial to avoid geological disasters, such
as earthquakes. Kang et al. [54] proposed a CNN-based monitoring scheme on MEMS
sensed data. The challenges were related to the collection and cleaning of the data, as the
data contained noise, bias, offset errors, and different structures. Nonetheless, the authors
reached an overall accuracy of 98.82% with synthetic data and an accuracy of 81.64% on a
real dataset.

As mentioned, data scarcity is an issue regarding seismological research using low-cost
MEMS sensors. Moreover, the data quality is degraded due to inherent noise in accelerom-
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eters. There have been many attempts [55–58] to capture the seismic sequence using AI
models. Still, these supervised approaches suffered from the incomplete reconstruction
of the seismic waveform, over-fitting, and smaller dataset, unable to capture the diversity
of the waves. To overcome these challenges, Wu et al. [59] proposed a model Earthquake
Generative Adversarial Network (EQGAN), an unsupervised technique to automatically
capture and generate stable seismic waveform using the frameworks of GAN, LSTM,
and NN.

MEMS sensors have numerous applications in consumer electronics, such as pedes-
trian navigation systems, and AI algorithms are intensively used for real-time path tracking,
activity recognition, and posture recognition. Models such as tree-based algorithms (de-
cision tree, random forest, extreme gradient boosting), SVM, CNN, NN, and LSTM have
found quite popular usages in such cases [60–64].

Gao et al. [65] presented a multi-scale Convolutional Neural Network (CNN) with
adaptive learning for fault detection in MEMS inertial sensors in UAVs. The authors
claimed that the proposed method could handle the temperature drift of inertial sen-
sors and achieved high fault detection accuracy compared to the strategies presented in
papers [66–71]. Amini et al. [72] developed an automated defect recognition system based
on the Faster R-CNN Inception V2 COCO model by using a plenoptic image of the wafers
for surface defect detection. The proposed method can be used for early fault detection at
wafer and component levels of MEMS, reducing the design time significantly.

Thus far, all the discussed papers are primarily related to industrial, automotive, or
consumer-related use cases, which show promising results for AI applications in MEMS-
based sensor applications. AI application for MEMS (BioMEMS) in healthcare is another
potentially colossal market [73]. Examples of general applications of MEMS in healthcare
can be in a pedometer, hearing aid, body gateway, lab on a chip, blood pressure, etc. [74].
Vashistha et al. [75], and Yadav et al. [76] have discussed AI applications to diagnose several
diseases using MEMS sensor-based smart diagnostic devices using Mechanobiology, which
uses biosensors. MEMS are used here for finding external stimuli using force spectroscopy.
NN can detect environmental factors, such as viruses or bacteria, along with the traditional
method. To summarize, in most applications, different RNN and CNN models performed
better than the classical statistical models.

4.3. AI Applications in the MEMS Manufacturing and Design Process

MEMS reliability and fault mechanism research is still in its early stages. Failure
mechanisms differ significantly from those found in traditional microelectronics. Faults or
defects arise due to surface interaction energy and intermolecular forces. Fault detection
and maintenance are necessary for the MEMS fabrication process for reliability.

Keeping this in mind, Asgary et al. [77] proposed a fusion of a CNN and a Robust
Heteroscedastic Probabilistic Neural Network (RHPNN) for fault detection. The aim was
to provide a built-in self-test mechanism to implement in the final testing round.

Quality Control is a significant step in generating a superior category of sensors, which
is why defect detection is ubiquitous for MEMS manufacturing. Deng et al. [78] proposed
a CNN-based defect detection scheme using image processing techniques for pressure
sensor chip packaging. The proposed accurate-detection CNN (ADCNN) algorithm was
used to detect defects, such as chip damage, chip scratch, wrinkles on the glass surface,
the broken bond of the gold and aluminum wires, etc., with a mean average precision
of 92.39%. Heringhaus et al. [79] used transfer learning to identify, evaluate, and extract
necessary parameters for manufacturing defect detection in a short time.

To prevent losses caused by tool wear or tool damage, Tool Condition Monitoring
(TCM) adopts appropriate sensor signal processing techniques to monitor and predict
the cutter state. An effective TCM system may boost output and ensure product quality,
significantly impacting machining effectiveness. TCM is, therefore, quite significant in
the manufacturing sector. Bajaj et al. [80], and Patange et al. [81] demonstrated that incor-
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porating ML-based approaches, such as tree-based models or the Bayesian optimization
approach, can reduce maintenance time.

Using CAD tools, MEMS simulation and modeling are represented by non-linear
partial differential equations (PDE). Traditional methods, such as finite-element methods
(FEM) or finite-difference methods (FDM), are computationally heavy, creating a bottleneck
for many simulations. To tackle this issue, Liang et al. [82] proposed an NN-based method
for dynamic simulation and analysis of non-linearity in a MEMS-based system. The pro-
posed dimensionality reduction method consists of a Generalized Hebbian Algorithm
(GHA) [83]. GHA is based on the principle component analysis (PCA) of NN and the
Galerkin procedure. The authors claimed that this proposed model could replicate the
design and simulation method of PDE and can handle a large number of simulations in
less time, using less memory space. This can be very helpful to the MEMS system designer
for optimizing the design process.

In the technical report [84], author J. Perera provided a comparative analysis for
reliability estimation and prediction using NN on the MEMS device design phase using
the component attributes. The reliability of MEMS development has been a crucial factor
and is worth looking into. The author proposed a framework for the MEMS reliability
modeling, a novel addition to the MEMS design. Guo et al. [85] proposed a data-driven
deep neural network-based approach to replace the conventional FEA for the MEMS design
cycle. The author designed a non-parameterized NN-based model and trained it using
geometric patterns to estimate the MEMS structure accurately, indicating the possibility of
defect prediction in the microfabrication process.

Due to the increasing complexity of the MEMS manufacturing process, the number of
surface defects tends to increase. It is crucial to detect these defects and identify the root
cause for yield improvement and overall process optimization. Chien et al. [86] used a
faster R-CNN, which they retrained multiple times to detect wafer defects with an accuracy
of 98%. Raveendran et al. [87] also used a CNN model to inspect wafer maps visually.
Tello et al. [88] proposed a methodical three-step approach to identify single and mixed
defects using a deep ML-based method. In the first step, a spatial filter was used to remove
random noise. Next, a splitter was used to separate the single and mixed patterns. Finally,
a Deep Structured Convolutional Network (DSCN) model was used to find the composite
pattern. A shallow Randomized General Regression Network (RGRN) was used to find the
single pattern defects with an overall accuracy of 86.17%.

Hoppensteadt and Ishikevich [89] proposed a theoretical framework for a MEMS
oscillatory neurocomputer for pattern recognition using auto-correlative associative mem-
ory. In this paper, the authors’ used MEMS as an analog information unit. They further
claimed that this method could help build an information processing unit by eliminating
micro-controllers in the process flow.

Liu et al. [90] proposed a PC-based Expert System, ’EASYMEMS’, for MEMS design
and manufacturing. EASYMEMS covers three main aspects of MEMS-based systems:
materials, design, and manufacturing. It contains a knowledge-based engine to provide
expert consultation and perform dynamic and static analysis. Although other software
packages exist, such as ACS and IntelliSuite, the authors claimed that their proposed
system could provide a more comprehensive and user-friendly framework based on the AI
expert system.

Guo et al. [91] proposed an ML-based approach in place of the standard FEA to reduce
the design time as FEA is computationally heavy. The authors claimed their system is almost
4000 times faster in detecting vibration modes for disk resonators. Although this is an
exciting result, the research needs further comparative analysis using other AI approaches.

5. Review Summary

This section provides an overview of the articles analyzed during this study, keeping
some important aspects presented as shown in Table 3. The articles were categorized based
on the following attributes:
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• Year: The year of research publication.
• Algorithm Type: This refers to the subfields of AI used by researchers to conduct

their analysis.
• Category: This refers to the types of the problem from the AI perspective, i.e., whether

the problem was related to classification, regression, clustering, etc. It can be either
one or multiple.

• Data Type: Types of data used for the algorithm, i.e., whether the data used to train
the model were real or synthetic.

• Data Size: Total amount of data used to train, test, and validate the model’s performance.
• Problem Type: This refers to the goal of AI usage in MEMS sensors. It answers the

question, ’Why was AI used?’. Some examples are thermal calibration, fault diagnosis,
noise modeling, etc. All over, both product usage improvement and manufacturing
process optimization are covered.

• MEMS Sensors: The types of MEMS data used for the analysis are described here, such
as data retrieved from gyroscopes, accelerometers, etc. If the paper is related to MEMS
design, this part refers to the process steps, such as FEA, simulation, and design for
which AI was used.

• Key Findings: The main contribution of each article is highlighted here.
• Ref.: Reference to the related article analyzed.

Table 3. Original research for Artificial Intelligence application in the field of MEMS sensors.

Year Algorithm
Type Category Data

Type Data Size Problem Type MEMS
Sensor Key Findings Ref.

2019 MLP Regression Real 153,000 Conditional
Maintenance

Accelerometer
(MMA8452Q)

MLP was used to detect
and predict motor failure
for conditional-based
maintenance.

[32]

2022 XGBoost, DT,
SVM, GNB Classification Real 1.5 million

Feature
Estimation,

FDD
IMU data

XGBoost classifier
outperformed other tree
based algorithms with
95% accuracy.

[34]

2022 KNN, DT, RF,
Adaboost Classification Real 993 FDD Accelerometers

RF achieved 100%
accuracy compared to
other algorithms used to
detect leaks in the real
pipe networks.

[35]

2017 NB, LR, Linear
SVC, SGD Classification Real 20,000 Predictive

Maintenance
Humidity

Sensor

Intel Lab Data were used
for this analysis to classify
different humidity sensor
data where GNB
outperformed others.

[36]

2018 LSTM-RNN Time-series Real 48,000 Noise
Modeling

Gyroscope
(MEMS IMU

MSI3200)

LSTM-RNN
outperformed ARMA
with an improvement of
42.3%, 21.4%, and 26.2%
for the three-axis
gyroscope.

[40]

2019 Mixed LSTM
and GRU Time Series Real 10,000 Noise

Modeling Gyroscope

A mix of LSTM and GRU
architecture was used for
the three-axis MEMS
gyroscope noise
modeling,

[41]
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Table 3. Cont.

Year Algorithm
Type Category Data

Type Data Size Problem Type MEMS
Sensor Key Findings Ref.

2019 NAS-RNN Time-Series Real 15 Noise
Modeling

Gyroscope
(MEMS IMU

STIM300)

The proposed NAS-RNN
was used to de-noise and
decrease the standard
deviation of the three-axis
gyroscope compared to
the raw signal. NAS-RNN
also outperformed
LSTM-RNN.

[42]

2018 SRU-RNN Time Series Real 10,000 Noise
Modeling Gyroscope

A single-layer SRU-RNN
was used to de-noise the
three-axis MEMS
gyroscope.

[43]

2018 BP-NN Regression Real - Thermal
Calibration Gyroscope

Alternate to the
traditional polynomial
fitting for temperature
compensation, the BPNN
increased the
performance by 20%.

[44]

2009 BP-NN Regression Real - Thermal
Calibration

Micro-
gyroscope

For the temperature
compensation, BP-NN
was used, and an
integral-separated PID
(Proportion Integration
Differentiation) system
was used for the
temperature control
system design.

[45]

2011 BP-NN Regression Real
(−35 ◦C)–

(+80 ◦C) temp.
range

Temperature
Drift Compen-

sation
Gyroscope

The study aimed to
understand the effect of
temp. on gyroscope
signal drift.

[47]

2017 RBF-NN Function ap-
proximation Real - Adaptive

Control Gyroscope

Fully tuned RBF-NN was
proposed to remove
model uncertainty and
external disturbances.

[48]

2017 PSR, C-C,
CPSO-LSSVM Regression Real 15,000

Temperature
Drift Compen-

sation
Gyroscope

MEMS gyroscope random
drift reconstruction was
performed using PSR and
C-C method, which helps
with dimensionality
reduction. CSPO-LSSVM
was used to model the
MEMS gyroscope random
drift that outperformed
BP-ANN.

[49]

2019 GA, SVM Regression Real 600
Temperature

Drift Compen-
sation

Gyroscope

The temperature drift
compensation of the
gyroscope was performed
using SVM that is
optimized using GA. This
is a simple, exquisite, and
powerful solution.

[50]

2020 GA, BPNN Regression Real 6360
Temperature

Drift Compen-
sation

Accelerometer

BPNN, optimized using
GA, performed 173 times
better than traditional
polynomial fitting for
MEMS resonant
accelerometer.

[51]
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Table 3. Cont.

Year Algorithm
Type Category Data

Type Data Size Problem Type MEMS
Sensor Key Findings Ref.

2020 IPSO-VMD,
BP-Adaboost

Cluster,
Regression Real

(−32 ◦C)–
(+55 ◦C) temp.

range

Temperature
Drift Compen-
sation, Noise

Modeling

Gyroscope

MEMS, gyroscope drift
compensation,
and de-noising were
performed. The authors
used IPSO-VMD to
decompose the signal and
discard the noise.

[52]

2020 CNN Classification Real &
Synthetic

42,368 (real)
20,000

(synthetic)

Monitoring
System

Accelerometer
& Gyroscope

Ground vibration
monitoring system was
proposed using CNN,
which achieved 98.82%
accuracy on synthetic
data and an accuracy of
81.64% on real data.

[54]

2020 MLP, K-Means

Clustering,
Time Series,

Feature
extraction

Real
25,126 (static)

46,558
(dynamic)

Seismic
Detection Accelerometer

ANN model was used to
detect earthquakes for
both static and dynamic
environments with low
false alarms.

[55]

2018 ConvNet Classification,
Time Series Real 4.5 million Seismic Phase

Detection
Seismic
Sensors

ConvNet was used for
generalized phased
detection of continuous
seismic waves classified
as P, S, or noise from a
small to large range.

[56]

2017 CC-RCNN Classification,
Time Series Real 1000 Seismic event

Detection
Seismic
Sensors

State-of-the-art 1D
seismic data detection
event-wise was proposed
using robust CC-RCNN,
which is inspired by the
densely
connected network.

[57]

2021 EQGAN Regression Real 3600 Data
Augmentation Accelerometer

Short Seismic wave data
generation using
unsupervised EQGAN
(proposed), GAN, LSTM,
and NN, where EQGAN
achieved the highest
performance, which
is 81%.

[59]

2020 LSTM, CNN Classification Real 9299
Human
Activity

Recognition

Accelerometer,
Gyroscope,

Magnetome-
ter,

Light

Trained LSTM and CNN
could recognize different
activities such as walking,
standing, and jogging
with more than 90%
accuracy.

[62]

2015 CNN
Classification,

Feature
extraction

Real 169,335
Human
Activity

Recognition
Mixed

CNN had superior
performance with
efficient feature
extraction.

[64].

2020 Multi-scale
CNN Classification Real 32,000 FDD MEMS Device

Design

A fault diagnosis method
where the time domain
feature of faults occurring
due to temperature was
used.

[65]

2018 MLP, DWT

Classification,
Function ap-
proximation,

Feature
extraction

Real &
Synthetic 1000 FDD Actuator

Fusion method to detect
faults such as internal
leakage, actuator leakage,
and null bias current in
the multi-functional
spoiler system used in
aircraft navigation.

[66]
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Table 3. Cont.

Year Algorithm
Type Category Data

Type Data Size Problem Type MEMS
Sensor Key Findings Ref.

2017 SSAE, DN
Classification,

Signal
reconstruction

Real 12,000 FDD Accelerometer

SSAE-based DNN was
used to overcome the
dynamic and non-linear
characteristics of the
vibration signals by
effectively extracting the
features to detect faults in
rotary machine bearing
and identify the size of
the cracks with an
average accuracy of 100%.

[67]

2014 LS-SVM Regression Real 50 FDD Pressure

LS-SVM was used for
fault diagnosis using
aircraft engine
sensor data.

[68]

2017 SVM, PCA
Classification,

Feature
elimination

Synthetic - FDD Gyroscope,
Accelerometer

SVM was used to detect
actuator faults of drones
to ensure safe flight.

[69]

2021
Faster R-CNN
Inception v2

COCO
Classification Real 419 Surface defect Light rays

Proposed automated
defect recognition system
can be used for both a
single component or
whole wafer at any stage
of the production and
assembly process.

[72]

2007 LVQ RHPNN Classification Real - FDD Data
Simulation

Improved fault detection
and classification by
combining LVQ with
RHPNN.

[77]

2022 ADCNN Classification Real 6707 FDD Pressure

An overall process was
described to detect and
classify defects of various
sizes and scales using
image analysis for
pressure sensors chip
packaging with a map of
92.39% and the defection
mean accuracy was
97.2%.

[78]

2021
Transfer
learning,

DNN
Regression Synthetic 660 FDD Accelerometer

Transfer learning was
used with DNN to detect
faulty parameters that can
be directly measured
during MEMS
manufacturing final tests.

[79]

2001 GHA Time Series Synthetic 25 MEMS Design Modeling of
micro-systems

Formulation of the
dynamic behavior using
GHA for model reduction
to analyze transient
system behaviors.

[82]

2000 NN Regression Real 787 MEMS Design Microengine
failure data

Reliability estimation to
guide MEMS process
development using NN,
which can provide
insights into different
phases, such as
fabrication,
packaging, etc.

[84]
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Table 3. Cont.

Year Algorithm
Type Category Data

Type Data Size Problem Type MEMS
Sensor Key Findings Ref.

2022 DL Regression Synthetic 29,984 MEMS Design FEA

DL-based model to
effectively, quickly,
and accurately predict
MEMS structural design
pattern. The data were
captured from MEMS
resonators.

[85]

2020
Transfer
learning,

Faster R-CNN
Classification Real 25,464 Surface Defect Fabrication

process

The authors proposed a
classification-based
approach for automatic
inspection using CNN
models to identify the
wafer surface defects with
an accuracy ranging from
98% to 99%.

[86]

2018 RGRN and
DSCN Classification Real and

Synthetic - Surface Defect Fabrication
process

The authors proposed
deep ML-based model to
find mixed and single
pattern defects separately
with an overall accuracy
of 86.17%.

[88]

2005 EASYMEMS - - - MEMS Design Simulation
and Design

A computer-based expert
system for design
suggestion to the
engineers. It supports
both the dynamic and
static analysis of MEMS.

[90]

2021 Resnet Classification Synthetic 11,250 MEMS Design FEA

NN-based analyzer
performed faster than the
FEA computations in less
than 1/4000 of the time
with an accuracy of 98%.

[91]

IMU = Inertial measurement unit, FDD = Fault Detection and Diagnosis, GNB = Gaussian Naive Bayes, KNN
= K-nearest Neighbors, RF = Random Forest, DT = Decision Tree, NB = Naive Bayes, LR = Linear Regression,
SVC = Support Vector Classification, SGD = Stochastic Gradient Descent, BP-NN = Back Propagation Neural
Network, MLP = Multilayer Perceptron Neural Network, LSTM = Long short-term memory, GAN = Generative
Adversarial Network, GHA = Generalized Hebbian Algorithm, SSAE = Sparse Stacked Autoencoder, PCA =
Principle Component Analysis, ARMA = Auto Regressive Moving Average Method, GRU = Gated recurrent
unit, NAS-RNN = Neural Architecture Search Recurrent Neural Network, SRU-RNN = Simple Recurrent Unit
Recurrent Neural Networks, PSR = Phase Space Reconstruction, ConvNet = Convolutional Neural Network,
CC-RCNN = Cascaded Contextual Region-based CNN, CSPO = Chaotic Particle Swarm Optimization, LSSVM =
Least Squares Support Vector Machine, BP-ANN = Back Propagation Artificial Neural Network, GA = Genetic
Algorithm, SVM = Support Vector Machine, IPSO = Immune Based Particle Swarm Optimization, VMD =
Variational Modal Decomposition, BP = Backpropagation, CNN = Convolutional Neural Network, SSAE = Sparse
Stacked Autoencoder, DNN = Deep Neural Networks, LS-SVM = Least Squares Support Vector Machine, NN =
Neural Network, LVQ = Learning Vector Quantization, RHPNN = Robust Heteroscedastic Probabilistic Neural
Network, FEA = Finite Element Analysis, RGRN = Randomized General Regression Network, DSCN = Deep
Structured Convolutional Network.

6. Discussion

In this study, we systematically reviewed the articles and presented the application of
AI in MEMS-based sensors. To conduct the study methodically, we have proposed three
research questions in Section 3. We summarized our results and provided a comprehensive
overview based on these questions in the following subsections.

6.1. Q1: What Are the Most Researched Areas of AI Implementation for MEMS Sensors?

Figure 9 illustrates a time-based heat-map analysis of the MEMS application problem
area where the authors implemented AI-based solutions. As seen from the heat map,
there are 12 problem areas where the application is more popular. The problem types are
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subcategories under MEMS sensors and MEMS manufacturing and design, e.g., "Thermal
Calibration", and "Predictive Maintenance" is used in MEMS manufacturing.

Figure 9. Time-based articles categorization for AI application in MEMS filed according to the types
of problems.

Almost 20% of the articles deal with the problems related to "Fault Detection and
Diagnosis". For MEMS design, almost 14% of articles are covered. "BioMEMS", "Human
Activity Recognition", and "Surface Defect" cover 10% of the study each. The rest of the
problem types cover 36% of the study.

The MEMS sensor types used for data analysis differ in these articles. Among all
other sensors, the most used gyroscope and accelerometer data are 50%. At the same
time, MEMS manufacturing-related articles were only 25%. Figure 10 shows the various
purposes of using AI algorithms. As can be seen, the classification and regression tasks
are most intensively used, which explains the high percentage of fault detection, thermal
calibration, and production issue-related articles.

Figure 10. Purpose of used AI algorithm used in the articles.
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6.2. Q2: What Are the Advantages of AI-Based Solutions Compared to State-of-the-Art Solutions?

With the advancement of graphics processor units (GPU), data abundance, and less
processing time [92,93], AI-based solutions have been integrated with more research areas.
It can be seen in Figure 9 that since 2017, there has been a growth in the number of
published articles; without any doubt, the most used algorithm type is ANN. Among all
the papers used for the review, 78% of the authors used ANN-based solutions. ANN is
useful for estimating complex and unknown functions with incomplete a priori knowledge.
It has high fault tolerance, auto-correction mechanism, and parallel processing with easy
application [94]. Looking deeper into the subcategories of the ANN algorithms, variants
of CNN type were used the most (31% of the total articles). Besides neural network-
based models, tree-based models such as RF, AdaBoost, DT, and XGBoost and statistical
models such as SVM were also used. Tree-based models are relatively less complex and
straightforward and easily explainable. Statistical models, such as SVM, NB, and PCA, are
physically realizable and easily visualized. The following part summarizes the benefits
obtained by using AI-based solutions.

Advantages of Using AI:

• Hidden patterns, such as cross-correlation, in the data that are impossible with tradi-
tional methods can be discovered and visualized.

• Feature estimation can be enhanced in combination with traditional methods.
• Automated monitoring systems can be built for FDD and predictive maintenance without

any human in the loop. This reduces manual error and improves process accuracy.
• Elimination of prior knowledge dependency.
• MEMS manufacturing process improvement by eliminating iterative calibration steps

with AI predictions.
• In the case of MEMS manufacturing, the sensing element fabrication process is sub-

jected to different kinds of failures. AI methods can accurately perform image classifi-
cation. it has proven to be useful for fault detection and recognizing substrate defects.

• Transfer learning helps apply previously gained knowledge to identify and detect
features related to defects before the final test.

• AI-based models can replace conventional design tools such as FEA for predicting
MEMS structural design steps with higher accuracy in less time.

• Overall, time-saving and process optimization can be achieved by incorporating AI.

Table 4 provides an in-depth analysis of the data features, data availability, model
performance metrics used, and proposed AI algorithm advantages compared to the state-
of-the-art solution used in the articles analyzed in Table 3. The Data Features and Attributes
column discusses the type, complexity, and limitation of the data used. Whether the data is
available publicly is mentioned in the Data Availability column. The type of assessment cri-
terion used to validate the model, or the proposed solution is mentioned in the Performance
Metrics column. In the last column, Implemented AI Algorithm Advantage, key benefits of the
proposed algorithm presented in the articles are highlighted.

Table 4. Detailed analysis of the data and model performance.

Ref. Data Features and Attributes Data Availability Performance
Metrics

Implemented AI Algorithm
Advantage

[32]

Raw data were obtained from An Akasa
AK-FN059 12 cm Viper cooling fan and
an MMA8452Q accelerometer. Different
vibration measurements were obtained
with 3 weight distributions and 17
rotation speeds at a frequency of 20 ms
for 1 min.

Public RMSE

ANN-based MLP algorithms could
efficiently model complex systems
consisting of non-linear data.
The benefits of MLP are easy
implementation for large-scale
problems, good generalizability,
and provides efficient computation.
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Table 4. Cont.

Ref. Data Features and Attributes Data
Availability

Performance
Metrics

Implemented AI Algorithm
Advantage

[34]

Data used were highly imbalanced.
They contained information on yaw
rate sensors, inertial sensors, process
measurements, temperature
measurements, and infrastructure
measurements.

Confidential
ROC-curve,
Precision,

Recall, F1 Score

XGBoost Classifier could handle data
imbalance efficiently. Tree-based
feature importance helped with
root-cause analysis, and production
implementation was easy.

[35]

Five triple-axis MEMS-based
accelerometers (model AX3D with a
sensitivity of ±2 g) were used for
collecting information on leak and
no-leak in different pipe types. A high
time synchronized data-collecting
system from the manufacturer “Beanair”
was utilized. SMOTE was used to
balance the data.

Confidential

Accuracy,
Precision,

Recall, F1 Score,
ROC

Ensemble-based algorithms provided
a good performance on large data,
and these are resilient to outliers
providing an easy interpretation of
results obtained. KNN is less prone
to overfitting.

[36]
Monitored humidity data were
collected from Intel indoor sensor
data [95] for four different sensors.

Public Accuracy

GNB achieved the highest accuracy
90%. The naive bayes-based
algorithm is fast, does not require
much training data, and is insensitive
to irrelative features.

[40]

Data were collected from a MEMS IMU
(MSI3200) manufactured by MT
Microsystems Company, Shijiazhuang,
China [96]. Raw static data contained
three-axis gyroscope information (pitch,
roll, yaw) and was noisy.

Public Accuracy

LSTM-RNN performance was
superior due to its effectiveness for
time-series-related problems and
better generation ability.

[41]

Three-axis gyroscope noisy data were
collected from a MSI3200 MEMS
IMU [97] containing pitch, roll, and yaw
information. Training data were limited,
and only static data were used.

Public Attitude errors

Mixed deep recurrent neural
networks outperformed two-layer
long short-term memory recurrent
neural networks and two-layer gated
recurrent units with the benefits of
faster convergence and quicker
training procedure.

[42]

Three-axis gyroscope noisy data were
collected from a MEMS IMU STIM300
to detect yaw, raw, and pitch error. The
data availability was limited.

Public Attitude errors

The advantages of NAS-RNN include
superior sequence data processing,
noise suppression, and efficient
application-specific neural
architecture.

[43]

The IMU data were composed of
three-orthogonal gyroscopes and
three-orthogonal accelerometers
collected from a MEMS IMU MSI3200
manufactured by MT Microsystems
Company. The length of the training
data and the de-noising performance
were traded off. The training was
performed with a fixed learning rate
and batch size.

Public Attitude errors

DL has a better learning capacity than
SVM or other NN. RNN always has
better performance for time-series
problems.

[44,45,47]

MEMS IMU consists of a triaxial
accelerometer sensor, a triaxial
gyroscope sensor, a triaxial
magnetometer, and a temperature
sensor. The data points were obtained
at different temperature ranges
for gyroscopes.

Confidential

Authors’
defined

performance
factor

BP-NN provided improved and
adaptive polynomial fitting for
detecting abrupt bias changes in
small temperature change windows.
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Table 4. Cont.

Ref. Data Features and Attributes Data Availability Performance
Metrics

Implemented AI Algorithm
Advantage

[48]

The aim was to have the mass proof
follow the intended reference trajectory
while estimating and compensating for
unknown parameter errors and outside
disturbances using the fully tuned
RBF network.

Confidential Authors’ defined
error tracking

To account for the impact of external
disturbances and model errors,
an adaptive, stable, and fully tuned
RBF neural network controller was
used as it provides non-linear
approximation and adaptive nominal
control. Further, it enhanced the
MEMS gyroscope’s dynamic
properties and robustness.

[49]

Three-axis MEMS IMU was used,
and the X-axis gyroscope was analyzed.
Wavelet filtering was used to remove
the noise. The data type was chaotic
time series. The dimension of the data
was improved one-dimensional time
series into an auxiliary phase space
using PSR.

Confidential MAE, RMSE, ARE

Combining LSSVM model with CSPO
provided advantages, such as faster
computation, parameter optimization,
suitable for parallel computing,
and chaos mapping.

[50]

Creating a temperature compensation
model that fits the function is the key
challenge for MEMS gyroscope
temperature correction due to the
non-linear characteristics. The
three-axis gyroscope data were
collected within a temperature range of
−30–+70 °C, with seven temperature
points.

Confidential Variance,
Maximum error

SVM provided the following
advantages: good generalization
ability, easy training, can fit the
non-linear temperature changes,
and a globally optimal solution.
The issue of parameter optimization
was solved by using GA.

[51]

Six-axis MEMS accelerometer,
high-precision rotary table,
a thermostat, a resonant accelerometer,
and the testing circuit were used to
build the thermal calibration system.
The sensor chip was mounted on a
side-brazed ceramic package through
the silver conductive epoxy adhesive to
collect the data. The model’s inertial
temperature was 293.15 K, and it was
assumed that the structure had no
internal tension at this temperature.
The materials expanded or contracted
as the temperature changed, putting the
six DETFs under uneven thermal stress.

Confidential Maximum
percentage error

The accuracy of the polynomial
fitting method is still lacking when
used with MEMS accelerometers and
results in a systematic error without
considering the high-order
non-linearities in the sensor errors.
NN can handle these issues efficiently.
Combining GA with the BP-NN
network helped find the global
optima with a faster convergence rate
and low error.

[52]

Temperature signal data were collected
from a MEMS gyroscope. IPSO-VMD
decomposed the gyro signal and
obtained the ideal VMD parameters.
Using SE, the sequence complexity was
calculated and divided into three
categories: noise, mixed, and feature.

Confidential Sample entropy,
Allan variance

The fusion algorithm helped with
strong learning, better model
building, efficient global search
ability, and faster convergence speed.

[54]

The authors used both synthetic [98]
and real ground vibration data [99]
with two different labels assigned to it
as peak acceleration and earthquake
magnitude, respectively. For the
synthetic data, artificial noise was
introduced in a controlled manner.

Mixed Accuracy CNN models can handle non-linear,
erroneous, and nonconvex issues.
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Table 4. Cont.

Ref. Data Features and Attributes Data Availability Performance
Metrics

Implemented AI Algorithm
Advantage

[55]

The earthquake dataset used was highly
imbalanced and heavily noisy. It was
collected from the National Research
Institute of Earth Science and Disaster
Prevention (NIED) and USGS (United
States Geological Survey).
The time-series non-earthquake-related
data were captured using a mobile
device for several hours. The final
dataset contained earthquake, noise,
and walk-and-wait data.

Public
Accuracy, ROC
curve, Precision,
Recall, F1 score

Imbalanced, the noisy dataset can be
efficiently handled by ANN with
very low false prediction.

[56]

Earthquake data containing P and S
wave picks were considered. It was
collected from Southern California
Seismic Network (SCCN). The data
were continuous with a 4-second
window with noise present. A high
pass filter was used to remove the noise.

Public Precision, Recall

DL is efficient for object recognition
tasks due to its robust generalization
representation. No explicit
characteristic recognition over
millions of data helps detect objects
better and make a reliable earthquake
warning system.

[57]

Time series signals were used to detect
events. The first difficulty of the data
was that the length of an earthquake
occurrence varied greatly; the second
was that the generated proposals were
temporally correlated; Not all the
positive events were annotated
correctly, which increased the noise in
the data.

Confidential AP

Using CC-RCNN helped find an
optimized multi-scale temporal
correlation of time series data to
detect events of various lengths.
The deep neural network has
considerably improved object
detection in 2D picture data.

[59]

Data were obtained from the National
Research Institute for Earth Science and
Disaster Resilience (NIED), the United
States Geological Survey (USGS), along
with the authors’ data. Noise data and
human activity data were collected by
using low-cost MEMS sensors.

Mixed MSE, MAPE, WD
error

EQGAN efficiently analyzed complex
high-dimensional, time-series data
structures to generate high-quality
seismic sequences in terms of quality
and quantity.

[62]

Data were obtained from the UCI
website with six pedestrian motion
mode recognition activities. The testers
recorded three axial linear accelerations
and three axial angular velocities at a
constant rate of 50 Hz using the
smartphone’s integrated accelerometer
and gyroscope. The data contained
noise. The Butterworth low-pass filter
was used to separate acceleration signal
components.

Public
Accuracy, Recall,

F-measure,
Precision

The effectiveness of CNN in deep
learning is huge due to the utilization
of convolutional filter hierarchies,
which sequentially extracted feature
representations of increasing
complexity from raw sensor
measurement. The unique internal
structure of LSTM models provided a
memory with a forget function to
efficiently and selectively focus on
those sensory data that were
important to the recognition process.
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Ref. Data Features and Attributes Data Availability Performance
Metrics

Implemented AI Algorithm
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[64]

Dataset contained information on
whole-body movement and hand
gesture information retrieved.
The whole-body movement data were
retrieved from 10 modality sensors with
18 classes. Hand gesture data contained
12 classes and were collected from body
sensors containing a three-axis
accelerometer and a two-axis gyroscope

Public

Accuracy,
Average

F-measure,
Normalized
F-measure

The challenge of obtaining useful
information for activity identification
was difficult as it was mostly
handcrafted. It was avoided by
utilizing the task-depended feature
extraction property of the CNN
model. The advantages were:
extracted features had a stronger
ability to distinguish across different
categories of human activity, unified
feature extraction, and classification.

[65]

One-dimensional MEMS inertial data
were used and converted into 2D gray
images after feature extraction with a
sliding window. The sampling was
performed non-uniformly with
different temperature points for MEMS
gyroscopes and accelerometers.

Confidential Accuracy,
Confusion matrix

CNN improved the fault diagnosis
problem in UAV manufacturing
according to the correct sensor
temperature. The convergence rate of
the proposed algorithm was faster,
which helped to train the model with
a low amount of data available.

[66]

Data were obtained from a LDVT
sensor and control feedback signals are
accessible with a limited number of
precise measurements. An additional
2% white noise was introduced in the
data. Three parallel blocks with new
data fusion integrated with ANN and
discrete wavelet transform methods
were used to detect three major faults:
null bias current, actuator leakage
coefficient, and internal leakage. Data
fusion is important to increase the
decision-making process’ accuracy.

Confidential MSE

Discrete wavelet transform can
retrieve information from both
frequency and location signals,
making it an efficient fault detection
tool. Low data availability does not
impact the performance of ANN for
estimating complicated
non-linear functions.

[67]

Seeded fault data were obtained from
Case Western Reserve University, which
consisted of a two-horsepower (hp)
electric motor, a dynamometer, and a
torque transducer. The dataset includes
vibration acceleration signals for
bearings with no flaws and bearings
with faults in the inner raceway, outer
raceway, and rolling element.
The dataset comprises signals recorded
for bearings with three fault severity
levels at four different shaft loads for
each fault condition.

Public Accuracy

To counteract the non-stationary
behavior of the signals brought on by
various crack sizes, the hybrid feature
pool extracted more discriminating
information from the raw vibration
signals. More discriminating data
enabled the next classifier to divide
data into appropriate groupings.

[68]

Sensor data contained information
related to high and low-pressure
turbine speed, compressor outlet
temperature and pressure, low-pressure
turbine outlet temperature,
and pressure.

Confidential MSE

LS-SVM could implement the
structural risk minimization principle
with a new learning method with low
risk and good generalization ability
for unseen samples.
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[69]

Gyroscope and accelerometer data were
synthetically generated with two label
classes, such as faulty and nominal
flight conditions. The training was
performed offline, but the prediction
was made online.

Confidential Posterior
probabilities

SVM offer good generalization
without the risk of over-fitting and
avoiding global minima. It is useful
for high-dimensional,
non-linear systems.

[72]

To address the less availability of
training data, the authors employed
transfer learning to train their model on
top of the already learned Common
Objects in Context (COCO) model,
which was previously trained and
made publicly available. The captured
images contained information related to
MEMS wafer surface defects.

Confidential Confusion matrix
Faster R-CNN was able to perform
detection, classification,
and localization altogether

[77]

A MEMS simulator called EM3DS6.2.14
has been used to simulate faults using
RF MEMS and an Opamp. Faults
related to stiction, curvature, fatigue
and brittle, etch variation,
and contamination were generated.

Confidential Confusion matrix

LVQ was used for finding the
optimum kernel number
automatically with provided faster
learning speed to overcome the
drawback of the RHPNN algorithm
finding the optimum kernel number
in the second layer and improving
the performance.

[78]

The defects obtained from the MEMS
pressure-sensor chips were of different
sizes and scales, and the amount of data
was limited, containing an unequal
distribution. The defect images were
annotated manually. In terms of defects,
chip scratch, chip damage, gold-wire
bonding, glue-surface wrinkles,
and aluminum-wire bonding were
considered targets.

Confidential AP, MAP

ADCNN can detect small changes in
the MEMS pressure-sensor
chip-packaging process from noisy
image data by using random-data
augmentation and defect classifiers,
which are not possible using the
traditional RCNN.

[79]

The data were generated containing
non-linear relationships among the
damping factor, resonance frequency,
Brownian noise, mass, and epitaxial
layer thickness. Training samples were
generated using Monte Carlo
simulations that contained varying
epitaxy edge loss, epitaxy thickness,
offset, and cavity pressure.

Confidential RMSE

DNN is useful for the detection
relationship among non-linear data.
Using simulated data for offline
training of DNN helped with
accurate parameter extraction and
was less time-consuming than ML
methods. A single time-efficient
forward pass was able to identify
different system parameters.

[82]

Snapshots of the microbeam were
obtained at fixed intervals with two
different step-voltages, from which
eigenvectors were obtained.

Confidential Author defined
error

GHA did not require to compute the
input correlation matrix. The method
posed potential advantages when the
measured data were huge because it
only had to determine a small
number of necessary basis functions,
which could be learned directly from
the input data.
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[84]

MEMS micro-engine data containing
attributes, such as humidity, operating
frequency, resonant frequency, spring
quotient, and force component, were
collected. Data were limited and
contained both bi-modal and uni-modal
distribution.

Confidential
MAE, SD,

R-squared, MSE,
RMSE

Trained NN could accurately estimate
the reliability by mapping the
attributes to a reference value and
minimizing the error. As a result, it
could optimize the process by
sensitivity analysis of the
process parameters.

[85]
Simulated MEMS resonator image data
contained several unique resonator
patterns.

Confidential Authors’ defined
RA

DL model could effectively create
non-linear combinations of the target
structure voxel by voxel faster and
automatically without
any constraints.

[86]

Raw visible surface defect images were
collected [100] containing eight defect
types and did not contain a uniform
definition for defects. Only a few wafers
contained multiple defects, whereas a
single defect type was present in others.

Public
Accuracy,

Precision, Recall,
F-measure, AUC

Transfer-learning was used for
efficient parameter estimation for
faster training of the CNN model to
detect wafer defects on a
training subset.

[88]

The data contained multiple defect
patterns and noise. The data type used
contained both real and synthetic data,
and the splitter segregated single and
missed defects.

Confidential Accuracy, SD,
ROC, RMSE,

The advantage of the proposed
method was that it could generate
high-level features using low-level
features with mixed patterns, which
is impossible using shallow ML
models. RGRN was used to detect
single defects, and DSCN was used to
detect mixed defect patterns.

[91]

Circular disk resonator
two-dimensional images of 100 pixels
by 100 pixels were used where the void
represented the resonator body and the
black-and-white part contained
structural information. Four vibrational
modes were the topic of interest: two
torsional, one flexural, and one in-plane
rotational mode.

Confidential Accuracy,
Run-time

The Resnet model could learn from
the complex physical, structural
patterns, which cannot be
represented explicitly. The model
provided an accurate and much faster
analysis than the traditional FEA.

RMSE = Root Mean Square Error, ROC = Receiver Operating Characteristic, SMOTE = Synthetic Minority
Oversampling Technique, MAE = Mean Absolute Error, ARE = Average Relative Error, AP = Average Precision,
MSE = Mean Squared Error, MAPE = Mean Absolute Percentage Error, WD = Wasserstein Distance, AP = Average
Precision, MAP = Mean Average Precision, SD = Standard Deviation, RA = Ranking Accuracy, AUC = Area Under
the Curve.

6.3. Q3: What Are the Open Issues of Incorporating AI-Based Solutions in the MEMS Production
Process? Does There Exist Any Standardized Framework to Integrate AI Solutions?

AI-based solutions are primarily data-driven, which is why after the Big Data growth
in Industry 4.0 at the beginning of 2000, the adaptation of such approaches was more
welcomed in different industrial applications. This also poses challenges such as data
insufficiency in certain use cases, data labeling, and data security issues. In Table 4, it was
shown that 63% of data were confidential, whereas only 37% of the data were available
publicly. Data imbalance is another significant issue faced by many researchers, and this
was highlighted in the following articles [34,35,54,55,78,86]. It was reported in the arti-
cle [35] that data collection was challenging and time-consuming, and not all the traditional
features, such as spread, level, and frequency centroid were used, which could have further
improved the model accuracy. In article [40], it was mentioned that the collected raw data
were noisy, and the computing power of the system used was limited. Moreover, the limited
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layers of the proposed model were not optimum for generalized prediction. As can be seen
in the following articles [40–43,49,50], computational power limitation is a great challenge
faced by many. Sometimes, training of the model was performed with a fixed learning
rate and batch size, which can be further optimized and tuned to improve the model
performance [43]. Moreover, even if the data were available, the amount or quality of data
was not satisfactory, as reported in [40–43,48,49,55,56,62,64,78,88], or sometimes the data
collection process was too exhaustive [72,77,85]. This is why synthetic data generation [101]
is gaining more and more attention for robust model creation.

There exist other challenges from an adaptation and implementation perspective as
well. The following lists the number of limitations posed by AI-based solution incorporation
in the MEMS field.

Challenges of AI-Implementation in MEMS manufacturing:

• Most AI-based algorithms are data-driven. A larger amount of data provides a better-
trained and more robust model. Insufficient and unreliable data can degrade model
performance during implementation.

• Data prepossessing is a crucial step to ensure data quality, i.e., the availability of
labeled, noise-free data can ensure good training of the AI algorithm for higher
accuracy. This can be a time-consuming and challenging task.

• More computational power is required compared to the traditional methods.
• Some algorithms suffer from over-fitting and bias.
• Explainability does not always exist.
• Plethora of algorithm availability can be challenging and cumbersome in finding the

fitting solution.
• Cross-domain knowledge is required.
• Infrastructure compatibility poses one of the biggest challenges as sometimes small

implementations may need huge changes in the production process, which can be
time-consuming.

Currently, there exist many data mining process models, such as CRISP-DM (Cross
Industry Standard Process for Data Mining) [102], SEMMA (Sample, Explore, Modify,
Model, and Assess) [103], KDD (Knowledge Discovery Databases) [104] etc.; where KDD
describes the process and CRISP-DM and SEMMA the implementation. Although these
are intensively used in small to large corporations, these methods lack problem clarity,
contextualization, multiple reworks, iteration failure, etc. This is why ML-Ops (Machine
Learning Operation) is now one of the most suitable and industry-oriented end-to-end
solutions for the incorporation of AI [105–107]. This field is relatively new and thus needs
more research work to be standardized.

7. Conclusions

This review paper summarizes current evolutionary research approaches for MEMS
manufacturing and design optimization from the device to the process. AI applications are
extensively used in different areas of MEMS system as it offers several benefits, such as
automation of processes, reduction of human error, predictive maintenance, efficient infor-
mation handling, knowledge reproducibility, etc. AI-enabled approaches outperformed
traditional optimization methods. These new methods are capable of multi-objective design
optimization in MEMS.

However, AI implementation has certain limitations when applied in industrial set-
tings. Great effort and time must be given at the data pre-processing stage. Data collection
can be very demanding due to missing information; real data are highly unstructured
and noisy; unclear business requirement specifications make it more challenging to find
the right solution. As many algorithms and solutions are available for AI, it becomes
strenuous to choose the correct answer, which can further lead to an increase in effort,
time, and cost. Training models vary from case to case, which hinders the formulation of a
generalized solution. There can be infrastructure limitations that can lead to an increase in
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model training time. It has been noticed during this literature review that the focus of AI
implementation is mostly on fault detection in production.

Although there have been papers where the researchers attempted to improve the
MEMS design process using AI, it still lacks sufficient data and a standardized framework
for efficiently incorporating these two disciplines at the system-level design. This needs
further discussion and research using an interdisciplinary approach. Given the complexity
of the process flow, it is certainly not an easy task and requires further analysis from
a domain perspective. It is worth mentioning that infrastructure availability, platform
compatibility, and data confidentiality pose additional challenges. Nonetheless, it is beyond
doubt that integrating AI into MEMS manufacturing will undoubtedly provide significant
benefits, and it is undeniably the future.
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