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Abstract: Multilateral well drilling technology has recently assisted the drilling industry in improving
borehole contact area and reducing operation time, while maintaining a competitive cost. The most
advanced multilateral well drilling method is Fishbone drilling (FbD). This method has been utilized
in several hydrocarbon fields worldwide, resulting in high recovery enhancement and reduced
carbon emissions from drilling. FbD involves drilling several branches from laterals and can be
considered as an alternative method to hydraulic fracturing to increase the stimulated reservoir
volume. However, the expected productivity of applying a Fishbone well from one field to another
can vary due to various challenges such as Fishbone well design, reservoir lithology, and accessibility.
Another challenge is the lack of existing analytical models and the effect of each Fishbone parameter
on the cumulative production, as well as the interaction between them. In this paper, analytical and
empirical productivity models were modified for FbD in a dry gas reservoir. The modified analytical
model showed a higher accuracy with respect to the existing model. It was also compared with the
modified empirical model, which proved its higher accuracy. Finally, machine learning algorithms
were developed to predict FbD productivity, which showed close results with both analytical and
empirical models.

Keywords: Fishbone well; well productivity; analytical model; empirical model; data-driven models

1. Introduction

A multilateral well configuration encompasses the deployment of multiple horizontal
laterals branching off from a singular vertical wellbore, with the objective of enhancing
production efficiency [1]. The utilization of multilateral wells aims to increase the drainage
area and thus augment the production rate [2]. Although the drilling cost associated with
multilateral wells may be higher, this cost is offset by the improved reservoir recovery
resulting from enhanced wellbore-reservoir contact. There has been extensive research
directed towards optimizing multilateral drilling costs and designs [3,4]. One of the latest
advancements in multilateral drilling technology is Fishbone Drilling (FbD) [5]. FbD is
comprised of a series of micro-branches drilled in divergent directions from a primary
horizontal wellbore, with a designated inter-branch spacing as shown in Figure 1 [6]. The
implementation of FbD can maximize reservoir contact area and facilitate access to previ-
ously unreachable geological formations, thereby augmenting cumulative production [7].
FbD has been shown to have higher productivity compared to hydraulic fracturing in rela-
tively low permeability formations [8]. FbD is a desirable solution in the light of economic,
environmental, and regulatory limitations [9]. A recent study conducted by THREE60
Energy found that Fishbone drilling methods result in significantly lower CO2 emissions
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compared to other well enhancement practices [10]. The study demonstrated that the
jetting solution employed in FbD resulted in an 88% reduction in emissions and the drilling
method resulted in a 95% reduction in emissions compared to other market alternatives.
The jetting emissions for FbD were found to be 6.7 tons per completion, in contrast to
53.3 tons for acid-fracturing [11]. Drilling emissions for FbD were 35.4 tons per completion,
compared to 651 tons for propped-fracturing. The study concluded that FbD methods
provide a safer, more environmentally responsible, and potentially more cost-effective
solution for well enhancement, with the ability to selectively stimulate reservoir “sweet
spots” and connect with faults and fractures [12,13] through expertly controlled pumping
operations [11].
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Figure 1. Fishbone Drilling Technology.

The optimization of Fishbone well parameters has been a subject of investigation
by various researchers, who have sought to comprehend the effect on productivity and
cumulative production [14]. This includes the impact of branch number, branch length,
inter-branch distance, and the angle between the branch and main lateral borehole. The
Fishbone configuration has been implemented in the Daqing Peripheral oilfield [8] and
a Middle East oilfield [14]. Numerical simulations demonstrate that well productivity is
enhanced with an increase in branch number, reaching an optimum point. The optimum
branch number represents the least number of branches required to achieve maximum
productivity increase. Analogous findings were observed with increasing branch length,
with an optimum length of 300 m, beyond which productivity remained constant. The
optimal branch angle with respect to the main lateral was found to be 20◦ and 30◦ in
two different cases, influenced by the control area and its relation to angle changes. The
inter-branch distance is still under investigation, as it pertains to multiple factors such as
reservoir thickness, petrophysical properties, drilling Kickoff Point (KOP) selection, and
build-up severity challenges. To maximize reservoir volume, the drainage area should be
of sufficient width to eliminate interference between adjacent branches.

Successful applications of Fishbone well configurations have been reported in sev-
eral case studies across the globe. In Venezuela, the Zuata field, which comprises non-
homogeneous sand, has been documented as the first successful application of Fishbone
design (FbD) [15]. The first FbD application in Russia was reported in the Nizhnekhet 1
field, a very thin formation [16]. Four additional case studies from Russia have been docu-
mented in the literature, including sandstone formations in the Vostochno-Messoyakskoye
onshore field [17], low permeable formations in the East Messoyakha field [18], the Vankor
oilfield in Krasnoyarsk, Eastern Siberia [19], and the Srednebotuobinskoye oil and gas
condensate field in Eastern Siberia [20]. In the UAE, successful FbD case studies have been
reported in naturally fractured reservoirs [21,22], and an innovative Fishbone infill well
was applied in the Canadian oil sands play [23]. Research into applications of Fishbone well
configurations in areas such as geothermal drilling, enhanced oil recovery, steam-assisted
gravity drainage, and underground saltwater disposal are ongoing [24,25].

The production rate of oil and gas from a reservoir can be predicted through reservoir
deliverability analysis. The bottom-hole pressure has a significant effect on the production
rate, regardless of the completion type and artificial lift methods employed. Analytical
models for well deliverability exist to study the relationship between the production rate
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and bottom-hole pressure [26]. These models are dependent on various factors such as
reservoir pressure, boundary type, distance, permeability (vertical, horizontal, and relative
permeability), wellbore radius, near-wellbore effect, thickness of the pay zone, and reservoir
fluid properties [27]. The prediction of productivity is also dependent on well geometry
(e.g., vertical, horizontal, multilateral) and the interrelationship between the parameters
mentioned is known as the Inflow Performance Relationship (IPR).

This paper presents advanced approaches to quantify the production rates of some
Fishbone well configurations. Analytical, empirical, and data-driven approaches were
adopted to develop productivity prediction models in a dry gas reservoir with good
petrophysical properties. The developed models consider the effect of the number and
length of the branches, the distance between two adjacent branches, the inclination angle,
and the permeability anisotropy. The modified analytical model was based on modifying
the existing models and some geometrical assumptions. The empirical model was modified
using the Grey Wolf Algorithm optimization, and the data-driven models were based on
the artificial neural network and support vector regression methods optimized with an
advanced genetic algorithm.

2. Background

The implementation of Fishbone well design (FbD) presents numerous difficulties in
terms of wellbore analysis and production flow studies due to its complex combination of
boreholes with differing well geometries [28]. These difficulties result in the development
of analytical models based on various assumptions, leading to potential inaccuracies in
production rate predictions. In an effort to mitigate such errors, numerical simulations are
often employed, however, these too are subject to complications. As the progress of FbD
continues to advance, the development of new models and approaches for the analysis of
productivity in Fishbone wells becomes increasingly crucial.

In regard to the analysis of production flow rate, two different approaches exist,
analytical and empirical. Analytical approaches are derived from the solution of Darcy’s
equation for different flow regimes, while empirical approaches are based on experimental
work to develop correlations between drawdown and flow rate [29].

The Inflow Performance Relationship (IPR) for Fishbone wells is challenging to model
due to the complexity of its geometries. Two different flow regions exist, with one rep-
resenting the drilled region where the flow between branches is assumed to be pseudo-
steady-state and pseudo-linear flow, and the other representing the formation matrix where
the flow is assumed to be pseudo-steady-state radial flow. The inner region denotes the
drained volume, while the outer region symbolizes the non-stimulated volume [30] (See
Appendix A).

The deliverability of a uniformly distributed number of holes in the inner region for a
gas reservoir was presented by [30] (pp. 37–81). The model is stated as:

qg =
n

∑
i=1

kH Li

(
ppl

2 − pw f
2
)

1424µgzT
{

Ianiln
[

hIani
rwi (Iani+1)

]
+

πybi
h − Iani

(
1.224 − (si + Dqg

)} (1)

Equation (1) is used for the inner regions where the formation is drilled using Fishbone
branches; Equation (2) is used for the outer region:
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1
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where JPL and JR are:

JPL =
nkH Li

1424µgzT
{

Ianiln
[

hIani
rwi (Iani+1)

]
+

πybi
h − Iani

(
1.224 − (si + Dqg

)} (4)

JR =
kHh

1424µgzT
(

1
2 ln
[

4A
(γCAr2

PL)

]) (5)

In the above equations: Li length of the branch (ft), n number of the branches, rwi

radius of the branch (ft), ybi
distance between adjacent branches (ft) (These parameters

represent the Fishbone well design configuration). si Skin factor, µg: Gas viscosity (cp),
z Gas compressibility factor, T Reservoir temperature (◦R), pi Initial reservoir pressure
(psia), pw f Flowing bottom-hole pressure r = rw (psia), rw Well radius (ft), s Skin factor,
re Reservoir boundary (ft), pr Wellbore pressure (psi), h Pay thickness (ft), qg Gas flow rate
at pressure p (bbl/day), D Non-darcy flow coefficient (d/Mscf), CA Stabilized performance
coefficient (MMScf/D.psia2m or MMScf/D.(psia2/cp)m), m Dimensionless deliverability
exponent, defined as the line’s inverse slope on a log-log plot of the change in pressure-
squared or pseudo-pressure versus gas flow rate, ppl Average pressure at the edge of the
inner region (psi), γ Fluid specific gravity, Iani is the relationship between the horizontal
and vertical permeability, which is presented as:

Iani =

√
kH
kV

(6)

where: kH Horizontal permeability (mD), kV Vertical permeability (mD), rpl Equivalent
radius of the inner region, which can be calculated using the following equation:

rpl =

√
(n + 1)2Liybi

π
(7)

Due to the complexity of solving analytical models, caused mainly by the lack of
accurate PVT data, IPR correlations were introduced to the petroleum industry. Ref. [31]
generated an empirical correlation to model IPR in a Fishbone type multilateral dry gas well.
Their model was validated using a commercial well performance software simulation with
real field data for production history matching. The model does not take into consideration
the effect of the distance between the adjacent branches on productivity. This model does
not yield accurate results when the number of branches increases.

qo

qo,max
= 1 + a

( Pw f

Pavg

)b

nc + d
(

kH
kV

)e( Pw f

Pavg

) f

+ gL (8)

Constants a to f in the above equation are as follows: a = 1.056150135, b = 1.35,
c = 0.12837, d = −2.49525, e = −0.02782, f = 1.7, g = 2.52 × 10−6.

Several papers and research studies report on the productivity prediction of vertical
and horizontal wells using different machine learning algorithms [32,33]. It has been
recently used as a powerful tool to predict the well performance in complex formations [34].
Ref. [35] developed algorithms based on the Neural-based Decision Tree (NDT) learning
model. A higher-order neural network was applied by [36], and a surrogate model was
suggested by [37]. The other models are based on integrating supervised machine learning
with a well-calibrated bias [38], and experimental data and/or simulation results [39].
Ref. [40] developed a machine learning approach for shale gas horizontal well productivity.

Ref. [41] proposed three methods for artificial intelligence as a new approach to
investigate the productivity in Fishbone well, the inputs are the flowing bottom hole
pressure (Pwf), the formation permeability ratio (kH/kV), and the length of each lateral (Li).
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The model output was the flow rate fraction. This study is limited in terms of the other
Fishbone parameters such as the number of branches and distance between them. The
three applied algorithms were Artificial Neural Network (ANN) model, with 97% accuracy,
the Adaptive Neuro-Fuzzy Inference System (ANFIS) with 98% R score, and the Radial
Basis Function (RBF) network with a 98% coefficient of correlation.

3. Simulation Model Description

Numerical simulation plays a crucial role in the analysis of well deliverability when
field data is scarce or limited, which is the case for a newly developed technology such as
fishbone drilling. For this reason, in our study, we consider the results from the numerical
simulation to be the benchmark for comparison and validation of our models.

A commercial well performance software was used to evaluate the performance of
Fishbone wells at different operating conditions. More than 250 different cases were
examined. Actual wellbore conditions and real reservoir data were utilized to perform the
study. The reservoir model was examined and validated by an experienced production
engineer. The reservoir model consists of 62 × 21 × 11 grid cells, while a 3D Cartesian
grid system was used. The Fishbone well was drilled at the center of a gas reservoir
that has dimensions of 20,000 × 10,000 × 750 feet. The Fishbone well performance was
studied for around 20 years of production, representing a typical field life span in the
area. Further descriptions about the reservoir models have been reported previously
by [31,41]. In all simulation runs, the well production and bottomhole pressure profiles
were recorded. In addition, wide ranges of permeability ratio (kH/kV), the distance between
adjacent branches, and the number of branches were used. Table 1 lists the statistical
parameters for all reservoir models studied in this work. The production rate varied
between 197,900 and 0 SCF/DAY, representing the Absolute Open Flow (AOF) and well
shut-in conditions, respectively. A permeability anisotropy factor (kH/kV) between 1000
and 1 was used, which represents very tight vertical permeability and equivalent horizontal
and vertical permeability (uniform and homogenous reservoir), respectively. Moreover,
flowing well pressure between 14.7 psi and 4800 psi was used, indicating AOF and well
shut-in conditions.

Table 1. Statistical parameters for the studied reservoir models.

c Production Rate
(SCF/DAY)

Well Pressure
(psi)

Permeability
Ratio (kH/kV)

Number of
Branches

Distance between
Adjacent Branches (ft)

Branches
Length (ft)

Maximum 197,900 4800 1000 14 5200 3100
Minimum 0 14.7 1 2 1300 700

Mean 81,861 2360 61 7 2724 2760
Standard Deviation 48,713 1552 212 2.5 685 693

Coefficient of variation 60 66 346 38 25 25

4. Model Elaboration

The results generated from the numerical simulations are presented in this section
and are used as the input for the analytical, empirical, and data-driven model elaboration.
The numerical simulation results are compared with the existing analytical model which is
modified and compared with the modified empirical model.

4.1. Analytical IPR Model for Fishbone Well

Based on the literature review presented previously, we modified the analytical models
for FbD productivity prediction following the work of [30] (pp. 37–81). The aim was to
apply the existing model to the reservoir simulation results and investigate the applicability
and reliability of the numerical simulation outputs. The comparison is based on each
parameter change, and the output is presented in a chart format.
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4.1.1. Number of Branches

To evaluate the impact of the number of branches on cumulative production, a constant
permeability anisotropy of 10 was established while maintaining a fixed length of 3100 feet
and an interbranch distance of 2600 feet. The only varying parameter was the number of
branches. The results depicted in Figure 2 indicate an exponential increase in flow rates
obtained from the analytical model in comparison to a slight increase observed in the
numerical simulation results with the increase in the number of branches. These findings
verify the limitations of the existing analytical model for a higher number of branches,
specifically above four branches.
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4.1.2. Length of Branches

In our analysis of the influence of branch length on cumulative production, a per-
meability anisotropy of 10 was maintained while keeping the number of branches constant
at 6 and inter-branch distance fixed at 2600 feet. The sole variable in this scenario was
the length of the branches. Our numerical simulation and the existing analytical model
both depict an increase in well productivity with an increase in branch length. However,
the gradients of the productivity growth chart for both models remain unchanged. The
existing analytical model demonstrates an overestimation of the impact of the length of
branches on flow rate as illustrated in Figure 3, when compared to the results obtained
from the numerical simulation.
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4.1.3. Permeability Anisotropy

In this study, we evaluated several scenarios where the length of the branches was
fixed at 3100 feet, the inter-branch distance was maintained at 2600 feet, and the number of
branches was held constant at 6, while varying the permeability anisotropy. The results
displayed in Figure 4 indicate a correlation between increased reservoir anisotropy and
enhanced well productivity. The outputs from both the existing analytical models and
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the numerical simulations are highly congruent, with a common value at the intersection
between the two models represented by a permeability anisotropy Iani of 40–50.
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4.1.4. Distance between Adjacent Branches

In this examination, we analyzed the impact of inter-branch distance on cumulative
production by maintaining a constant number of branches (6), permeability anisotropy (10),
and length of branches (3100 feet). The results obtained from the existing analytical model
and numerical simulations displayed stark disparities as demonstrated in Figure 5. The
trend observed in the numerical simulation depicts a slight decrease, whereas the analytical
model exhibits an increase. These findings affirm that the existing analytical model is not
suitable for studying the effect of inter-branch distance variations.
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The development of the analytical model assumes that as inter-branch distance in-
creases, the drainage area expands. This theory, however, is limited when the inter-branch
distance is less than double the drainage radius. An increase in inter-branch distance
results in an increase in cumulative production due to the enlarged drainage area. When
the inter-branch distance equals double the drainage radius, the cumulative production
remains constant and experiences a slight decrease in regions with poor reservoir quality
properties. The simulation is configured with inter-branch distances greater than double
the drainage radius to prevent any interference with the drainage volume of each branch.
As such, the modification of the existing model is based on two parameters:

• Drainage surface:

The drainage surface is a part of the stimulated radius “rpl”. The rpl of the exist-
ing correlation considers that by increasing the distance between adjacent branches, the
drainage surface increases. To develop that, we take an example of a Fishbone well with
five branches, as shown in Figure 6.
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Figure 6. The outer and inner region representation of the stimulated volume for a Fishbone well.

The development of rpl is as follows:

r2
PLπ + Li((2ybi − 2r)n + 2(ybi − r)) = 2Li(n + 1)ybi (9)

r2
PLπ = −Li((2ybi − 2r)n + 2(ybi − r)) + 2Li(n + 1)ybi (10)

r2
PLπ = 2Li(n + 1)(−ybi + r)) + 2Li(n + 1)ybi (11)

r2
PL = (2Li(n + 1)(r)/π) (12)

rPL =

√
(n + 1)2Lir

π
(13)

The developed stimulated radius assumes that the drainage volume is related to the
drainage radius and not the distance between adjacent branches. In the case where the
double drainage radius is greater than the distance between adjacent branches, Equation
(13) can be used instead of Equation (7).

• High-pressure reservoir effect:

We noticed that the existing analytical models do not consider the effect of high
reservoir pressure. For gas reservoirs, when the pressure exceeds 3000 psi, the pressure
function (1/µg Bg) becomes nearly constant, and thus can be taken outside the integral.
This function will replace (1/µg z) used in low pressure reservoirs [42]. This approximation
is called pressure-approximation method. Equation (1) is modified accordingly First, the
square function needs to be deleted from the pressure difference (this represents the gas
pseudo-pressure integration):

qg =

(
ppl − pw f

)
1

JPL
+ 1

JR

(14)

Second, the constant pressure function (1/µg Bg) is introduced into the equation
(adjustments required):

JPL =
nkH Li

1424µgBg

{
Ianiln

[
hIani

rwi (Iani+1)

]
+ πybi

h − Iani
(
1.224 − (s i + Dqg

)} (15)

JR =
kHh

1424µgBg1/2ln
[

4A
(γCAr2

PL)

] (16)

In order to apply the p-approximation of gas deliverability equations, the gas volume
factor Bg should be introduced, and the gas viscosity needs to be calculated. The correlations
are shown in Appendix B.
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4.2. IPR Empirical Correlation for Fishbone Well

This section aims to generate a new IPR empirical correlation for a Fishbone well
for a conventional dry gas reservoir. The non-linearity between the parameters needs
to be solved by either genetic algorithms or evolutionary algorithms. The multifeatured
non-linear regression is solved using the Grey Wolf Algorithm (GWA) algorithm which
was first introduced in 2014 [43]. The algorithm has been widely used in the petroleum
industry [44]. The grey wolf’s behavior mainly inspired the algorithm. In nature, these
wolves live in packs of 5–12 wolves which have a hierarchy of dominance. The wolf that
governs the pack is called alpha (α), and they are responsible for deciding on the hunt. The
whole pack must follow these decisions. Beta (β) wolves come next in the hierarchy, and
these are subordinate wolves helping the alpha make decisions. The beta wolves reinforce
the alpha decisions through the pack. The next step is to find the delta (δ) wolves. They are
subordinate of alphas and betas, but still, dominate omegas (
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) which have the lowest level
in the hierarchy [43]. This hierarchy and the hunting strategies mentioned in [43] have
been modeled mathematically to produce the Grey Wolf Algorithm. First, a random set
of solutions is generated to represent the location of these wolves. Each of these solutions
is evaluated using the objective function-root mean square error for our case. Second, the
solutions are ranked, and the three fittest solutions are assigned as positions to the wolves’
alpha (α), beta (β), and delta (δ), while the rest of the solutions are assigned to the omegas
(
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). The wolves are looking for prey in the hunting process, which is the optimum solution
in the mathematical model.

The modified correlation will be as follows:
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= 1 + a
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(
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kV

)e( Pw f
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+ ge(h∗
L

ybi
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a, b, c, d, e, g, and h are the parameters that calibrate our model to ensure the accuracy
between the inputs (dimensionless BHP, anisotropy, distance between adjacent branches,
and the length of the branch) and the output (dimensionless flow rate). These parameters
are listed in Table 2.

Table 2. Constant values of the modified empirical model.

Parameter Estimated Value

a −5.61989377 × 102

b 59.4495457
c −1.35260055 × 102

d −1.16891882
e −6.94846204 × 10−2

f 1.91538556
g −4.51686871 × 10−4

h −1.44650462 × 102

The GWA algorithm was used to find the optimum values of the coefficient. The
coefficient of correlation (R-Score) is 98%, as shown in Figure 7:

The coefficient of correlation represented in Figure 7 demonstrates that the variable
is highly correlated, so the modified correlation is statistically valid. To ensure that the
correlation is physically valid, the signs (negative or positive) of the coefficient are related
to the effect of the Fishbone well configuration parameters on the flow rate increase or
decrease, which was added to the developed algorithm with possible intervals for each
coefficient to account for the physical significance of the problem.

To validate the results, a comparison between the numerical simulation, modified
empirical correlation, and modified analytical model flow rates was conducted. This was
carried out by varying the number of the branches, length of the branches, anisotropy, and
the distance between these branches.
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Figure 7. The correlation coefficient between the productivity of the modified empirical model and
the numerical simulations.

4.3. IPR Data-Driven Models for Fishbone Well

The robust data-driven models are used to predict the flow rate based on the numerical
simulation results and the inputs include anisotropy (Iani), the number of the branches (n),
the distance between adjacent branches (ybi), the length of each branch (Li), and the BHP
pressure divided by the reservoir pressure.

The dataset is obtained from the same numerical simulation used in this study; two
powerful algorithms were developed for the productivity prediction, the Support Vector
Regression optimized by the Genetic Algorithm (SVR-GA) and the Artificial Neuron Net-
work (ANN).

4.3.1. Artificial Neural Network (ANN)

ANN modeling can mimic human brain behavior and predict the output of a complex
function from the inputs through learning [45,46]. Ref. [47] introduced the composition
of the ANNs as a learning algorithm presented as an architecture of layers composed of
neurons that have transfer functions embedded in them and connected by weights until
the signal arrives at the predicted output [48].

The resulting regression for the ANN showed a high accuracy of 99.05% as shown in
Figure 8, with a root mean square error of 0.0205, and the mean absolute error of 0.033 (see
Figure 9).
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4.3.2. SVR Optimized by the Genetic Algorithm (SVR-GA)

Ref. [49] stated that Support Vector Regression (SVR) is a subset of the Support
Vector Machine, which is a machine learning algorithm that performs regression with
high efficiency. It was developed by [50]. SVR is different from ordinary regression, where
it minimizes the generalized error bound that gathers the training error and a regularization
term instead of minimizing the error between the output and the original values [51].

Since the first introduction of Genetic Algorithms (GA) in the sixties to solve both
linear and convex optimization along with non-linear simultaneous equations by [52], Evo-
lutionary Algorithms (EA) have played an essential role in advancing numerical solutions
and computations. The most famous and widely used algorithm among EA is the Genetic
Algorithm which was first introduced by [53]. The main mechanism behind GA is the
ability to mimic biological evolution. GA is a population-based algorithm, meaning that it
creates an initial set of random solutions called “Chromosomes” composed of genes as the
elements of the solution; then, these solutions are subject to a “Fitness Function” defined by
the user and, in our case is the performance of the SVR. To obtain the best solution for the
optimization, GA used what are called genetic operators [54], that keep interacting with
the solution until it converges toward the global optimum.

The SVR-GR model exhibits superior accuracy compared to the ANN model due to
the utilization of a robust Genetic Algorithm, effectively reducing the error between the
actual and predicted outputs. The optimized values of the SVR hyperparameters, obtained
through the GR process, are shown in Table 3.

Table 3. SVR-hyperparameters.

C Gamma γ Epsilon ε

2770.073549607837 0.20169072542497024 0.020918583247214607

Additionally, the parameters used in the optimization of the flow rate prediction
through the use of SVR are outlined in Table 4 for further clarity.

Table 4. Constant values of the modified empirical model.

Parameter Value

The size of the population 30
Maximum number of generations 8

Crossover probability 100
Mutation probability 20
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The R-score of the SVR-GA was 99.80%, as shown in Figure 10, with the root mean
square error of 0.0149, and the mean absolute error of 0.0104 (see Figure 11).
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Figure 11. Error distribution for the SVR-GA model.

Both developed data-driven models give powerful results with R scores higher than
98%. These models can be used to predict the flow rate for any new inputs with changes in
the Fishbone well design parameters.

5. Models Comparison and Validation

In this section, we aim to perform a comprehensive comparison between the models
discussed in Section 5. Our objective is to evaluate the performance and accuracy of each
model, and to determine the most suitable model for our particular application.

5.1. Number of Branches

The results show that the flow rate increases with the increase in the number of
branches. The trend and the results between the numerical simulation and the modified
correlation are similar, with a relatively small difference compared to the modified analytical
model (see Figure 12). The augmentation of the number of branches increases the exposed
area of the reservoir to enhance production.
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5.2. Length of Branches

The results show that with the length of branches increasing, the flow rate increases in
the numerical simulation, the modified correlation, and the analytical model, with a slight
difference between them but nearly the same slope as shown in Figure 13. The reason for
the production increase is the fact that a large portion of the reservoir has been exposed to
the wellbores due to the length increase of the open hole branches, which aligns with the
extended-reach drilling technology, with the idea to push the horizontal length to maximize
reservoir drainage and minimize water production [55].
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5.3. Permeability Anisotropy

The results found that permeability anisotropy affects productivity, as shown in
Figure 14. When the anisotropy increases, the productivity increases. The numerical
simulation and both developed analytical and empirical simulation showed a similar
amount of production with the anisotropy variation. This means that intersecting the
regions of higher permeability anisotropy will increase productivity. This finding supports
the findings of [56], which studied the effect of permeability anisotropy on gas production,
and as a result, reported that the higher horizontal permeability is more favorable for
gas production.
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5.4. Distance between Adjacent Branches

When the distance increases between the branches, the stimulated reservoir decreases,
and the flow rate decreases slightly (see Figure 15). The numerical outputs show the same
results as the developed correlation, with a constant difference compared to the developed
analytical model. The three models confirm a similar trend of productivity decrease as
a function of the distance. This validates the effect of the neighboring branches on each
other based on the spacing between them, in the case where the distance is above the
drainage radius. The results also demonstrate that the severity of the interference between
the branches is very low with a very slight communication effect between them.
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The statistical comparison between the models as shown in Table 5 demonstrates
their potential capabilities for productivity prediction of fishbone well design with some
differences among them in terms of the coefficient of correlation and the average error. The
developed analytical model presented low accuracy compared to the other models as it is
based on mathematical equations derived from Darcy’s equation with many assumptions
on the flow regime [57], compared to very sophisticated numerical methods to solve the
complicated fundamental differential equation. The data-driven models had the advantages
in terms of their high accuracy and low error because there were built in error terms, limited
to the extent of the data collected; the same applied for the empirical model, which depends
on the studied case and does not elucidate any underlying physics.
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Table 5. Comparison between the existing and developed models.

Approach R2 Average Error (RMSE)

Existing Analytical model 32.11% 0.791
Developed analytical model 94.39% 0.104

Developed correlation 98.56% 0.067
Developed ANN Model 99.05% 0.033

Developed SVR-GA Model 99.80% 0.014

6. Conclusions

In this study, the authors developed three models (physical-based, empirical, and data-
driven) to evaluate the gas well deliverability using Fishbone well drilling technology. The
developed analytical model takes into consideration all Fishbone well design parameters,
including the number, length of branches, distance between branches, and permeability
anisotropy of the reservoir, offering superior features compared to existing models. It also
has potential applications in unconventional reservoirs.

The comparison between the analytical and empirical models demonstrates their abil-
ity to accurately predict the gas flow rate well productivity by utilizing various parameters
including the Fishbone well parameters, bottom hole pressures, and reservoir pressures.
The results obtained from both models are consistent, indicating their effectiveness in
this regard.

To improve the accuracy of analytical and empirical models, data-driven models were
derived to help in effectively generating results with higher computational speed.

The three models can independently evaluate the well productivity and are useful for
comparing results. Optimized with a Genetic Algorithm, the Support Vector Regression
model showed the highest accuracy among the developed models. The applicability of these
models depends on data availability, reservoir properties, and computational requirements.

Overall, the new analytical, empirical, and data-driven models for estimating the Fish-
bone well productivity are feasible and practical. The development and implementation
of new productivity models for Fishbone well technology is imperative to advance the
understanding of this cutting-edge drilling approach and its wide-ranging applications.
This novel technology promises to revolutionize the way we recover hydrocarbons, ele-
vating the level of precision and control in stimulation, while minimizing the associated
hazards and costs. Furthermore, this innovative approach promotes a more sustainable
and environmentally conscious method for enhanced recovery, making it an essential part
of the industry’s future.
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Appendix A

Analytical models resulted from Darcy’s equation for IPR (bottom hole pressure and
production rate), considering the flow regime (transient, permanent, pseudo-permanent)
and the reservoir type.

• Steady-state flow model for vertical well

The condition to consider this flow regime is when the pressure is constant at any
location in the reservoir over time. The solution for Darcy’s equation for gas production is
given by [30]:

qg =
7.08 × 10−6 kh

(
PR − Pw f

)
(
µgBg

)
avg

[
ln
(

re
rw

)
− 0.5

] (A1)

• Transient flow model for horizontal well

Ref. [58] presented the Darcy equation solution for constant bottom hole pressure. The
transient regime means that the pressure perturbance had not yet reached the reservoir
boundaries, and therefore, is a function of time and location. The gas flow rate is as follows:

qg =
kh
[
m(pi)− m

(
pw f

)]
1.638T

(
log t + log k

ϕµoctr2
w
− 3.23 + 0.87S

) (A2)

• Steady-state flow model for horizontal well

Ref. [59] proposed a steady-state analytical equation that considered the horizontal
well located between the upper and lower boundaries. Ref. [60] derived a steady-state ana-
lytical equation that considers the well completion effects and incorporated a rectangular
reservoir with no-flow boundaries. By considering the effect of permeability anisotropy
and skin factor and after simplifications, the IPR equation for a horizontal steady-state gas
well is as follows:

qg =
kh
[
m(pi)− m

(
pw f

)]
1.638T

(
log t + log k

ϕµoctr2
w
− 3.23 + 0.87S

) (A3)

Appendix B

The development of the Equations (15) and (16) where the compressibility factor z
needs to be replaced by the gas formation volume factor Bg is demonstrated as follows.

First, the pseudo-critical pressure and pseudo-critical temperature should be calculated
using the two correlations for a natural gas system (γg < 0.7)

Tpc = 168 + 325γg − 12.5γ2
g (A4)

ppc = 667 + 15.0γg − 37.5γ2
g (A5)

Next, the pseudo-reduced pressure and pseudo-reduced temperature are calculated.

pavg =
p + pres

2
(A6)

ppr =
pavg

ppc
(A7)

Tpr =
T

Tpc
(A8)
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z = 1.008505 + 0.04623
(

ppr

Tpr

)
+

0.862707p1.368627
pr

100.649787Tpr
(A9)

Bg = 0.005035
zT
p

(A10)

The gas viscosity is calculated using Standing (1977) correlation:

(µ1) = (µ1)uncorrected +
(
∆µCO2

)
+
(
∆µH2S

)
+
(
∆µN2

)
(A11)

Since we do not have the effect of non-hydrocarbon components (i.e., our gas is
considered pure gas to a certain extent), then,

(µ1) = (µ1)uncorrected (A12)

(µ1)uncorrected =
[
1.709

(
10−5 − 2.062 10−6γg

)]
(T − 460) + 8.118

(
10−3

)
− 6.15

(
10−3

)
log
(
γg
)

(A13)
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